Peripheral electrical stimulation to reduce pathological tremor: a review

Alejandro Pascual-Valdunciel, Grace W Hoo, Simon Avrillon, Filipe Oliveira Barroso, Jennifer G Goldman, Julio C Hernandez-Pavon, José L Pons, Alejandro Pascual-Valdunciel, Grace W Hoo, Simon Avrillon, Filipe Oliveira Barroso, Jennifer G Goldman, Julio C Hernandez-Pavon, José L Pons

Abstract

Interventions to reduce tremor in essential tremor (ET) and Parkinson's disease (PD) clinical populations often utilize pharmacological or surgical therapies. However, there can be significant side effects, decline in effectiveness over time, or clinical contraindications for these interventions. Therefore, alternative approaches must be considered and developed. Some non-pharmacological strategies include assistive devices, orthoses and mechanical loading of the tremorgenic limb, while others propose peripheral electrical stimulation. Specifically, peripheral electrical stimulation encompasses strategies that activate motor and sensory pathways to evoke muscle contractions and impact sensorimotor function. Numerous studies report the efficacy of peripheral electrical stimulation to alter tremor generation, thereby opening new perspectives for both short- and long-term tremor reduction. Therefore, it is timely to explore this promising modality in a comprehensive review. In this review, we analyzed 27 studies that reported the use of peripheral electrical stimulation to reduce tremor and discuss various considerations regarding peripheral electrical stimulation: the stimulation strategies and parameters, electrodes, experimental designs, results, and mechanisms hypothesized to reduce tremor. From our review, we identified a high degree of disparity across studies with regard to stimulation patterns, experimental designs and methods of assessing tremor. Having standardized experimental methodology is a critical step in the field and is needed in order to accurately compare results across studies. With this review, we explore peripheral electrical stimulation as an intervention for tremor reduction, identify the limitations and benefits of the current state-of-the-art studies, and provide ideas to guide the development of novel approaches based on the neural circuitries and mechanical properties implied in tremor generation.

Keywords: Afferent fibers; Electrical stimulation; Essential tremor; Neural circuitry; Parkinson’s disease; Stimulation parameters; Tremor.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow diagram of screening process and identifying final papers included in this review
Fig. 2
Fig. 2
Stimulation strategies. a Out-of-phase stimulation. Tremorgenic bursts are detected in the recording window EMG (gray lines) and future tremorgenic bursts are predicted during the stimulation window (red and blue lines). Stimulation is then applied to the antagonist (red and blue colored rectangles) out-of-phase with respect to the activity in each target muscle during a stimulation window (adapted figure from Dosen et al. [16]). b Continuous stimulation. Electrical stimulation is applied during the entire stimulation window (green colored rectangle) without following any time pattern
Fig. 3
Fig. 3
Stimulation parameter scatter plot. a Frequency vs. stimulation intensity. b Pulse width vs. stimulation intensity. Red dots represent studies using electrical stimulation of afferent pathways. Yellow dots represent studies using FES. Studies testing multiple stimulation parameters are represented by multiple dots. Studies performed by the same research group or replicating the same conditions are represented by the same dot. Note that four studies used stimulation of afferent pathways with stimulation intensity above motor threshold. ***Not described in paper
Fig. 4
Fig. 4
a The tremorgenic input is generated by a central brain oscillator and projected to the motor neuron pools monosynaptically via the corticospinal tract and disynaptically via interneurons. Several strategies to reduce tremors have been proposed: b functional electrical stimulation on the nerve or the muscle belly to elicit antagonist muscle forces and increase the joint impedance, c stimulation of Ia afferent fibers to decrease the excitability of the antagonist pool of motor neurons and alter the transmission of the tremorgenic input, and d stimulation of cutaneous afferent fibers to inhibit the interneurons and alter the disynaptic transmission of the tremorgenic input

References

    1. Shanker V. Essential tremor: diagnosis and management. BMJ. 2019;366:l4485. doi: 10.1136/bmj.l4485.
    1. Lang AE, Lozano AM. Parkinson’s disease. First of two parts. N Engl J Med. 1998;339(15):1144–53. doi: 10.1056/NEJM199810083391506.
