Inhibiting miR-205 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Oxidative Stress, Mitochondrial Function, and Apoptosis

Yuerong Xu, Wangang Guo, Di Zeng, Yexian Fang, Runze Wang, Dong Guo, Bingchao Qi, Yugang Xue, Feng Xue, Zuolin Jin, Yan Li, Mingming Zhang, Yuerong Xu, Wangang Guo, Di Zeng, Yexian Fang, Runze Wang, Dong Guo, Bingchao Qi, Yugang Xue, Feng Xue, Zuolin Jin, Yan Li, Mingming Zhang

Abstract

Background: miR-205 is important for oxidative stress, mitochondrial dysfunction, and apoptosis. The roles of miR-205 in cardiac ischemia/reperfusion (I/R) injury remain unknown. The aim of this research is to reveal whether miR-205 could regulate cardiac I/R injury by focusing upon the oxidative stress, mitochondrial function, and apoptosis.

Methods: Levels of miR-205 and Rnd3 were examined in the hearts with I/R injury. Myocardial infarct size, cardiac function, oxidative stress, mitochondria function, and cardiomyocyte apoptosis were detected in mice with myocardial ischemia/reperfusion (MI/R) injury. The primary neonatal cardiomyocytes underwent hypoxia/reoxygenation (H/R) to simulate MI/R injury.

Results: miR-205 levels were significantly elevated in cardiac tissues from I/R in comparison with those from Sham. In comparison with controls, levels of Rnd3 were significantly decreased in the hearts from mice with MI/R injury. Furthermore, inhibiting miR-205 alleviated MI/R-induced apoptosis, reduced infarct size, prevented oxidative stress increase and mitochondrial fragmentation, and improved mitochondrial functional capacity and cardiac function. Consistently, overexpression of miR-205 increased infarct size and promoted apoptosis, oxidative stress, and mitochondrial dysfunction in mice with MI/R injury. In cultured mouse neonatal cardiomyocytes, downregulation of miR-205 reduced oxidative stress in H/R-treated cardiomyocytes. Finally, inhibiting Rnd3 ablated the cardioprotective effects of miR-205 inhibitor in MI/R injury.

Conclusions: We conclude that inhibiting miR-205 reduces infarct size, improves cardiac function, and suppresses oxidative stress, mitochondrial dysfunction, and apoptosis by promoting Rnd3 in MI/R injury. miR-205 inhibitor-induced Rnd3 activation is a valid target to treat MI/R injury.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2021 Yuerong Xu et al.

