Oxidative Stress in Assisted Reproductive Techniques, with a Focus on an Underestimated Risk Factor

Péter Mauchart, Réka Anna Vass, Bernadett Nagy, Endre Sulyok, József Bódis, Kálmán Kovács, Péter Mauchart, Réka Anna Vass, Bernadett Nagy, Endre Sulyok, József Bódis, Kálmán Kovács

Abstract

Based on current findings, the presence of oxidative stress has a significant impact on the quality of gametes and embryos when performing assisted reproductive techniques (ART). Unfortunately, in vitro manipulation of these cells exposes them to a higher level of reactive oxygen species (ROS). The primary goal of this review is to provide a comprehensive overview of the development of oxidative stress in female and male reproductive systems, as well as in the case of the pre-implantation embryo and its environment. This review also focuses on the origins of ROS and the mechanisms of oxidative stress-induced damage during ART procedures. A well-known but underestimated hazard, light exposure-related photo-oxidation, is particularly concerning. The effect of oxidative stress on ART outcomes, as well as the various strategies for preventing it, are also discussed. We emphasize the role and significance of antioxidants and light protection including forms, functions, and mechanisms in the development of gametes and embryos in vivo and in vitro.

Keywords: IVF; antioxidants; embryo; light protection; oocyte; sperm.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Scheme of physiological and pathological effects of reactive oxygen species (ROS) on male fertility.
Figure 2
Figure 2
Effects of increased levels of reactive oxygen species during IVF. (ROS: Reactive oxygen species, ZP: zona pellucida).
Figure 3
Figure 3
Fenton and Haber–Weiss reactions.

