Redox Regulation and Oxidative Stress in Mammalian Oocytes and Embryos Developed In Vivo and In Vitro

Madeleine L M Hardy, Margot L Day, Michael B Morris, Madeleine L M Hardy, Margot L Day, Michael B Morris

Abstract

Oocytes and preimplantation embryos require careful regulation of the redox environment for optimal development both in vivo and in vitro. Reactive oxygen species (ROS) are generated throughout development as a result of cellular metabolism and enzyme reactions. ROS production can result in (i) oxidative eustress, where ROS are helpful signalling molecules with beneficial physiological functions and where the redox state of the cell is maintained within homeostatic range by a closely coupled system of antioxidants and antioxidant enzymes, or (ii) oxidative distress, where excess ROS are deleterious and impair normal cellular function. in vitro culture of embryos exacerbates ROS production due to a range of issues including culture-medium composition and laboratory culture conditions. This increase in ROS can be detrimental not only to assisted reproductive success rates but can also result in epigenetic and genetic changes in the embryo, resulting in transgenerational effects. This review examines the effects of oxidative stress in the oocyte and preimplantation embryo in both the in vivo and in vitro environment, identifies mechanisms responsible for oxidative stress in the oocyte/embryo in culture and approaches to reduce these problems, and briefly examines the potential impacts on future generations.

Keywords: ROS; antioxidants; assisted reproductive technology; embryo; oocyte; redox; transgenerational effects.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 2
Figure 2
Cellular sources of ROS and antioxidants, and the effects of oxidative distress. Numerous cellular enzymes (yellow discs) produce ROS (shown in yellow sunbursts), whose homeostatic concentrations are controlled by a comprehensive system of antioxidants (only GSH is shown here) and antioxidant enzymes (blue discs) [37]. Principal sources are NOX, Complexes I–III of the mitochondrial electron transport chain due primarily to electron leakage [8,26], and to various enzymes (not shown), such as proline oxidase, which are coupled to Complex II [8,26]. The principal ROS signalling molecule is H2O2 (physiological concentration ≈1–10 nM [8,26]), which can penetrate membranes directly or (more efficiently) by transmembrane transporters (green disks). Oxidative distress occurs when the antioxidant system cannot maintain homeostatic concentrations of ROS, which can lead to a range of cellular dysfunctions (red boxes), frequently resulting in growth arrest and apoptosis. ACOX, acyl coenzyme A oxidase; AQP, aquaporin; CAT, catalase, CuZnSOD, copper–zinc superoxide dismutase; DAO, diamine oxidase; γ-GCS, γ-glutamylcysteine synthetase; GPx, glutathione peroxidase; GRx, glutathione reductase; GS, glutathione synthetase; MnSOD, manganese superoxide dismutase; NOX, NADPH oxidase; VDAC, voltage-dependent anion channel; XOR, xanthine oxidoreductase.
Figure 3
Figure 3
Sources of ROS and antioxidants during in vivo embryo development. The preimplantation embryo develops over 5 days in the mouse in vivo. The maternal reproductive tract is an environment low in oxygen, with an oxygen gradient of approximately 8% to 2% from the oviduct to the uterus. This, along with a number of antioxidants and antioxidant enzymes, supports redox homeostasis and helps prevent irreversible oxidative damage. During oocyte maturation and preimplantation embryo development, there are numerous oxidative stressors including at ovulation, fertilisation, cellular division, and hatching. Some examples of the control of the action of these stressors by redox enzymes (in black) and antioxidants (in blue) are shown. References are shown in square brackets.
Figure 4
Figure 4
Sources of ROS for in vitro cultured oocytes and embryos. Oxidative stress can be induced by a number of laboratory processes, as shown, and a number of antioxidants can be added to the culture medium to combat these excessive ROS levels.
Figure 1
Figure 1
Effects of ROS on cellular function. ROS production has a multitude of impacts on cellular function and can act in both a beneficial and deleterious manner. ROS are produced as a ‘by-product’ of cellular metabolism and as a result of various cell-signalling pathways, including many activated by growth factors. They can also directly affect the activity of signalling pathway components and metabolic enzymes, leading to changes in cellular metabolic profile and energy usage. In turn, these changes in metabolism and signalling can lead to changes in the epigenetic landscape and the activity of transcription factors, altering gene expression. Since these events directly and indirectly affect the reproductive system, transgenerational effects resulting from normal and aberrant ROS production can and do occur.

References

    1. Dumollard R., Duchen M., Carroll J. The role of mitochondrial function in the oocyte and embryo. Curr. Top. Dev. Biol. 2007;77:21–49. doi: 10.1016/S0070-2153(06)77002-8.
    1. Harvey A.J., Kind K.L., Thompson J.G. REDOX regulation of early embryo development. Reproduction. 2002;123:479–486. doi: 10.1530/rep.0.1230479.
    1. Schafer F.Q., Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001;30:1191–1212. doi: 10.1016/S0891-5849(01)00480-4.
    1. Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21:363–383. doi: 10.1038/s41580-020-0230-3.
    1. Sies H. Oxidative Stress. In: Fink G., editor. Stress: Physiology, Biochemistry, and Pathology. Academic Press; Cambridge, MA, USA: 2019. pp. 153–163.
    1. Sies H., Chance B. The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett. 1970;11:172–176. doi: 10.1016/0014-5793(70)80521-X.
    1. Harper M.E., Bevilacqua L., Hagopian K., Weindruch R., Ramsey J.J. Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol. Scand. 2004;182:321–331. doi: 10.1111/j.1365-201X.2004.01370.x.
    1. Mailloux R.J., Jin X., Willmore W.G. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol. 2014;2:123–139. doi: 10.1016/j.redox.2013.12.011.
    1. Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 1973;134:707–716. doi: 10.1042/bj1340707.
    1. Arrigo A.P. Gene expression and the thiol redox state. Free Radic. Biol. Med. 1999;27:936–944. doi: 10.1016/S0891-5849(99)00175-6.
    1. Guerin P., El Mouatassim S., Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update. 2001;7:175–189. doi: 10.1093/humupd/7.2.175.
    1. Huo Y., Qin Q., Zhang L., Kuo Y., Wang H., Yan L., Li R., Zhang X., Yan J., Qiao J. Effects of oocyte vitrification on the behaviors and physiological indexes of aged first filial generation mice. Cryobiology. 2020;95:20–28. doi: 10.1016/j.cryobiol.2020.06.012.
    1. Calle A., Fernandez-Gonzalez R., Ramos-Ibeas P., Laguna-Barraza R., Perez-Cerezales S., Bermejo-Alvarez P., Ramirez M.A., Gutierrez-Adan A. Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology. 2012;77:785–793. doi: 10.1016/j.theriogenology.2011.07.016.
    1. Ruebel M.L., Latham K.E. Listening to mother: Long-term maternal effects in mammalian development. Mol. Reprod. Dev. 2020;87:399–408. doi: 10.1002/mrd.23336.
    1. Li R., Jia Z., Trush M.A. Defining ROS in Biology and Medicine. React. Oxyg. Species (Apex) 2016;1:9–21. doi: 10.20455/ros.2016.803.
    1. Onyango A.N. Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components. Oxid. Med. Cell. Longev. 2016;2016:2398573. doi: 10.1155/2016/2398573.
    1. Pisoschi A.M., Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015;97:55–74. doi: 10.1016/j.ejmech.2015.04.040.
    1. He A., Dean J.M., Lodhi I.J. Peroxisomes as cellular adaptors to metabolic and environmental stress. Trends Cell Biol. 2021;31:656–670. doi: 10.1016/j.tcb.2021.02.005.
    1. Ryter S.W., Kim H.P., Hoetzel A., Park J.W., Nakahira K., Wang X., Choi A.M. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal. 2007;9:49–89. doi: 10.1089/ars.2007.9.49.
    1. Di Meo S., Reed T.T., Venditti P., Victor V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016;2016:1245049. doi: 10.1155/2016/1245049.
    1. Panday A., Sahoo M.K., Osorio D., Batra S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell. Mol. Immunol. 2015;12:5–23. doi: 10.1038/cmi.2014.89.