Figures

Figure 1
Figure 1
miR-205 inhibitor alleviates, while miR-205 mimic administration aggravates cardiac MI/R injury in mice. (a) Relative expression of miRNA-205. (b, c) Lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) release after myocardial I/R injury in mice. (d–g) Left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), left ventricular end systolic diameter (LVESD), and left ventricular end diastolic diameter (LVEDD) measured by echocardiography. (h) Representative images of infarct size as stained by Evans Blue and TTC. (i, j) Quantitative analysis of infarct size and AAR/LV at 3 h after I/R injury in mice. n = 6 in each group. The columns and errors bars represent means and SD. ∗p < 0.05 vs. Sham, †p < 0.05 vs. MI/R+NC, ‡p < 0.05 vs. MI/R+miR-205 inhibitor, &p < 0.05 vs. MI/R+Control mimic.
Figure 2
Figure 2
miR-205 inhibitor improves, while miR-205 mimic administration aggravates mitochondrial dysfunction and oxidative stress in mice that underwent MI/R injury. (a) Mitochondria morphological defects (magnification: upper panel ×9900; middle panel ×20500; lower panel ×43000). (b, c) ATP content and citrate synthase (CS) activity in the ischemic myocardium in mice subjected to MI/R injury. (d) Sensitivity of the mitochondrial permeability transition pore (mPTP) opening to calcium as evidenced by mCRC measurement. (e) ROS levels assessed by EPR spectroscopy. (f) Mitochondrial MnSOD activity. (g, h) Western blot analysis of Rnd3 expression. n = 6 in each group. ∗p < 0.05 vs. Sham, †p < 0.05 vs. MI/R+NC, ‡p < 0.05 vs. MI/R+miR-205 inhibitor, &p < 0.05 vs. MI/R+Control mimic.
Figure 3
Figure 3
Inhibiting miR-205 improves, while miR-205 overexpression administration aggravates apoptosis in mice that underwent cardiac MI/R injury. (a, b) Representative images of TUNEL staining and percentage of TUNEL-positive nuclei, scale bars = 50 μm. (c–e) Western blot analysis of cleaved caspase-3 and cleaved caspase-9 expression. n = 6 in each group. ∗p < 0.05 vs. Sham, †p < 0.05 vs. MI/R+NC, ‡p < 0.05 vs. MI/R+miR-205 inhibitor, &p < 0.05 vs. MI/R+Control mimic.
Figure 4
Figure 4
Inhibiting RND3 ablated the cardioprotective effects of miRNA-205 inhibitor. (a, b) Lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) release. (c–f) Left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), left ventricular end systolic diameter (LVESD), and left ventricular end diastolic diameter (LVEDD). (g) Representative images of infarct size as stained by Evans Blue and TTC. (h, i) Infarct size. AAR/LV had no statistical difference between groups 3 h after I/R injury. n = 6 in each group. The columns and errors bars represent means and SD. ∗p < 0.05 vs. MI/R, †p < 0.05 vs. MI/R+AAV9-sh-Rnd3, ‡p < 0.05 vs. MI/R+miR-205 inhibitor.
Figure 5
Figure 5
Inhibiting RND3 ablated the cardioprotective effects of miRNA-205 inhibitor in mitochondrial dysfunction and oxidative stress in mice that underwent MI/R injury. (a) Mitochondria morphological defects (magnification: upper panel ×9900; middle panel ×20500; lower panel ×43000). (b, c) ATP content and citrate synthase (CS) activity in the ischemic myocardium in the isolated mitochondrial in mice subjected to cardiac I/R injury. (d) Sensitivity of the mitochondrial permeability transition pore (mPTP) opening to calcium as evidenced by mCRC measurement. (e) ROS levels assessed by EPR spectroscopy. (f) Mitochondrial MnSOD activity. (g, h) Western blot analysis of Rnd3 expression. n = 6 in each group. ∗p < 0.05 vs. MI/R, †p < 0.05 vs. MI/R+AAV9-sh-Rnd3, ‡p < 0.05 vs. MI/R+miR-205 inhibitor.
Figure 6
Figure 6
Inhibiting RND3 ablated the cardioprotective effects of miRNA-205 inhibitor in apoptosis in mice that underwent cardiac MI/R injury (a, b) Representative images of TUNEL staining and percentage of TUNEL-positive nuclei, scale bars = 50 μm. (c–e) Western blot analysis of cleaved caspase-3 and cleaved caspase-9 expression. n = 6 in each group. ∗p < 0.05 vs. MI/R, †p < 0.05 vs. MI/R+AAV9-sh-Rnd3, ‡p < 0.05 vs. MI/R+miR-205 inhibitor.
Figure 7
Figure 7
Inhibiting miR-205 improves H/R-induced oxidative stress, while inhibiting RND3 ablated the cardioprotective effects of miR-205 inhibitor in primary cardiomyocytes. (a, b) Representative images of mitochondrial ROS in primary cardiomyocytes, scale bars = 50 μm. (c, d) Representative images of JC-1 and the ratio of aggregated (red) and monomeric (green) in neonatal mice cardiomyocytes, scale bars = 20 μm. ∗p < 0.05 vs. Con, †p < 0.05 vs. H/R+NC, ‡p < 0.05 vs. H/R+miR-205 inhibitor, &p < 0.05 vs. H/R+Control mimic. (e, f) Representative images of mitochondrial ROS in neonatal mice cardiomyocytes, scale bars = 50 μm. (g, h) Representative images of JC-1 and the ratio of aggregated (red) and monomeric (green) in neonatal mice cardiomyocytes, scale bars = 20 μm. The number of cardiomyocytes was counted (n = 50 in each group). ∗p < 0.05 vs. H/R, †p < 0.05 vs. H/R+AAV9-sh-Rnd3, ‡p < 0.05 vs. H/R+miR-205 inhibitor.