    1. de Lau LML, Breteler MMB. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5:525–535. doi: 10.1016/S1474-4422(06)70471-9.
    1. Helmich RC. The cerebral basis of Parkinsonian tremor: a network perspective. Mov Disord. 2018;33:219–231. doi: 10.1002/mds.27224.
    1. Hallett M. Tremor: pathophysiology. Parkinson Relat Disord. 2014;20(Suppl 1):S118–S122. doi: 10.1016/S1353-8020(13)70029-4.
    1. Helmich RC, Toni I, Deuschl G, Bloem BR. The pathophysiology of essential tremor and Parkinson’s tremor. Curr Neurol Neurosci Rep. 2013;13(9):378. doi: 10.1007/s11910-013-0378-8.
    1. Haubenberger D, Hallett M. Essential tremor. N Engl J Med. 2018;378(1):1802–1810. doi: 10.1056/NEJMcp1707928.
    1. Bhatia KP, Bain P, Bajaj N, Elble RJ, Hallett M, Louis ED, et al. Consensus Statement on the classification of tremors from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord. 2018;33:75–87. doi: 10.1002/mds.27121.
    1. Lang AE, Lozano AM. Parkinson’s disease. Second of two parts. N Engl J Med. 1998;339(16):1030–1043. doi: 10.1056/NEJM199810153391607.
    1. Zesiewicz TA, Elble RJ, Louis ED, Gronseth GS, Ondo WG, Dewey RB, Jr, et al. Evidence-based guideline update: treatment of essential tremor: report of the Quality Standards subcommittee of the American Academy of Neurology. Neurology. 2011;77(19):1752–1755. doi: 10.1212/WNL.0b013e318236f0fd.
    1. Poewe W, Mahlknecht P. Pharmacologic treatment of motor symptoms associated with Parkinson disease. Neurol Clin. 2020;38(2):255–267. doi: 10.1016/j.ncl.2019.12.002.
    1. Fasano A, Lozano AM, Cubo E. New neurosurgical approaches for tremor and Parkinson’s disease. Curr Opin Neurol. 2017;30(4):435–446. doi: 10.1097/WCO.0000000000000465.
    1. Dallapiazza RF, Lee DJ, De Vloo P, Fomenko A, Hamani C, Hodaie M, et al. Outcomes from stereotactic surgery for essential tremor. J Neurol Neurosurg Psychiatry. 2019;90(4):474–482. doi: 10.1136/jnnp-2018-318240.
    1. O’Connor RJ, Kini MU. Non-pharmacological and non-surgical interventions for tremor: a systematic review. Park Relat Disord. 2011;17(7):509–515. doi: 10.1016/j.parkreldis.2010.12.016.
    1. Fromme NP, Camenzind M, Riener R, Rossi RM. Need for mechanically and ergonomically enhanced tremor-suppression orthoses for the upper limb: a systematic review. J Neuroeng Rehabil. 2019;16(1):93. doi: 10.1186/s12984-019-0543-7.
    1. Dosen S, Muceli S, Dideriksen JL, Romero JP, Rocon E, Pons J, et al. Online tremor suppression using electromyography and low-level electrical stimulation. IEEE Trans Neural Syst Rehabil Eng. 2015;23(3):385–395. doi: 10.1109/TNSRE.2014.2328296.
    1. Grimaldi G, Camut S, Manto M. Functional electrical stimulation effect on upper limb tremor. Int J Bioelectromagn. 2011;13(3):123–124.
    1. Munhoz RP, Hanajima R, Ashby P, Lang AE. Acute effect of transcutaneous electrical nerve stimulation on tremor. 2003;18(2):191–194.
    1. Widjaja F, Shee CY, Au WL, Poignet P, Ang WT. Using electromechanical delay for real-time anti-phase tremor attenuation system using functional electrical stimulation. Proc IEEE Int Conf Robot Autom. 2011;2011:3694–3699. doi: 10.1109/ICRA.2011.5979865.
    1. Bó APL, Azevedo-Coste C, Geny C, Poignet P, Fattal C. On the use of fixed-intensity functional electrical stimulation for attenuating essential tremor. Artif Organs. 2014;38:984–991. doi: 10.1111/aor.12261.