    1. Kodaman P.H., Behrman H.R. Endocrine-regulated and protein kinase C-dependent generation of superoxide by rat preovulatory follicles. Endocrinology. 2001;142:687–693. doi: 10.1210/endo.142.2.7961.
    1. Ufer C., Wang C.C., Borchert A., Heydeck D., Kuhn H. Redox control in mammalian embryo development. Antioxid. Redox Signal. 2010;13:833–875. doi: 10.1089/ars.2009.3044.
    1. Liu Y., Fiskum G., Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 2002;80:780–787. doi: 10.1046/j.0022-3042.2002.00744.x.
    1. Oshino N., Chance B., Sies H., Bücher T. The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch. Biochem. Biophys. 1973;154:117–131. doi: 10.1016/0003-9861(73)90040-4.
    1. Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. doi: 10.1042/BJ20081386.
    1. Turrens J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003;552:335–344. doi: 10.1113/jphysiol.2003.049478.
    1. Cadenas E., Davies K.J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 2000;29:222–230. doi: 10.1016/S0891-5849(00)00317-8.
    1. Hancock C.N., Liu W., Alvord W.G., Phang J.M. Co-regulation of mitochondrial respiration by proline dehydrogenase/oxidase and succinate. Amino Acids. 2016;48:859–872. doi: 10.1007/s00726-015-2134-7.
    1. Goncalves R.L., Rothschild D.E., Quinlan C.L., Scott G.K., Benz C.C., Brand M.D. Sources of superoxide/H2O2 during mitochondrial proline oxidation. Redox Biol. 2014;2:901–909. doi: 10.1016/j.redox.2014.07.003.
    1. Pandhare J., Donald S.P., Cooper S.K., Phang J.M. Regulation and function of proline oxidase under nutrient stress. J. Cell. Biochem. 2009;107:759–768. doi: 10.1002/jcb.22174.
    1. Phang J.M., Donald S.P., Pandhare J., Liu Y. The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids. 2008;35:681–690. doi: 10.1007/s00726-008-0063-4.
    1. Phang J. The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr. Top. Cell. Regul. 1985;25:91–132.
    1. Phang J.M., Yeh G.C., Hagedorn C.H. The intercellular proline cycle. Life Sci. 1981;28:53–58. doi: 10.1016/0024-3205(81)90365-9.
    1. Natarajan S.K., Zhu W., Liang X., Zhang L., Demers A.J., Zimmerman M.C., Simpson M.A., Becker D.F. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radic. Biol. Med. 2012;53:1181–1191. doi: 10.1016/j.freeradbiomed.2012.07.002.
    1. Wong H.S., Benoit B., Brand M.D. Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. Free Radic. Biol. Med. 2019;130:140–150. doi: 10.1016/j.freeradbiomed.2018.10.448.
    1. Rampon C., Volovitch M., Joliot A., Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants. 2018;7:159. doi: 10.3390/antiox7110159.
    1. Dutta S., Henkel R., Sengupta P., Agarwal A. Male Infertility. Springer; Cham, Switzerland: 2020. Physiological role of ROS in sperm function; pp. 337–345.
    1. Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008.
    1. Mailloux R.J., McBride S.L., Harper M.E. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem. Sci. 2013;38:592–602. doi: 10.1016/j.tibs.2013.09.001.
    1. Harris C., Hansen J.M. Developmental Toxicology. Humana Press; Totowa, NJ, USA: 2012. Oxidative stress, thiols, and redox profiles; pp. 325–346.
    1. Reczek C.R., Chandel N.S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 2015;33:8–13. doi: 10.1016/j.ceb.2014.09.010.
    1. Essers M.A., Weijzen S., de Vries-Smits A.M., Saarloos I., de Ruiter N.D., Bos J.L., Burgering B.M. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 2004;23:4802–4812. doi: 10.1038/sj.emboj.7600476.
    1. Burhans W.C., Heintz N.H. The cell cycle is a redox cycle: Linking phase-specific targets to cell fate. Free Radic. Biol. Med. 2009;47:1282–1293. doi: 10.1016/j.freeradbiomed.2009.05.026.
    1. Klotz L.O., Sanchez-Ramos C., Prieto-Arroyo I., Urbanek P., Steinbrenner H., Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol. 2015;6:51–72. doi: 10.1016/j.redox.2015.06.019.
    1. Veal E.A., Day A.M., Morgan B.A. Hydrogen peroxide sensing and signaling. Mol. Cell. 2007;26:1–14. doi: 10.1016/j.molcel.2007.03.016.
    1. Fourquet S., Guerois R., Biard D., Toledano M.B. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J. Biol. Chem. 2010;285:8463–8471. doi: 10.1074/jbc.M109.051714.
    1. Kobayashi Y., Oguro A., Imaoka S. Feedback of hypoxia-inducible factor-1alpha (HIF-1alpha) transcriptional activity via redox factor-1 (Ref-1) induction by reactive oxygen species (ROS) Free Radic. Res. 2021;55:154–164. doi: 10.1080/10715762.2020.1870685.
    1. Chan D.A., Sutphin P.D., Yen S.-E., Giaccia A.J. Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1α. Mol. Cell. Biol. 2005;25:6415–6426. doi: 10.1128/MCB.25.15.6415-6426.2005.
    1. Dengler V.L., Galbraith M., Espinosa J.M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 2014;49:1–15. doi: 10.3109/10409238.2013.838205.
    1. Liu H., Colavitti R., Rovira I.I., Finkel T. Redox-dependent transcriptional regulation. Circ. Res. 2005;97:967–974. doi: 10.1161/01.RES.0000188210.72062.10.
    1. Kumari S., Badana A.K., G M.M., G S., Malla R. Reactive Oxygen Species: A Key Constituent in Cancer Survival. Biomark. Insights. 2018;13:1177271918755391. doi: 10.1177/1177271918755391.
    1. Moloney J.N., Cotter T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018;80:50–64. doi: 10.1016/j.semcdb.2017.05.023.
    1. Roy K., Wu Y., Meitzler J.L., Juhasz A., Liu H., Jiang G., Lu J., Antony S., Doroshow J.H. NADPH oxidases and cancer. Clin. Sci. 2015;128:863–875. doi: 10.1042/CS20140542.
    1. Rocha M., Apostolova N., Herance J.R., Rovira-Llopis S., Hernandez-Mijares A., Victor V.M. Perspectives and potential applications of mitochondria-targeted antioxidants in cardiometabolic diseases and type 2 diabetes. Med. Res. Rev. 2014;34:160–189. doi: 10.1002/med.21285.
    1. Fiaschi T., Chiarugi P. Oxidative stress, tumor microenvironment, and metabolic reprogramming: A diabolic liaison. Int. J. Cell Biol. 2012;2012:762825. doi: 10.1155/2012/762825.
    1. Giorgi C., Danese A., Missiroli S., Patergnani S., Pinton P. Calcium dynamics as a machine for decoding signals. Trends Cell Biol. 2018;28:258–273. doi: 10.1016/j.tcb.2018.01.002.
    1. Gorlach A., Bertram K., Hudecova S., Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol. 2015;6:260–271. doi: 10.1016/j.redox.2015.08.010.
    1. Sharov V.S., Dremina E.S., Galeva N.A., Williams T.D., Schoneich C. Quantitative mapping of oxidation-sensitive cysteine residues in SERCA in vivo and in vitro by HPLC-electrospray-tandem MS: Selective protein oxidation during biological aging. Biochem. J. 2006;394:605–615. doi: 10.1042/BJ20051214.
    1. Higaki Y., Mikami T., Fujii N., Hirshman M.F., Koyama K., Seino T., Tanaka K., Goodyear L.J. Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway. Am. J. Physiol. Endocrinol. Metab. 2008;294:E889–E897. doi: 10.1152/ajpendo.00150.2007.
    1. Kozlovsky N., Rudich A., Potashnik R., Ebina Y., Murakami T., Bashan N. Transcriptional activation of the Glut1 gene in response to oxidative stress in L6 myotubes. J. Biol. Chem. 1997;272:33367–33372. doi: 10.1074/jbc.272.52.33367.
    1. Fischer B., Kunzel W., Kleinstein J., Gips H. Oxygen tension in follicular fluid falls with follicle maturation. Eur. J. Obstet. Gynecol. Reprod. Biol. 1992;43:39–43. doi: 10.1016/0028-2243(92)90241-P.