References

    1. Virani S. S., Alonso A., Benjamin E. J., et al. Heart Disease and Stroke Statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–e596. doi: 10.1161/CIR.0000000000000757.
    1. Leong D. P., Joseph P. G., McKee M., et al. Reducing the global burden of cardiovascular disease, part 2: prevention and treatment of cardiovascular disease. Circulation Research. 2017;121(6):695–710. doi: 10.1161/CIRCRESAHA.117.311849.
    1. Bernink F. J. P., Timmers L., Beek A. M., et al. Progression in attenuating myocardial reperfusion injury: an overview. International Journal of Cardiology. 2014;170(3):261–269. doi: 10.1016/j.ijcard.2013.11.007.
    1. Ibáñez B., Heusch G., Ovize M., Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. Journal of the American College of Cardiology. 2015;65(14):1454–1471. doi: 10.1016/j.jacc.2015.02.032.
    1. Sugiyama T., Hasegawa K., Kobayashi Y., Takahashi O., Fukui T., Tsugawa Y. Differential time trends of outcomes and costs of care for acute myocardial infarction hospitalizations by ST elevation and type of intervention in the United States, 2001-2011. Journal of the American Heart Association. 2015;4(3, article e001445) doi: 10.1161/jaha.114.001445.
    1. Correia de Sousa M., Gjorgjieva M., Dolicka D., Sobolewski C., Foti M. Deciphering miRNAs’ action through miRNA editing. International Journal of Molecular Sciences. 2019;20(24):p. 6249. doi: 10.3390/ijms20246249.
    1. Ekdahl Y., Farahani H. S., Behm M., Lagergren J., Öhman M. A-to-I editing of microRNAs in the mammalian brain increases during development. Genome Research. 2012;22(8):1477–1487. doi: 10.1101/gr.131912.111.
    1. Sun Z., Shi K., Yang S., et al. Effect of exosomal miRNA on cancer biology and clinical applications. Molecular Cancer. 2018;17(1):p. 147. doi: 10.1186/s12943-018-0897-7.
    1. Li M., Ding W., Tariq M. A., et al. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics. 2018;8(21):5855–5869. doi: 10.7150/thno.27285.
    1. Jusic A., Devaux Y. Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Research in Cardiology. 2020;115(3):p. 23. doi: 10.1007/s00395-020-0783-5.
    1. Mishra S., Yadav T., Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Critical Reviews in Oncology/Hematology. 2016;98:12–23. doi: 10.1016/j.critrevonc.2015.10.003.
    1. Abbas N., Perbellini F., Thum T. Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Research in Cardiology. 2020;115(5):p. 52. doi: 10.1007/s00395-020-0816-0.
    1. Ma Z., Lan Y. H., Liu Z. W., Yang M. X., Zhang H., Ren J. Y. miR-19a suppress apoptosis of myocardial cells in rats with myocardial ischemia/reperfusion through PTEN/Akt/P-Akt signaling pathway. European Review for Medical and Pharmacological Sciences. 2020;24(6):3322–3330. doi: 10.26355/eurrev_202003_20700.
    1. Liang Z. G., Yao H., Xie R. S., Gong C. L., Tian Y. MicroRNA-20b-5p promotes ventricular remodeling by targeting the TGF-β/Smad signaling pathway in a rat model of ischemia-reperfusion injury. International Journal of Molecular Medicine. 2018;42(2):975–987. doi: 10.3892/ijmm.2018.3695.
    1. Consolini A. E., Ragone M. I., Bonazzola P., Colareda G. A. Mitochondrial bioenergetics during ischemia and reperfusion. Advances in Experimental Medicine and Biology. 2017;982:141–167. doi: 10.1007/978-3-319-55330-6_8.
    1. Lesnefsky E. J., Chen Q., Tandler B., Hoppel C. L. Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annual Review of Pharmacology and Toxicology. 2017;57(1):535–565. doi: 10.1146/annurev-pharmtox-010715-103335.