    1. Heo JH, Kim JW, Kwon Y, Lee SK, Eom GM, Kwon DY, et al. Sensory electrical stimulation for suppression of postural tremor in patients with essential tremor. Biomed Mater Eng. 2015;26:S803–S809.
    1. Heo JH, Kwon Y, Jeon HM, Kwon DY, Lee CN, Park KW, et al. Suppression of action tremor by sensory electrical stimulation in patients with essential tremor. J Mech Med Biol. 2016;16(8):1650026. doi: 10.1142/S0219519416400261.
    1. Lin PT, Ross EK, Chidester P, Rosenbluth KH, Hamner SR, Wong SH, et al. Noninvasive neuromodulation in essential tremor demonstrates relief in a sham-controlled pilot trial. Mov Disord. 2018;33:1182–1183. doi: 10.1002/mds.27350.
    1. Pahwa R, Dhall R, Ostrem J, Gwinn R, Lyons K, Ro S, et al. An acute randomized controlled trial of noninvasive peripheral nerve stimulation in essential tremor. Neuromodulation. 2019;22:537–545. doi: 10.1111/ner.12930.
    1. Kim J, Wichmann T, Inan OT, De Weerth SP. A wearable system for attenuating essential tremor based on peripheral nerve stimulation. IEEE J Transl Eng Heal Med. 2020;8:2000111.
    1. Isaacson SH, Peckham E, Tse W, Waln O, Way C, Petrossian MT, et al. Prospective home-use study on non-invasive neuromodulation therapy for essential tremor. Tremor Other Hyperkinet Mov. 2020;10:1–16. doi: 10.5334/tohm.68.
    1. Pascual Valdunciel A, Gonzalez-Sanchez M, Muceli S, Adan-Barrientos B, Escobar-Segura V, Perez-Sanchez JR, et al. Intramuscular stimulation of muscle afferents attains prolonged tremor reduction in essential tremor patients. IEEE Trans Biomed Eng. 2020;1.
    1. Mones RJ, Weiss AH. The response of the tremor of patients with Parkinsonism to peripheral nerve stimulation. J Neurol Neurosurg Psychiatry. 1969;32:512–518. doi: 10.1136/jnnp.32.6.512.
    1. Gillard DM, Cameron T, Prochazka A, Gauthier MJA. Tremor suppression using functional electrical stimulation: a comparison between digital and analog controllers. IEEE Trans Rehabil Eng. 1999;7:385–388. doi: 10.1109/86.788474.
    1. Jitkritsadakul O, Thanawattano C, Anan C, Bhidayasiri R. Exploring the effect of electrical muscle stimulation as a novel treatment of intractable tremor in Parkinson’s disease. J Neurol Sci. 2015;358:146–152. doi: 10.1016/j.jns.2015.08.1527.
    1. Xu FL, Hao MZ, Xu SQ, Hu ZX, Xiao Q, Lan N. Development of a closed-loop system for tremor suppression in patients with Parkinson’s disease. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:1782–1785.
    1. Hao MZ, Xu SQ, Hu ZX, Xu FL, Niu CXM, Xiao Q, et al. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation. J Neuroeng Rehabil. 2017;14(1):75. doi: 10.1186/s12984-017-0286-2.
    1. Jitkritsadakul O, Thanawattano C, Anan C, Bhidayasiri R. Tremor’s glove-an innovative electrical muscle stimulation therapy for intractable tremor in Parkinson’s disease: a randomized sham-controlled trial. J Neurol Sci. 2017;381:331–340. doi: 10.1016/j.jns.2017.08.3246.
    1. Heo JH, Jeon HM, Choi EB, Kwon DY, Eom GM. Continuous sensory electrical stimulation for the suppression of parkinsonian rest tremor. J Mech Med Biol. 2018;18(7):1840006. doi: 10.1142/S0219519418400067.
    1. Heo JH, Jeon HM, Choi EB, Kwon DY, Eom GM. Effect of sensory electrical stimulation on resting tremors in patients with Parkinson’s disease and SWEEDs. J Mech Med Biol. 2019;19(7):1940033. doi: 10.1142/S0219519419400335.