    1. Fischer B., Bavister B.D. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 1993;99:673–679. doi: 10.1530/jrf.0.0990673.
    1. Lim M., Thompson J.G., Dunning K.R. Hypoxia and ovarian function: Follicle development, ovulation, oocyte maturation. Reproduction. 2021;161:F33–F40. doi: 10.1530/REP-20-0509.
    1. Morin S.J. Oxygen tension in embryo culture: Does a shift to 2% O 2 in extended culture represent the most physiologic system? J. Assist. Reprod. Genet. 2017;34:309–314. doi: 10.1007/s10815-017-0880-z.
    1. El Mouatassim S., Guerin P., Menezo Y. Mammalian oviduct and protection against free oxygen radicals: Expression of genes encoding antioxidant enzymes in human and mouse. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000;89:1–6. doi: 10.1016/S0301-2115(99)00169-4.
    1. Ambekar A.S., Nirujogi R.S., Srikanth S.M., Chavan S., Kelkar D.S., Hinduja I., Zaveri K., Prasad T.S., Harsha H.C., Pandey A., et al. Proteomic analysis of human follicular fluid: A new perspective towards understanding folliculogenesis. J. Proteom. 2013;87:68–77. doi: 10.1016/j.jprot.2013.05.017.
    1. Agarwal A., Aponte-Mellado A., Premkumar B.J., Shaman A., Gupta S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012;10:49. doi: 10.1186/1477-7827-10-49.
    1. El Mouatassim S., Guerin P., Menezo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol. Hum. Reprod. 1999;5:720–725. doi: 10.1093/molehr/5.8.720.
    1. Ozawa M., Nagai T., Somfai T., Nakai M., Maedomari N., Miyazaki H., Kaneko H., Noguchi J., Kikuchi K. Cumulus cell-enclosed oocytes acquire a capacity to synthesize GSH by FSH stimulation during in vitro maturation in pigs. J. Cell. Physiol. 2010;222:294–301. doi: 10.1002/jcp.21949.
    1. Nasr-Esfahani M.H., Aitken J.R., Johnson M.H. Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development. 1990;109:501–507. doi: 10.1242/dev.109.2.501.
    1. Lane M., Gardner D.K. Embryo culture medium: Which is the best? Best Pract. Res. Clin. Obstet. Gynaecol. 2007;21:83–100. doi: 10.1016/j.bpobgyn.2006.09.009.
    1. Gardner D.K., Sakkas D. Mouse embryo cleavage, metabolism and viability: Role of medium composition. Hum. Reprod. 1993;8:288–295. doi: 10.1093/oxfordjournals.humrep.a138039.
    1. Biggers J.D. Thoughts on embryo culture conditions. Reprod. Biomed. Online. 2002;4((Suppl. 1)):30–38. doi: 10.1016/S1472-6483(12)60009-1.
    1. Martin-Romero F.J., Miguel-Lasobras E.M., Dominguez-Arroyo J.A., Gonzalez-Carrera E., Alvarez I.S. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod. Biomed. Online. 2008;17:652–661. doi: 10.1016/S1472-6483(10)60312-4.
    1. Orsi N.M., Leese H.J. Amino acid metabolism of preimplantation bovine embryos cultured with bovine serum albumin or polyvinyl alcohol. Theriogenology. 2004;61:561–572. doi: 10.1016/S0093-691X(03)00206-1.
    1. Palasz A., Tornesi M., Archer J., Mapletoft R. Media alternatives for the collection, culture and freezing of mouse and cattle embryos. Theriogenology. 1995;44:705–714. doi: 10.1016/0093-691X(95)00250-C.
    1. O’Flaherty C., de Lamirande E., Gagnon C. Reactive oxygen species modulate independent protein phosphorylation pathways during human sperm capacitation. Free Radic. Biol. Med. 2006;40:1045–1055. doi: 10.1016/j.freeradbiomed.2005.10.055.
    1. Freitas C., Neto A.C., Matos L., Silva E., Ribeiro A., Silva-Carvalho J.L., Almeida H. Follicular Fluid redox involvement for ovarian follicle growth. J. Ovarian Res. 2017;10:44. doi: 10.1186/s13048-017-0342-3.
    1. de Matos D.G., Furnus C.C., Moses D.F. Glutathione Synthesis During in Vitro Maturation of Bovine Oocytes: Role of Cumulus Cells1. Biol. Reprod. 1997;57:1420–1425. doi: 10.1095/biolreprod57.6.1420.
    1. Agarwal A., Gupta S., Sekhon L., Shah R. Redox considerations in female reproductive function and assisted reproduction: From molecular mechanisms to health implications. Antioxid. Redox Signal. 2008;10:1375–1403. doi: 10.1089/ars.2007.1964.
    1. Kala M., Shaikh M.V., Nivsarkar M. Equilibrium between anti-oxidants and reactive oxygen species: A requisite for oocyte development and maturation. Reprod. Med. Biol. 2017;16:28–35. doi: 10.1002/rmb2.12013.
    1. Tripathi A., Khatun S., Pandey A.N., Mishra S.K., Chaube R., Shrivastav T.G., Chaube S.K. Intracellular levels of hydrogen peroxide and nitric oxide in oocytes at various stages of meiotic cell cycle and apoptosis. Free Radic. Res. 2009;43:287–294. doi: 10.1080/10715760802695985.
    1. Gupta S., Choi A., Yu H.Y., Czerniak S.M., Holick E.A., Paolella L.J., Agarwal A., Combelles C.M. Fluctuations in total antioxidant capacity, catalase activity and hydrogen peroxide levels of follicular fluid during bovine folliculogenesis. Reprod. Fertil. Dev. 2011;23:673–680. doi: 10.1071/RD10270.
    1. Rubio C.P., Hernandez-Ruiz J., Martinez-Subiela S., Tvarijonaviciute A., Ceron J.J. Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: An update. BMC Vet. Res. 2016;12:166. doi: 10.1186/s12917-016-0792-7.
    1. Das S., Chattopadhyay R., Ghosh S., Ghosh S., Goswami S.K., Chakravarty B.N., Chaudhury K. Reactive oxygen species level in follicular fluid--embryo quality marker in IVF? Hum. Reprod. 2006;21:2403–2407. doi: 10.1093/humrep/del156.
    1. Jancar N., Kopitar A.N., Ihan A., Virant Klun I., Bokal E.V. Effect of apoptosis and reactive oxygen species production in human granulosa cells on oocyte fertilization and blastocyst development. J. Assist. Reprod. Genet. 2007;24:91–97. doi: 10.1007/s10815-006-9103-8.
    1. Jana S.K., Babu N., Chattopadhyay R., Chakravarty B., Chaudhury K. Upper control limit of reactive oxygen species in follicular fluid beyond which viable embryo formation is not favorable. Reprod. Toxicol. 2010;29:447–451. doi: 10.1016/j.reprotox.2010.04.002.
    1. Salimi M., Mozdarani H. Effect of vitamin E on preovulatory stage irradiated female mouse expressed as chromosomal abnormalities in generated embryos. Iran. J. Radiat. Res. 2006;4:35–40.
    1. Baumber J., Ball B.A., Linfor J.J., Meyers S.A. Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa. J. Androl. 2003;24:621–628. doi: 10.1002/j.1939-4640.2003.tb02714.x.
    1. Lane M., McPherson N.O., Fullston T., Spillane M., Sandeman L., Kang W.X., Zander-Fox D.L. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring. PLoS ONE. 2014;9:e100832. doi: 10.1371/journal.pone.0100832.
    1. Ruihuan G., Zhichao L., Song G., Jing F., Yijuan S., Xiaoxi S. Oocyte Vitrification Temporarily Turns on Oxidation-Reduction Process Genes in Mouse Preimplantation Embryos. Reprod. Sci. 2021;28:1307–1315. doi: 10.1007/s43032-020-00337-w.
    1. Zhang L., Xue X., Yan J., Yan L.Y., Jin X.H., Zhu X.H., He Z.Z., Liu J., Li R., Qiao J. L-proline: A highly effective cryoprotectant for mouse oocyte vitrification. Sci. Rep. 2016;6:26326. doi: 10.1038/srep26326.