    1. Dutta D., Calvani R., Bernabei R., Leeuwenburgh C., Marzetti E. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circulation Research. 2012;110(8):1125–1138. doi: 10.1161/CIRCRESAHA.111.246108.
    1. Picca A., Mankowski R. T., Burman J. L., et al. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nature Reviews. Cardiology. 2018;15(9):543–554. doi: 10.1038/s41569-018-0059-z.
    1. Kubli D. A., Zhang X., Lee Y., et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem. 2013;288(2):915–926. doi: 10.1074/jbc.M112.411363.
    1. Zhu H., Toan S., Mui D., Zhou H. Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiologica. 2021;231(3):p. e13590. doi: 10.1111/apha.13590.
    1. Tsutsui H., Kinugawa S., Matsushima S. Oxidative stress and heart failure. American Journal of Physiology. Heart and Circulatory Physiology. 2011;301(6):H2181–H2190. doi: 10.1152/ajpheart.00554.2011.
    1. Forrester S. J., Kikuchi D. S., Hernandes M. S., Xu Q., Griendling K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research. 2018;122(6):877–902. doi: 10.1161/CIRCRESAHA.117.311401.
    1. Plantamura I., Cataldo A., Cosentino G., Iorio M. V. miR-205 in breast cancer: state of the Art. International Journal of Molecular Sciences. 2021;22(1):p. 27. doi: 10.3390/ijms22010027.
    1. Piovan C., Palmieri D., Di Leva G., et al. Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Molecular Oncology. 2012;6(4):458–472. doi: 10.1016/j.molonc.2012.03.003.
    1. Madaule P., Axel R. A novel ras-related gene family. Cell. 1985;41(1):31–40. doi: 10.1016/0092-8674(85)90058-3.
    1. Ridley A. J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends in Cell Biology. 2006;16(10):522–529. doi: 10.1016/j.tcb.2006.08.006.
    1. Jie W., Andrade K. C., Lin X., Yang X., Yue X., Chang J. Pathophysiological functions of Rnd3/RhoE. Comprehensive Physiology. 2015;6(1):169–186. doi: 10.1002/cphy.c150018.
    1. Foster R., Hu K. Q., Lu Y., Nolan K. M., Thissen J., Settleman J. Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Molecular and Cellular Biology. 1996;16(6):2689–2699. doi: 10.1128/MCB.16.6.2689.
    1. Yue X., Yang X., Lin X., et al. Rnd3 haploinsufficient mice are predisposed to hemodynamic stress and develop apoptotic cardiomyopathy with heart failure. Cell Death & Disease. 2014;5(6, article e1284) doi: 10.1038/cddis.2014.235.
    1. Yang X., Wang T., Lin X., et al. Genetic deletion of Rnd3/RhoE results in mouse heart calcium leakage through upregulation of protein kinase a signaling. Circulation Research. 2015;116(1):e1–e10. doi: 10.1161/CIRCRESAHA.116.304940.
    1. Yue X., Lin X., Yang T., et al. Rnd3/RhoE modulates hypoxia-inducible factor 1α/vascular endothelial growth factor signaling by stabilizing hypoxia-inducible factor 1α and regulates responsive cardiac angiogenesis. Hypertension. 2016;67(3):597–605. doi: 10.1161/HYPERTENSIONAHA.115.06412.
    1. Zhang M., Wang C., Hu J., et al. Notch3/Akt signaling contributes to OSM-induced protection against cardiac ischemia/reperfusion injury. Apoptosis. 2015;20(9):1150–1163. doi: 10.1007/s10495-015-1148-7.
    1. Zhang M., Lin J., Wang S., et al. Melatonin protects against diabetic cardiomyopathy through Mst1/Sirt3 signaling. Journal of Pineal Research. 2017;63(2) doi: 10.1111/jpi.12418.
    1. Shi X., Liu Y., Zhang D., Xiao D. Valproic acid attenuates sepsis-induced myocardial dysfunction in rats by accelerating autophagy through the PTEN/AKT/mTOR pathway. Life Sciences. 2019;232:p. 116613. doi: 10.1016/j.lfs.2019.116613.