    1. Muceli S, Poppendieck W, Hoffmann KP, Dosen S, Benito-León J, Barroso FO, et al. A thin-film multichannel electrode for muscle recording and stimulation in neuroprosthetics applications. J Neural Eng. 2019;16(2):026035. doi: 10.1088/1741-2552/ab047a.
    1. Spiegel J, Fuß G, Krick C, Schimrigk K, Dillmann U. Influence of proprioceptive input on parkinsonian tremor. J Clin Neurophysiol. 2002;19:84–89. doi: 10.1097/00004691-200201000-00012.
    1. Britton TC, Thompson PD, Rothwell JC, Findley LJ, Marsden CD. Modulation of postural tremors at the wrist by supramaximal electrical median nerve shocks in essential tremor, Parkinson’s disease and normal subjects mimicking tremor. J Neurol Neurosurg Psychiatry. 1993;56(10):1085–1089. doi: 10.1136/jnnp.56.10.1085.
    1. Gallego JÁ, Rocon E, Manuel Belda-Lois J, Pons JL. A neuroprosthesis for tremor management through the control of muscle co-contraction. J Neuroeng Rehabil. 2013;10:36. doi: 10.1186/1743-0003-10-36.
    1. Javidan M, Elek J, Prochazka A. Attenuation of pathological tremors by functional electrical stimulation II: clinical evaluation. Ann Biomed Eng. 1992;20:225–236. doi: 10.1007/BF02368522.
    1. Maneski LP, Jorgovanović N, Ilić V, Došen S, Keller T, Popović MB, et al. Electrical stimulation for the suppression of pathological tremor. Med Biol Eng Comput. 2011;49:1187–1193. doi: 10.1007/s11517-011-0803-6.
    1. Dideriksen JL, Laine CM, Dosen S, Muceli S, Rocon E, Pons JL, et al. Electrical stimulation of afferent pathways for the suppression of pathological tremor. Front Neurosci. 2017 doi: 10.3389/fnins.2017.00178.
    1. Gallego JA, Dideriksen JL, Holobar A, Ibáñez J, Glaser V, Romero JP, et al. The phase difference between neural drives to antagonist muscles in essential tremor is associated with the relative strength of supraspinal and afferent input. J Neurosci. 2015;35:8925–8937. doi: 10.1523/JNEUROSCI.0106-15.2015.
    1. Puttaraksa G, Muceli S, Gallego JÁ, Holobar A, Charles SK, Pons JL, et al. Voluntary and tremorogenic inputs to motor neuron pools of agonist/antagonist muscles in essential tremor patients. J Neurophysiol. 2019;122(5):2043–2053. doi: 10.1152/jn.00407.2019.
    1. Gallego JA, Rocon E, Belda-Lois JM, Koutsou AD, Mena S, Castillo A, et al. Design and validation of a neuroprosthesis for the treatment of upper limb tremor. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2013;2013:3606–3609.
    1. Gallego JÁ, Ibáñez J, Dideriksen JL, Serrano JI, Del Castillo MD, Farina D, et al. A multimodal human-robot interface to drive a neuroprosthesis for tremor management. IEEE Trans Syst Man Cybern Part C Appl Rev. 2012;42:1159–1168. doi: 10.1109/TSMCC.2012.2200101.
    1. Enoka RM, Amiridis IG, Duchateau J. Electrical stimulation of muscle: electrophysiology and rehabilitation. Physiology (Bethesda). 2020;35:40–56.
    1. Dideriksen JL, Muceli S, Dosen S, Laine CM, Farina D. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways. J Appl Physiol. 2015;118:365–376. doi: 10.1152/japplphysiol.00327.2014.
    1. Pascual-Valdunciel A, Barroso FO, Muceli S, Taylor J, Farina D, Pons JL. Modulation of reciprocal inhibition at the wrist as a neurophysiological correlate of tremor suppression: a pilot healthy subject study. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:6267–6272.
    1. Hao M, He X, Xiao Q, Alstermark B, Lan N. Corticomuscular transmission of tremor signals by propriospinal neurons in Parkinson’s disease. PLoS ONE. 2013;8(11):e79829. doi: 10.1371/journal.pone.0079829.
    1. Nielsen J, Pierrot-Deseilligny E. Pattern of cutaneous inhibition of the propriospinal-like excitation to human upper limb motoneurones. J Physiol. 1991;434:169–182. doi: 10.1113/jphysiol.1991.sp018464.