    1. Wang F., Tian X., Zhou Y., Tan D., Zhu S., Dai Y., Liu G. Melatonin improves the quality of in vitro produced (IVP) bovine embryos: Implications for blastocyst development, cryotolerance, and modifications of relevant gene expression. PLoS ONE. 2014;9:e93641. doi: 10.1371/journal.pone.0093641.
    1. Gupta M.K., Uhm S.J., Lee H.T. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil. Steril. 2010;93:2602–2607. doi: 10.1016/j.fertnstert.2010.01.043.
    1. Kattera S., Chen C. Short coincubation of gametes in in vitro fertilization improves implantation and pregnancy rates: A prospective, randomized, controlled study. Fertil. Steril. 2003;80:1017–1021. doi: 10.1016/S0015-0282(03)01154-3.
    1. Harris S.E., Leese H.J., Gosden R.G., Picton H.M. Pyruvate and oxygen consumption throughout the growth and development of murine oocytes. Mol. Reprod. Dev. 2009;76:231–238. doi: 10.1002/mrd.20945.
    1. Rieger D., Loskutoff N. Changes in the metabolism of glucose, pyruvate, glutamine and glycine during maturation of cattle oocytes in vitro. Reproduction. 1994;100:257–262. doi: 10.1530/jrf.0.1000257.
    1. Tiwari M., Chaube S.K. Moderate increase of reactive oxygen species triggers meiotic resumption in rat follicular oocytes. J. Obstet. Gynaecol. Res. 2016;42:536–546. doi: 10.1111/jog.12938.
    1. Pandey A.N., Chaube S.K. A moderate increase of hydrogen peroxide level is beneficial for spontaneous resumption of meiosis from diplotene arrest in rat oocytes cultured in vitro. BioResearch Open Access. 2014;3:183–191. doi: 10.1089/biores.2014.0013.
    1. Park Y.S., You S.Y., Cho S., Jeon H.-J., Lee S., Cho D.-H., Kim J.-S., Oh J.S. Eccentric localization of catalase to protect chromosomes from oxidative damages during meiotic maturation in mouse oocytes. Histochem. Cell Biol. 2016;146:281–288. doi: 10.1007/s00418-016-1446-3.
    1. Shkolnik K., Tadmor A., Ben-Dor S., Nevo N., Galiani D., Dekel N. Reactive oxygen species are indispensable in ovulation. Proc. Natl. Acad. Sci. USA. 2011;108:1462–1467. doi: 10.1073/pnas.1017213108.
    1. Takami M., Preston S.L., Toyloy V.A., Behrman H.R. Antioxidants reversibly inhibit the spontaneous resumption of meiosis. Am. J. Physiol. 1999;276:E684–E688. doi: 10.1152/ajpendo.1999.276.4.E684.
    1. Lopes A., Lane M., Thompson J. Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum. Reprod. 2010;25:2762–2773. doi: 10.1093/humrep/deq221.
    1. Aitken R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017;84:1039–1052. doi: 10.1002/mrd.22871.
    1. O’Flaherty C. Redox regulation of mammalian sperm capacitation. Asian J. Androl. 2015;17:583–590. doi: 10.4103/1008-682X.153303.
    1. Aitken R., Harkiss D., Knox W., Paterson M., Irvine D. A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J. Cell Sci. 1998;111:645–656. doi: 10.1242/jcs.111.5.645.
    1. Visconti P.E., Bailey J.L., Moore G.D., Pan D., Olds-Clarke P., Kopf G.S. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 1995;121:1129–1137. doi: 10.1242/dev.121.4.1129.
    1. Aitken R.J., Ryan A.L., Baker M.A., McLaughlin E.A. Redox activity associated with the maturation and capacitation of mammalian spermatozoa. Free Radic. Biol. Med. 2004;36:994–1010. doi: 10.1016/j.freeradbiomed.2004.01.017.
    1. Morado S., Cetica P., Beconi M., Thompson J.G., Dalvit G. Reactive oxygen species production and redox state in parthenogenetic and sperm-mediated bovine oocyte activation. Reproduction. 2013;145:471–478. doi: 10.1530/REP-13-0017.
    1. Li S., Winuthayanon W. Oviduct: Roles in fertilization and early embryo development. J. Endocrinol. 2017;232:R1–R26. doi: 10.1530/JOE-16-0302.
    1. Saleh R.A., Agarwal A., Nada E.A., El-Tonsy M.H., Sharma R.K., Meyer A., Nelson D.R., Thomas A.J. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil. Steril. 2003;79((Suppl. 3)):1597–1605. doi: 10.1016/S0015-0282(03)00337-6.
    1. Agarwal A., Said T.M. Oxidative stress, DNA damage and apoptosis in male infertility: A clinical approach. BJU Int. 2005;95:503–507. doi: 10.1111/j.1464-410X.2005.05328.x.
    1. Sharma R., Said T., Agarwal A. Sperm DNA damage and its clinical relevance in assessing reproductive outcome. Asian J. Androl. 2004;6:139–148.
    1. McPherson N.O., Vincent A.D., Pacella-Ince L., Tremellen K. Comparison of in vitro fertilisation/intracytoplasmic sperm injection on live birth rates in couples with non-male factor infertility and advanced maternal age. J. Assist. Reprod. Genet. 2021;38:669–678. doi: 10.1007/s10815-020-02026-8.
    1. Agarwal A., Saleh R.A., Bedaiwy M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 2003;79:829–843. doi: 10.1016/S0015-0282(02)04948-8.
    1. Tatone C., Carbone M., Falone S., Aimola P., Giardinelli A., Caserta D., Marci R., Pandolfi A., Ragnelli A., Amicarelli F. Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells. Mol. Hum. Reprod. 2006;12:655–660. doi: 10.1093/molehr/gal080.
    1. de Bruin J.P., Dorland M., Spek E.R., Posthuma G., van Haaften M., Looman C.W.N., te Velde E.R. Age-Related Changes in the Ultrastructure of the Resting Follicle Pool in Human Ovaries1. Biol. Reprod. 2004;70:419–424. doi: 10.1095/biolreprod.103.015784.
    1. Te Velde E.R., Pearson P.L. The variability of female reproductive ageing. Hum. Reprod. Update. 2002;8:141–154. doi: 10.1093/humupd/8.2.141.
    1. Miyamoto K., Sato E.F., Kasahara E., Jikumaru M., Hiramoto K., Tabata H., Katsuragi M., Odo S., Utsumi K., Inoue M. Effect of oxidative stress during repeated ovulation on the structure and functions of the ovary, oocytes, and their mitochondria. Free Radic. Biol. Med. 2010;49:674–681. doi: 10.1016/j.freeradbiomed.2010.05.025.
    1. Martin K.L., Leese H.J. Role of developmental factors in the switch from pyruvate to glucose as the major exogenous energy substrate in the preimplantation mouse embryo. Reprod. Fertil. Dev. 1999;11:425–433. doi: 10.1071/RD97071.
    1. Houghton F.D., Thompson J.G., Kennedy C.J., Leese H.J. Oxygen consumption and energy metabolism of the early mouse embryo. Mol. Reprod. Dev. Inc. Gamete Res. 1996;44:476–485. doi: 10.1002/(SICI)1098-2795(199608)44:4<476::AID-MRD7>;2-I.
    1. Houghton F.D., Leese H.J. Metabolism and developmental competence of the preimplantation embryo. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004;115((Suppl. 1)):S92–S96. doi: 10.1016/j.ejogrb.2004.01.019.
    1. Thomas M., Jain S., Kumar G.P., Laloraya M. A programmed oxyradical burst causes hatching of mouse blastocysts. Pt 14J. Cell Sci. 1997;110:1597–1602. doi: 10.1242/jcs.110.14.1597.
    1. Bedaiwy M., Agarwal A., Said T.M., Goldberg J.M., Sharma R.K., Worley S., Falcone T. Role of total antioxidant capacity in the differential growth of human embryos in vitro. Fertil. Steril. 2006;86:304–309. doi: 10.1016/j.fertnstert.2006.01.025.