    1. Reed G. W., Rossi J. E., Cannon C. P. Acute myocardial infarction. Lancet. 2017;389(10065):197–210. doi: 10.1016/S0140-6736(16)30677-8.
    1. Vogel B., Claessen B. E., Arnold S. V., et al. ST-segment elevation myocardial infarction. Nature Reviews. Disease Primers. 2019;5(1):p. 39. doi: 10.1038/s41572-019-0090-3.
    1. Feng L., Wei J., Liang S., Sun Z., Duan J. miR-205/IRAK2 signaling pathway is associated with urban airborne PM2.5-induced myocardial toxicity. Nanotoxicology. 2020;14(9):1198–1212. doi: 10.1080/17435390.2020.1813824.
    1. Hanousková B., Skála M., Brynychová V., et al. Imatinib-induced changes in the expression profile of microRNA in the plasma and heart of mice-a comparison with doxorubicin. Biomed Pharmacother. 2019;115:p. 108883.
    1. Xuan Y., Liu S., Li Y., et al. Short-term vagus nerve stimulation reduces myocardial apoptosis by downregulating microRNA-205 in rats with chronic heart failure. Molecular Medicine Reports. 2017;16(5):5847–5854. doi: 10.3892/mmr.2017.7344.
    1. Zhao D., Yang J., Yang L. Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes. Oxidative Medicine and Cellular Longevity. 2017;2017:12. doi: 10.1155/2017/6437467.6437467
    1. González-Montero J., Brito R., Gajardo A. I. J., Rodrigo R. Myocardial reperfusion injury and oxidative stress: therapeutic opportunities. World Journal of Cardiology. 2018;10(9):74–86. doi: 10.4330/wjc.v10.i9.74.
    1. Bugger H., Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochimica et Biophysica Acta - Molecular Basis of Disease. 2020;1866(7):p. 165768. doi: 10.1016/j.bbadis.2020.165768.
    1. Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radical Biology & Medicine. 2018;117:76–89. doi: 10.1016/j.freeradbiomed.2018.01.024.
    1. Wang J., Toan S., Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis. 2020;23(3):299–314. doi: 10.1007/s10456-020-09720-2.
    1. van der Pol A., van Gilst W. H., Voors A. A., van der Meer P. Treating oxidative stress in heart failure: past, present and future. European Journal of Heart Failure. 2019;21(4):425–435. doi: 10.1002/ejhf.1320.
    1. Takimoto E., Kass D. A. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49(2):241–248. doi: 10.1161/01.HYP.0000254415.31362.a7.
    1. Seddon M., Looi Y. H., Shah A. M. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart. 2007;93(8):903–907. doi: 10.1136/hrt.2005.068270.
    1. Xiao X., Lu Z., Lin V., et al. MicroRNA miR-24-3p reduces apoptosis and regulates Keap1-Nrf2 pathway in mouse cardiomyocytes responding to ischemia/reperfusion injury. Oxidative Medicine and Cellular Longevity. 2018;2018:9. doi: 10.1155/2018/7042105.7042105
    1. Breslin J. W., Daines D. A., Doggett T. M., et al. Rnd3 as a novel target to ameliorate microvascular leakage. Journal of the American Heart Association. 2016;5(4, article e003336) doi: 10.1161/jaha.116.003336.
    1. Heusch G. Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Research in Cardiology. 2019;114(6):p. 45. doi: 10.1007/s00395-019-0756-8.
    1. Dai Y., Song J., Li W., et al. RhoE fine-tunes inflammatory response in myocardial infarction. Circulation. 2019;139(9):1185–1198. doi: 10.1161/CIRCULATIONAHA.118.033700.
    1. Dankel S. N., Røst T. H., Kulyté A., et al. The Rho GTPase RND3 regulates adipocyte lipolysis. Metabolism. 2019;101:p. 153999. doi: 10.1016/j.metabol.2019.153999.

Source: PubMed

3
Subskrybuj