    1. Pol S, Vidailhet M, Meunier S, Mazevet D, Agid Y, Pierrot-Deseilligny E. Overactivity of cervical premotor neurons in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1998;64:166–171. doi: 10.1136/jnnp.64.2.166.
    1. Prochazka A, Elek J, Javidan M. Attenuation of pathological tremors by functional electrical stimulation I: method. Ann Biomed Eng. 1992;20:205–224. doi: 10.1007/BF02368521.
    1. Bó APL, Poignet P, Zhang D, Ang WT. FES-controlled co-contraction strategies for pathological tremor compensation. IEEE/RSJ Int Conf Intell Robot Syst IROS. 2009;2009:1633–1638.
    1. Gallego JA, Rocon E, Ibáñez J, Dideriksen JL, Koutsou AD, Paradiso R, et al. A soft wearable robot for tremor assessment and suppression. Proc IEEE Int Conf Robot Autom. 2011;2011:2249–2254. doi: 10.1109/ICRA.2011.5979639.
    1. Dideriksen JL, Gianfelici F, Maneski LZP, Farina D. EMG-based characterization of pathological tremor using the iterated hilbert transform. IEEE Trans Biomed Eng. 2011;58:2911–2921. doi: 10.1109/TBME.2011.2163069.
    1. Mang CS, Lagerquist O, Collins DF. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency. Exp brain Res Germany. 2010;203:11–20. doi: 10.1007/s00221-010-2202-x.
    1. Gil-Castillo J, Alnajjar F, Koutsou A, Torricelli D, Moreno JC. Advances in neuroprosthetic management of foot drop: a review. J Neuroeng Rehabil. 2020;17:46. doi: 10.1186/s12984-020-00668-4.
    1. Corie TH, Charles SK. Simulated tremor propagation in the upper limb: from muscle activity to joint displacement. J Biomech Eng. 2019;141(8):0810011–08100117. doi: 10.1115/1.4043442.
    1. Struppler A. Tremor and skeletal muscle tone. Stereotact Funct Neurosurg Switzerland. 1993;60(1–3):152–156. doi: 10.1159/000100603.
    1. Xia R, Rymer WZ. The role of shortening reaction in mediating rigidity in Parkinson’s disease. Exp Brain Res. 2004;156(4):524–528. doi: 10.1007/s00221-004-1919-9.
    1. Mazzoni P, Shabbott B, Cortés JC. Motor control abnormalities in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(6):a009282. doi: 10.1101/cshperspect.a009282.
    1. Meunier S, Bleton JP, Mazevet D, Sangla S, Grabli D, Roze E, et al. TENS is harmful in primary writing tremor. Clin Neurophysiol. 2011;122(1):171–175. doi: 10.1016/j.clinph.2010.06.012.
    1. Lora-Millán JS, López-Blanco R, Gallego JÁ, Méndez-Guerrero A, González de la Aleja J, Rocon E. Mechanical vibration does not systematically reduce the tremor in essential tremor patients. Sci Rep. 2019;9:16476. doi: 10.1038/s41598-019-52988-8.
    1. Chan PY, Mohd Ripin Z, Abdul Halim S, Kamarudin MI, Ng KS, Eow GB, et al. Biomechanical system versus observational rating scale for Parkinson’s disease tremor assessment. Sci Rep. 2019;9:8117. doi: 10.1038/s41598-019-44142-1.
    1. Ivorra A, Becerra-Fajardo L, Castellví Q. In vivo demonstration of injectable microstimulators based on charge-balanced rectification of epidermically applied currents. J Neural Eng. 2015;12:66010. doi: 10.1088/1741-2560/12/6/066010.
    1. Becerra-Fajardo L, Garcia-Arnau R, Ivorra A. Injectable stimulators based on rectification of high frequency current bursts: power efficiency of 2 mm thick prototypes. In: Ibáñez J, González-Vargas J, Azorín JM, Akay M, Pons JL, editors. Converging Clin Eng Res Neurorehabilitation II. Cham: Springer International Publishing; 2017. pp. 667–671.

Source: PubMed

3
Subskrybuj