    1. Swain J.E. Controversies in ART: Can the IVF laboratory influence preimplantation embryo aneuploidy? Reprod. Biomed. Online. 2019;39:599–607. doi: 10.1016/j.rbmo.2019.06.009.
    1. Munné S., Alikani M. Culture-induced chromosome abnormalities: The canary in the mine. Reprod. Biomed. Online. 2011;22:506–508. doi: 10.1016/j.rbmo.2011.02.011.
    1. Joo B.S., Kim M.K., Na Y.J., Moon H.S., Lee K.S., Do Kim H. The mechanism of action of coculture on embryo development in the mouse model: Direct embryo-to-cell contact and the removal of deleterious components. Fertil. Steril. 2001;75:193–199. doi: 10.1016/S0015-0282(00)01671-X.
    1. Cheong A.W., Lee Y.L., Liu W.M., Yeung W.S., Lee K.F. Oviductal microsomal epoxide hydrolase (EPHX1) reduces reactive oxygen species (ROS) level and enhances preimplantation mouse embryo development. Biol. Reprod. 2009;81:126–132. doi: 10.1095/biolreprod.108.071449.
    1. Matsui M., Oshima M., Oshima H., Takaku K., Maruyama T., Yodoi J., Taketo M.M. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev. Biol. 1996;178:179–185. doi: 10.1006/dbio.1996.0208.
    1. Xanthoudakis S., Smeyne R.J., Wallace J.D., Curran T. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc. Natl. Acad. Sci. USA. 1996;93:8919–8923. doi: 10.1073/pnas.93.17.8919.
    1. Kuscu N., Gungor-Ordueri N.E., Sozen B., Adiguzel D., Celik-Ozenci C. FoxO transcription factors 1 regulate mouse preimplantation embryo development. J. Assist. Reprod. Genet. 2019;36:2121–2133. doi: 10.1007/s10815-019-01555-1.
    1. Kehrer J.P. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology. 2000;149:43–50. doi: 10.1016/S0300-483X(00)00231-6.
    1. Noda Y., Matsumoto H., Umaoka Y., Tatsumi K., Kishi J., Mori T. Involvement of superoxide radicals in the mouse two-cell block. Mol. Reprod. Dev. 1991;28:356–360. doi: 10.1002/mrd.1080280408.
    1. Legge M., Sellens M.H. Free radical scavengers ameliorate the 2-cell block in mouse embryo culture. Hum. Reprod. 1991;6:867–871. doi: 10.1093/oxfordjournals.humrep.a137442.
    1. Gardner D.K., Lane M. Alleviation of the’2-cell block’and development to the blastocyst of CF1 mouse embryos: Role of amino acids, EDTA and physical parameters. Hum. Reprod. 1996;11:2703–2712. doi: 10.1093/oxfordjournals.humrep.a019195.
    1. Hu D.B., Li Z.S., Ali I., Xu L.J., Fang N.Z. Effect of potential role of p53 on embryo development arrest induced by H2O2 in mouse. In Vitro Cell. Dev. Biol. Anim. 2017;53:344–353. doi: 10.1007/s11626-016-0122-1.
    1. Cebral E., Carrasco I., Vantman D., Smith R. Preimplantation embryotoxicity after mouse embryo exposition to reactive oxygen species. Biocell. 2007;31:51–59. doi: 10.32604/biocell.2007.31.051.
    1. Gardiner C.S., Reed D.J. Status of glutathione during oxidant-induced oxidative stress in the preimplantation mouse embryo. Biol. Reprod. 1994;51:1307–1314. doi: 10.1095/biolreprod51.6.1307.
    1. Ozawa M., Nagai T., Fahrudin M., Karja N.W., Kaneko H., Noguchi J., Ohnuma K., Kikuchi K. Addition of glutathione or thioredoxin to culture medium reduces intracellular redox status of porcine IVM/IVF embryos, resulting in improved development to the blastocyst stage. Mol. Reprod. Dev. 2006;73:998–1007. doi: 10.1002/mrd.20533.
    1. Sun W.J., Pang Y.W., Liu Y., Hao H.S., Zhao X.M., Qin T., Zhu H.B., Du W.H. Exogenous glutathione supplementation in culture medium improves the bovine embryo development after in vitro fertilization. Theriogenology. 2015;84:716–723. doi: 10.1016/j.theriogenology.2015.05.001.
    1. Brütsch S.H., Wang C.C., Li L., Stender H., Neziroglu N., Richter C., Kuhn H., Borchert A. Expression of inactive glutathione peroxidase 4 leads to embryonic lethality, and inactivation of the Alox15 gene does not rescue such knock-in mice. Antioxid. Redox Signal. 2015;22:281–293. doi: 10.1089/ars.2014.5967.
    1. Dalton T.P., Dieter M.Z., Yang Y., Shertzer H.G., Nebert D.W. Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: Embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. Biochem. Biophys. Res. Commun. 2000;279:324–329. doi: 10.1006/bbrc.2000.3930.
    1. Winkler A., Njålsson R., Carlsson K., Elgadi A., Rozell B., Abraham L., Ercal N., Shi Z.-Z., Lieberman M.W., Larsson A. Glutathione is essential for early embryogenesis–analysis of a glutathione synthetase knockout mouse. Biochem. Biophys. Res. Commun. 2011;412:121–126. doi: 10.1016/j.bbrc.2011.07.056.
    1. Zhang H.M., Zhang Y. Melatonin: A well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res. 2014;57:131–146. doi: 10.1111/jpi.12162.
    1. Pang Y.-w., Jiang X.-l., Zhao S.-j., Huang Z.-q., Zhu H.-b. Beneficial role of melatonin in protecting mammalian gametes and embryos from oxidative damage. J. Integr. Agric. 2018;17:2320–2335. doi: 10.1016/S2095-3119(18)61942-2.
    1. Tamura H., Takasaki A., Taketani T., Tanabe M., Kizuka F., Lee L., Tamura I., Maekawa R., Aasada H., Yamagata Y., et al. The role of melatonin as an antioxidant in the follicle. J. Ovarian Res. 2012;5:5. doi: 10.1186/1757-2215-5-5.
    1. Tamura H., Takasaki A., Miwa I., Taniguchi K., Maekawa R., Asada H., Taketani T., Matsuoka A., Yamagata Y., Shimamura K. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal Res. 2008;44:280–287. doi: 10.1111/j.1600-079X.2007.00524.x.
    1. Gao C., Han H.B., Tian X.Z., Tan D.X., Wang L., Zhou G.B., Zhu S.E., Liu G.S. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J. Pineal Res. 2012;52:305–311. doi: 10.1111/j.1600-079X.2011.00944.x.
    1. Kitagawa Y., Suzuki K., Yoneda A., Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 2004;62:1186–1197. doi: 10.1016/j.theriogenology.2004.01.011.
    1. Hossein M.S., Hashem M.A., Jeong Y.W., Lee M.S., Kim S., Kim J.H., Koo O.J., Park S.M., Lee E.G., Park S.W., et al. Temporal effects of alpha-tocopherol and L-ascorbic acid on in vitro fertilized porcine embryo development. Anim. Reprod. Sci. 2007;100:107–117. doi: 10.1016/j.anireprosci.2006.06.013.
    1. Wang X., Falcone T., Attaran M., Goldberg J.M., Agarwal A., Sharma R.K. Vitamin C and vitamin E supplementation reduce oxidative stress–induced embryo toxicity and improve the blastocyst development rate. Fertil. Steril. 2002;78:1272–1277. doi: 10.1016/S0015-0282(02)04236-X.
    1. Lin T., Lee J.E., Kang J.W., Shin H.Y., Lee J.B., Jin D.I. Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR) in Mammalian Oocyte Maturation and Preimplantation Embryo Development. Int. J. Mol. Sci. 2019;20:1–19. doi: 10.3390/ijms20020409.
    1. Zhang J.Y., Diao Y.F., Kim H.R., Jin D.I. Inhibition of endoplasmic reticulum stress improves mouse embryo development. PLoS ONE. 2012;7:e40433. doi: 10.1371/journal.pone.0040433.
    1. Kang M.H., Das J., Gurunathan S., Park H.W., Song H., Park C., Kim J.H. The cytotoxic effects of dimethyl sulfoxide in mouse preimplantation embryos: A mechanistic study. Theranostics. 2017;7:4735–4752. doi: 10.7150/thno.21662.
    1. Yoon S.B., Choi S.A., Sim B.W., Kim J.S., Mun S.E., Jeong P.S., Yang H.J., Lee Y., Park Y.H., Song B.S., et al. Developmental competence of bovine early embryos depends on the coupled response between oxidative and endoplasmic reticulum stress. Biol. Reprod. 2014;90:104. doi: 10.1095/biolreprod.113.113480.
    1. Mao T., Han C., Wei B., Zhao L., Zhang Q., Deng R., Liu J., Luo Y., Zhang Y. Protective effects of quercetin against cadmium chloride-induced oxidative injury in goat sperm and zygotes. Biol. Trace Elem. Res. 2018;185:344–355. doi: 10.1007/s12011-018-1255-8.
    1. Fakruzzaman M., Ghanem N., Bang J.-I., Ha A.-N., Lee K.-L., Sohn S.-H., Wang Z., Lee D.-S., Kong I.-K. Effect of peroxiredoxin II on the quality and mitochondrial activity of pre-implantation bovine embryos. Anim. Reprod. Sci. 2015;159:172–183. doi: 10.1016/j.anireprosci.2015.06.015.
    1. Zhang W., Lv J., Zhang Y., Jiang Y., Chu C., Wang S. Epigallocatechin Gallate Promotes the Development of Mouse 2-Cell Embryos In Vitro by Regulating Mitochondrial Activity and Expression of Genes Related to p53 Signalling Pathway. Basic Clin. Pharmacol. Toxicol. 2014;115:403–410. doi: 10.1111/bcpt.12252.
    1. Huang K., Li C., Gao F., Fan Y., Zeng F., Meng L., Li L., Zhang S., Wei H. Epigallocatechin-3-Gallate Promotes the in vitro Maturation and Embryo Development Following IVF of Porcine Oocytes. Drug Des. Dev. Ther. 2021;15:1013–1020. doi: 10.2147/DDDT.S295936.
    1. Gardner D., Leese H. Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. Reproduction. 1990;88:361–368. doi: 10.1530/jrf.0.0880361.
    1. Treleaven T., Hardy M.L.M., Guttman-Jones M., Morris M.B., Day M.L. In Vitro Fertilisation of Mouse Oocytes in L-Proline and L-Pipecolic Acid Improves Subsequent Development. Cells. 2021;10:1–16. doi: 10.3390/cells10061352.
    1. Morris M.B., Ozsoy S., Zada M., Zada M., Zamfirescu R.C., Todorova M.G., Day M.L. Selected Amino Acids Promote Mouse Pre-implantation Embryo Development in a Growth Factor-Like Manner. Front. Physiol. 2020;11:140. doi: 10.3389/fphys.2020.00140.
    1. Morbeck D.E., Krisher R.L., Herrick J.R., Baumann N.A., Matern D., Moyer T. Composition of commercial media used for human embryo culture. Fertil. Steril. 2014;102:759–766. doi: 10.1016/j.fertnstert.2014.05.043.
    1. Krishnan N., Dickman M.B., Becker D.F. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic. Biol. Med. 2008;44:671–681. doi: 10.1016/j.freeradbiomed.2007.10.054.
    1. Liang X., Zhang L., Natarajan S.K., Becker D.F. Proline mechanisms of stress survival. Antioxid. Redox Signal. 2013;19:998–1011. doi: 10.1089/ars.2012.5074.
    1. Holtzapple P., Genel M., Rea C., Segal S. Metabolism and uptake of l-proline by human kidney cortex. Pediatr. Res. 1973;7:818–825. doi: 10.1203/00006450-197310000-00005.
    1. Wang J., Xue Z., Hua C., Lin J., Shen Z., Song Y., Ying H., Lv Q., Wang M., Zhou B. Metabolomic Analysis of the Ameliorative Effect of Enhanced Proline Metabolism on Hypoxia-Induced Injury in Cardiomyocytes. Oxid. Med. Cell. Longev. 2020;2020:8866946. doi: 10.1155/2020/8866946.
    1. Liu N., Yang Y., Si X., Jia H., Zhang Y., Jiang D., Dai Z., Wu Z. L-Proline Activates Mammalian Target of Rapamycin Complex 1 and Modulates Redox Environment in Porcine Trophectoderm Cells. Biomolecules. 2021;11:1–11. doi: 10.3390/biom11050742.
    1. Adams E. Metabolism of proline and of hydroxyproline. Int. Rev. Connect. Tissue Res. 1970;5:1–91. doi: 10.1016/b978-0-12-363705-5.50007-5.
    1. Feng C., Zhu Z., Bai W., Li R., Zheng Y., Tian X.e., Wu D., Lu H., Wang Y., Zeng W. Proline Protects Boar Sperm against Oxidative Stress through Proline Dehydrogenase-Mediated Metabolism and the Amine Structure of Pyrrolidine. Animals. 2020;10:1–16. doi: 10.3390/ani10091549.
    1. Suzuki C., Yoshioka K., Sakatani M., Takahashi M. Glutamine and hypotaurine improves intracellular oxidative status and in vitro development of porcine preimplantation embryos. Zygote. 2007;15:317–324. doi: 10.1017/S0967199407004273.
    1. Guerin P., Menezo Y. Hypotaurine and taurine in gamete and embryo environments: De novo synthesis via the cysteine sulfinic acid pathway in oviduct cells. Zygote. 1995;3:333–343. doi: 10.1017/S0967199400002768.
    1. Anchordoquy J.P., Lizarraga R.M., Anchordoquy J.M., Nikoloff N., Rosa D.E., Fabra M.C., Peral-Garcia P., Furnus C.C. Effect of cysteine, glutamate and glycine supplementation to in vitro fertilization medium during bovine early embryo development. Reprod. Biol. 2019;19:349–355. doi: 10.1016/j.repbio.2019.10.002.
    1. Bahrami M., Morris M.B., Day M.L. Amino acid supplementation of a simple inorganic salt solution supports efficient in vitro maturation (IVM) of bovine oocytes. Sci. Rep. 2019;9:1–10. doi: 10.1038/s41598-019-48038-y.
    1. Das K.C., Misra H.P. Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol. Cell. Biochem. 2004;262:127–133. doi: 10.1023/B:MCBI.0000038227.91813.79.
    1. Lefevre P.L., Palin M.F., Murphy B.D. Polyamines on the reproductive landscape. Endocr. Rev. 2011;32:694–712. doi: 10.1210/er.2011-0012.
    1. Chirino-Galindo G., Mejia-Zepeda R., Palomar-Morales M. Change in lipoperoxidation but not in scavenging enzymes activity during polyamine embryoprotection in rat embryo cultured in hyperglycemic media. In Vitro Cell. Dev. Biol. Anim. 2012;48:570–576. doi: 10.1007/s11626-012-9548-2.
    1. Jin J.X., Lee S., Khoirinaya C., Oh A., Kim G.A., Lee B.C. Supplementation with spermine during in vitro maturation of porcine oocytes improves early embryonic development after parthenogenetic activation and somatic cell nuclear transfer. J. Anim. Sci. 2016;94:963–970. doi: 10.2527/jas.2015-9761.
    1. Liu N., Dai Z., Zhang Y., Jia H., Chen J., Sun S., Wu G., Wu Z. Maternal l-proline supplementation during gestation alters amino acid and polyamine metabolism in the first generation female offspring of C57BL/6J mice. Amino Acids. 2019;51:805–811. doi: 10.1007/s00726-019-02717-2.
    1. Wu G., Bazer F.W., Hu J., Johnson G.A., Spencer T.E. Polyamine synthesis from proline in the developing porcine placenta. Biol. Reprod. 2005;72:842–850. doi: 10.1095/biolreprod.104.036293.
    1. Leite R.F., Annes K., Ispada J., de Lima C.B., Dos Santos E.C., Fontes P.K., Nogueira M.F.G., Milazzotto M.P. Oxidative Stress Alters the Profile of Transcription Factors Related to Early Development on In Vitro Produced Embryos. Oxid. Med. Cell. Longev. 2017;2017:1502489. doi: 10.1155/2017/1502489.
    1. Amin A., Gad A., Salilew-Wondim D., Prastowo S., Held E., Hoelker M., Rings F., Tholen E., Neuhoff C., Looft C. Bovine embryo survival under oxidative-stress conditions is associated with activity of the NRF2-mediated oxidative-stress-response pathway. Mol. Reprod. Dev. 2014;81:497–513. doi: 10.1002/mrd.22316.
    1. Belli M., Zhang L., Liu X., Donjacour A., Ruggeri E., Palmerini M.G., Nottola S.A., Macchiarelli G., Rinaudo P. Oxygen concentration alters mitochondrial structure and function in in vitro fertilized preimplantation mouse embryos. Hum. Reprod. 2019;34:601–611. doi: 10.1093/humrep/dez011.
    1. Qian D., Li Z., Zhang Y., Huang Y., Wu Q., Ru G., Chen M., Wang B. Response of Mouse Zygotes Treated with Mild Hydrogen Peroxide as a Model to Reveal Novel Mechanisms of Oxidative Stress-Induced Injury in Early Embryos. Oxid. Med. Cell. Longev. 2016;2016:1521428. doi: 10.1155/2016/1521428.
    1. Dennery P.A. Effects of oxidative stress on embryonic development. Birth Defects Res. C Embryo Today. 2007;81:155–162. doi: 10.1002/bdrc.20098.
    1. de Waal E., Mak W., Calhoun S., Stein P., Ord T., Krapp C., Coutifaris C., Schultz R.M., Bartolomei M.S. In vitro culture increases the frequency of stochastic epigenetic errors at imprinted genes in placental tissues from mouse concepti produced through assisted reproductive technologies. Biol. Reprod. 2014;90:22. doi: 10.1095/biolreprod.113.114785.
    1. Harvey A.J., Kind K.L., Pantaleon M., Armstrong D.T., Thompson J.G. Oxygen-regulated gene expression in bovine blastocysts. Biol. Reprod. 2004;71:1108–1119. doi: 10.1095/biolreprod.104.028639.
    1. Rinaudo P.F., Giritharan G., Talbi S., Dobson A.T., Schultz R.M. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil. Steril. 2006;86:1252–1265. doi: 10.1016/j.fertnstert.2006.05.017.
    1. Harvey A.J. The role of oxygen in ruminant preimplantation embryo development and metabolism. Anim. Reprod. Sci. 2007;98:113–128. doi: 10.1016/j.anireprosci.2006.10.008.
    1. Bontekoe S., Mantikou E., van Wely M., Seshadri S., Repping S., Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst. Rev. 2012 doi: 10.1002/14651858.CD008950.pub2.
    1. Christianson M.S., Zhao Y., Shoham G., Granot I., Safran A., Khafagy A., Leong M., Shoham Z. Embryo catheter loading and embryo culture techniques: Results of a worldwide Web-based survey. J. Assist. Reprod. Genet. 2014;31:1029–1036. doi: 10.1007/s10815-014-0250-z.
    1. Ma Y.Y., Chen H.W., Tzeng C.R. Low oxygen tension increases mitochondrial membrane potential and enhances expression of antioxidant genes and implantation protein of mouse blastocyst cultured in vitro. J. Ovarian Res. 2017;10:47. doi: 10.1186/s13048-017-0344-1.
    1. Peng Z.F., Shi S.L., Jin H.X., Yao G.D., Wang E.Y., Yang H.Y., Song W.Y., Sun Y.P. Impact of oxygen concentrations on fertilization, cleavage, implantation, and pregnancy rates of in vitro generated human embryos. Int. J. Clin. Exp. Med. 2015;8:6179–6185.
    1. Du Plessis S.S., Makker K., Desai N.R., Agarwal A. Impact of oxidative stress on IVF. Expert Rev. Obstet. Gynecol. 2008;3:539–554. doi: 10.1586/17474108.3.4.539.
    1. Pabon Jr J.E., Findley W.E., Gibbons W.E. The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertil. Steril. 1989;51:896–900. doi: 10.1016/S0015-0282(16)60688-X.
    1. Takenaka M., Horiuchi T., Yanagimachi R. Effects of light on development of mammalian zygotes. Proc. Natl. Acad. Sci. USA. 2007;104:14289–14293. doi: 10.1073/pnas.0706687104.
    1. Bognar Z., Csabai T.J., Pallinger E., Balassa T., Farkas N., Schmidt J., Gorgey E., Berta G., Szekeres-Bartho J., Bodis J. The effect of light exposure on the cleavage rate and implantation capacity of preimplantation murine embryos. J. Reprod. Immunol. 2019;132:21–28. doi: 10.1016/j.jri.2019.02.003.
    1. Agarwal A., Durairajanayagam D., du Plessis S.S. Utility of antioxidants during assisted reproductive techniques: An evidence based review. Reprod. Biol. Endocrinol. 2014;12:112. doi: 10.1186/1477-7827-12-112.
    1. Feuer S., Rinaudo P. From embryos to adults: A DOHaD perspective on in vitro fertilization and other assisted reproductive technologies. Healthcare. 2016;4:1–13. doi: 10.3390/healthcare4030051.
    1. Menezo Y., Clement P., Dale B., Elder K. Modulating oxidative stress and epigenetic homeostasis in preimplantation IVF embryos. Zygote. 2021:1–10. doi: 10.1017/S0967199421000356.
    1. Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., Dong W. ROS and ROS-Mediated Cellular Signaling. Oxid. Med. Cell. Longev. 2016;2016:4350965. doi: 10.1155/2016/4350965.
    1. Delic V., Griffin J.W.D., Zivkovic S., Zhang Y., Phan T.A., Gong H., Chaput D., Reynes C., Dinh V.B., Cruz J., et al. Individual Amino Acid Supplementation Can Improve Energy Metabolism and Decrease ROS Production in Neuronal Cells Overexpressing Alpha-Synuclein. Neuromolecular Med. 2017;19:322–344. doi: 10.1007/s12017-017-8448-8.
    1. Ding Z.-M., Jiao X.-F., Wu D., Zhang J.-Y., Chen F., Wang Y.-S., Huang C.-J., Zhang S.-X., Li X., Huo L.-J. Bisphenol AF negatively affects oocyte maturation of mouse in vitro through increasing oxidative stress and DNA damage. Chem. Biol. Interact. 2017;278:222–229. doi: 10.1016/j.cbi.2017.10.030.
    1. Xin F., Susiarjo M., Bartolomei M.S. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation? Semin. Cell Dev. Biol. 2015;43:66–75. doi: 10.1016/j.semcdb.2015.05.008.
    1. Chianese R., Pierantoni R. Mitochondrial Reactive Oxygen Species (ROS) Production Alters Sperm Quality. Antioxidants. 2021;10:92. doi: 10.3390/antiox10010092.
    1. Drevet J.R., Aitken R.J. Oxidation of Sperm Nucleus in Mammals: A Physiological Necessity to Some Extent with Adverse Impacts on Oocyte and Offspring. Antioxidants. 2020;9:1–14. doi: 10.3390/antiox9020095.
    1. Edwards R.G., Ludwig M. Are major defects in children conceived in vitro due to innate problems in patients or to induced genetic damage? Reprod. Biomed. Online. 2003;7:131–138. doi: 10.1016/S1472-6483(10)61742-7.
    1. Nishihara T., Hashimoto S., Ito K., Nakaoka Y., Matsumoto K., Hosoi Y., Morimoto Y. Oral melatonin supplementation improves oocyte and embryo quality in women undergoing in vitro fertilization-embryo transfer. Gynecol. Endocrinol. 2014;30:359–362. doi: 10.3109/09513590.2013.879856.
    1. Batioglu A.S., Sahin U., Gurlek B., Ozturk N., Unsal E. The efficacy of melatonin administration on oocyte quality. Gynecol. Endocrinol. 2012;28:91–93. doi: 10.3109/09513590.2011.589925.
    1. Espino J., Macedo M., Lozano G., Ortiz A., Rodriguez C., Rodriguez A.B., Bejarano I. Impact of Melatonin Supplementation in Women with Unexplained Infertility Undergoing Fertility Treatment. Antioxidants. 2019;8:1–11. doi: 10.3390/antiox8090338.
    1. Pacchiarotti A., Carlomagno G., Antonini G., Pacchiarotti A. Effect of myo-inositol and melatonin versus myo-inositol, in a randomized controlled trial, for improving in vitro fertilization of patients with polycystic ovarian syndrome. Gynecol. Endocrinol. 2016;32:69–73. doi: 10.3109/09513590.2015.1101444.
    1. Hasan A., Elena A.-Q., Ghassan A.-Q., Rimawi T., Nasrallah S. Melatonin and Myoinositol: A Foreword Step Toward IVF Success, a Prospective Clinical Trial. J. Gynecol. Obstet. 2019;7:1–7. doi: 10.11648/j.jgo.20190701.11.
    1. Xu Y., Nisenblat V., Lu C., Li R., Qiao J., Zhen X., Wang S. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: A randomized controlled trial. Reprod. Biol. Endocrinol. 2018;16:29. doi: 10.1186/s12958-018-0343-0.
    1. Giannubilo S.R., Orlando P., Silvestri S., Cirilli I., Marcheggiani F., Ciavattini A., Tiano L. CoQ10 Supplementation in Patients Undergoing IVF-ET: The Relationship with Follicular Fluid Content and Oocyte Maturity. Antioxidants. 2018;7:1–12. doi: 10.3390/antiox7100141.
    1. Gat I., Blanco Mejia S., Balakier H., Librach C.L., Claessens A., Ryan E.A. The use of coenzyme Q10 and DHEA during IUI and IVF cycles in patients with decreased ovarian reserve. Gynecol. Endocrinol. 2016;32:534–537. doi: 10.3109/09513590.2015.1137095.
    1. Gong Y., Luo S., Fan P., Jin S., Zhu H., Deng T., Quan Y., Huang W. Growth hormone alleviates oxidative stress and improves oocyte quality in Chinese women with polycystic ovary syndrome: A randomized controlled trial. Sci. Rep. 2020;10:18769. doi: 10.1038/s41598-020-75107-4.
    1. Salehpour S., Akbari Sene A., Saharkhiz N., Sohrabi M.R., Moghimian F. N-acetylcysteine as an adjuvant to clomiphene citrate for successful induction of ovulation in infertile patients with polycystic ovary syndrome. J. Obstet. Gynaecol. Res. 2012;38:1182–1186. doi: 10.1111/j.1447-0756.2012.01844.x.
    1. Ozkaya M.O., Naziroglu M. Multivitamin and mineral supplementation modulates oxidative stress and antioxidant vitamin levels in serum and follicular fluid of women undergoing in vitro fertilization. Fertil. Steril. 2010;94:2465–2466. doi: 10.1016/j.fertnstert.2010.01.066.
    1. Kacem O., Harzallah M., Zedini C., Zidi I., Meddeb S., Fékih M., Saidi H., Chaib A., Boughizane S., Ali H.B., et al. Beneficial Effect of an Oral Antioxidant Supplementation (Fertimax2) on IVF-ICSI Outcomes: A Preliminary Clinical Study. Adv. Reprod. Sci. 2014;2:47–56. doi: 10.4236/arsci.2014.23006.
    1. Tremellen K., Miari G., Froiland D., Thompson J. A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. Aust. N. Z. J. Obstet. Gynaecol. 2007;47:216–221. doi: 10.1111/j.1479-828X.2007.00723.x.
    1. Luddi A., Capaldo A., Focarelli R., Gori M., Morgante G., Piomboni P., De Leo V. Antioxidants reduce oxidative stress in follicular fluid of aged women undergoing IVF. Reprod. Biol. Endocrinol. 2016;14:57. doi: 10.1186/s12958-016-0184-7.
    1. Steiner A.Z., Hansen K.R., Barnhart K.T., Cedars M.I., Legro R.S., Diamond M.P., Krawetz S.A., Usadi R., Baker V.L., Coward R.M., et al. The effect of antioxidants on male factor infertility: The Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. Fertil. Steril. 2020;113:552–560. doi: 10.1016/j.fertnstert.2019.11.008.
    1. El Nashar A., Salama K., El-Deen A., Fayez A. Effects of Pentoxifylline and Vitamin E on Pregnancy Rate in Infertile Women Treated By ICSI: A Randomized Clinical Trial. Benha J. Appl. Sci. 2020;5:1–6. doi: 10.21608/BJAS.2020.135845.
    1. Tremellen K., Woodman R., Hill A., Shehadeh H., Lane M., Zander-Fox D. Use of a male antioxidant nutraceutical is associated with superior live birth rates during IVF treatment. Asian J. Androl. 2021;23:16–23. doi: 10.4103/aja.aja_41_20.
    1. Ruiz M., Santamaria-Lopez E., Blasco V., Hernaez M.J., Caligara C., Pellicer A., Fernandez-Sanchez M., Prados N. Effect of Group Embryo Culture under Low-Oxygen Tension in Benchtop Incubators on Human Embryo Culture: Prospective, Randomized, Controlled Trial. Reprod. Sci. 2020;27:1522–1533. doi: 10.1007/s43032-020-00150-5.
    1. Van Montfoort A.P.A., Arts E., Wijnandts L., Sluijmer A., Pelinck M.J., Land J.A., Van Echten-Arends J. Reduced oxygen concentration during human IVF culture improves embryo utilization and cumulative pregnancy rates per cycle. Hum. Reprod. Open. 2020;2020:hoz036. doi: 10.1093/hropen/hoz036.
    1. Gelo N., Kirinec G., Baldani D.P., Vrcic H., Jezek D., Milosevic M., Stanic P. Influence of human embryo cultivation in a classic CO2 incubator with 20% oxygen versus benchtop incubator with 5% oxygen on live births: The randomized prospective trial. Zygote. 2019;27:131–136. doi: 10.1017/S0967199418000618.
    1. Aleyasin A., Aghahosseini M., Mohseni M., Mahdavi A. Effects of pentoxifylline and vitamin E on pregnancy rate in infertile women treated by ZIFT: A randomized clinical trial. Int. J. Reprod. BioMedicine. 2009;7:170–175.
    1. Gardner D.K., Kuramoto T., Tanaka M., Mitzumoto S., Montag M., Yoshida A. Prospective randomized multicentre comparison on sibling oocytes comparing G-Series media system with antioxidants versus standard G-Series media system. Reprod. Biomed. Online. 2020;40:637–644. doi: 10.1016/j.rbmo.2020.01.026.
    1. Kim M.K., Park J.K., Paek S.K., Kim J.W., Kwak I.P., Lee H.J., Lyu S.W., Lee W.S. Effects and pregnancy outcomes of L-carnitine supplementation in culture media for human embryo development from in vitro fertilization. J. Obstet. Gynaecol. Res. 2018;44:2059–2066. doi: 10.1111/jog.13763.
    1. Ma L., Cai L., Hu M., Wang J., Xie J., Xing Y., Shen J., Cui Y., Liu X.J., Liu J. Coenzyme Q10 supplementation of human oocyte in vitro maturation reduces postmeiotic aneuploidies. Fertil. Steril. 2020;114:331–337. doi: 10.1016/j.fertnstert.2020.04.002.
    1. Fabozzi G., Albricci L., Cimadomo D., Amendola M.G., Sanges F., Maggiulli R., Ubaldi F.M., Rienzi L. Blastulation rates of sibling oocytes in two IVF culture media: An evidence-based workflow to implement newly commercialized products. Reprod. Biomed. Online. 2021;42:311–322. doi: 10.1016/j.rbmo.2020.10.017.
    1. Taherian S.S., Khayamabed R., Tavalaee M., Nasr-Esfahani M.H. Alpha-lipoic acid minimises reactive oxygen species-induced damages during sperm processing. Andrologia. 2019;51:e13314. doi: 10.1111/and.13314.
    1. Zhang W., Li F., Cao H., Li C., Du C., Yao L., Mao H., Lin W. Protective effects of l-carnitine on astheno- and normozoospermic human semen samples during cryopreservation. Zygote. 2016;24:293–300. doi: 10.1017/S0967199415000180.

Source: PubMed

3
Subskrybuj