References

    1. Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001.
    1. Zarbakhsh S. Effect of antioxidants on preimplantation embryo development in vitro: A review. Zygote. 2021;29:179–193. doi: 10.1017/S0967199420000660.
    1. Bell E.L., Emerling B.M., Chandel N.S. Mitochondrial regulation of oxygen sensing. Mitochondrion. 2005;5:322–332. doi: 10.1016/j.mito.2005.06.005.
    1. Bell E.L., Chandel N.S. Mitochondrial oxygen sensing: Regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species. Essays Biochem. 2007;43:17–28. doi: 10.1042/bse0430017.
    1. Van Blerkom J. Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reprod. Biomed. Online. 2008;16:553–569. doi: 10.1016/S1472-6483(10)60463-4.
    1. De Giusti V.C., Caldiz C.I., Ennis I.L., Pérez N.G., Cingolani H.E., Aiello E.A. Mitochondrial reactive oxygen species (ROS) as signaling molecules of intracellular pathways triggered by the cardiac renin-angiotensin II-aldosterone system (RAAS) Front. Physiol. 2013;4:126. doi: 10.3389/fphys.2013.00126.
    1. Zhao Y., Xu Y., Li Y., Jin Q., Sun J., Zhiqiang E., Gao Q. Supplementation of kaempferol to in vitro maturation medium regulates oxidative stress and enhances subsequent embryonic development in vitro. Zygote. 2020;28:59–64. doi: 10.1017/S0967199419000674.
    1. Scialò F., Fernández-Ayala D.J., Sanz A. Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease. Front. Physiol. 2017;8:428. doi: 10.3389/fphys.2017.00428.
    1. Attaran M., Pasqualotto E., Falcone T., Goldberg J.M., Miller K.F., Agarwal A., Sharma R. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int. J. Fertil. Women’s Med. 2000;45:314–320.
    1. Szczepańska M., Koźlik J., Skrzypczak J., Mikołajczyk M. Oxidative stress may be a piece in the endometriosis puzzle. Fertil. Steril. 2003;79:1288–1293. doi: 10.1016/S0015-0282(03)00266-8.
    1. Van Langendonckt A., Casanas-Roux F., Donnez J. Oxidative stress and peritoneal endometriosis. Fertil. Steril. 2002;77:861–870. doi: 10.1016/S0015-0282(02)02959-X.
    1. Pierce J.D., Cackler A.B., Arnett M.G. Why should you care about free radicals? RN. 2004;67:38–42.
    1. Iwayama K., Kusakabe A., Ohtsu K., Nawano T., Tatsunami R., Ohtaki K.-I., Tampo Y., Hayase N. Long-term treatment of clarithromycin at a low concentration improves hydrogen peroxide-induced oxidant/antioxidant imbalance in human small airway epithelial cells by increasing Nrf2 mRNA expression. BMC Pharmacol. Toxicol. 2017;18:15. doi: 10.1186/s40360-017-0119-8.
    1. Du Plessis S.S., Agarwal A., Mohanty G., van der Linde M. Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use? Asian J. Androl. 2015;17:230–235. doi: 10.4103/1008-682X.135123.
    1. Takeshima T., Usui K., Mori K., Asai T., Yasuda K., Kuroda S., Yumura Y. Oxidative stress and male infertility. Reprod. Med. Biol. 2020;20:41–52. doi: 10.1002/rmb2.12353.
    1. Carrell D.T., Liu L., Peterson C.M., Jones K.P., Hatasaka H.H., Erickson L., Campbell B. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch. Androl. 2003;49:49–55. doi: 10.1080/01485010290099390.
    1. Lewis S.E.M., Aitken R.J. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005;322:33–41. doi: 10.1007/s00441-005-1097-5.
    1. Khan A.U., Wilson T. Reactive oxygen species as cellular messengers. Chem. Biol. 1995;2:437–445. doi: 10.1016/1074-5521(95)90259-7.
    1. Thompson A., Agarwal A., du Plessis S.S. Physiological Role of Reactive Oxygen Species in Sperm Function: A Review. In: Parekatil S.J., Agarwal A., editors. Antioxidants in Male Infertility: A Guide for Clinicians and Researchers. Springer Science+Business Media; New York, NY, USA: 2013. pp. 69–89.
    1. Du Plessis S.S., Agarwal A., Halabi J., Tvrda E. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J. Assist. Reprod. Genet. 2015;32:509–520. doi: 10.1007/s10815-014-0425-7.
    1. Griveau J.F., Le Lannou D. Reactive oxygen species and human spermatozoa: Physiology and pathology. Int. J. Androl. 1997;20:61–69. doi: 10.1046/j.1365-2605.1997.00044.x.
    1. Dutta S., Henkel R., Sengupta P., Agarwal A. Male Infertility: Contemporary Clinical Approaches, Andrology, ART and Antioxidants. Springer; New York, NY, USA: 2020. Physiological role of ROS in sperm function; pp. 337–345.
    1. Evans E.P.P., Scholten J.T.M., Mzyk A., Reyes-San-Martin C., Llumbet A.E., Hamoh T., Arts E.G.J.M., Schirhagl R., Cantineau A.E. Male subfertility and oxidative stress. Redox Biol. 2021;46:102071. doi: 10.1016/j.redox.2021.102071.
    1. Durairajanayagam D. Physiological Role of Reactive Oxygen Species in Male Reproduction. In: Henkel R., Samanta L., Agarwal A., editors. Oxidants, Antioxidants and Impact of the Oxidative Status in Male Reproduction. Academic Press; Cambridge, MA, USA: 2019. pp. 65–78. Chapter 1.8.
    1. de Lamirande E. Reactive oxygen species and sperm physiology. Rev. Reprod. 1997;2:48–54. doi: 10.1530/ror.0.0020048.
    1. Makker K., Agarwal A., Sharma R. Oxidative stress & male infertility. Indian J. Med. Res. 2009;129:357–367.
    1. Kumar N., Singh A.K. Reactive oxygen species in seminal plasma as a cause of male infertility. J. Gynecol. Obstet. Hum. Reprod. 2018;47:565–572. doi: 10.1016/j.jogoh.2018.06.008.
    1. Cooper T.G. The epididymis, cytoplasmic droplets and male fertility. Asian J. Androl. 2010;13:130–138. doi: 10.1038/aja.2010.97.
    1. Aziz N., Saleh R.A., Sharma R.K., Lewis-Jones I., Esfandiari N., Thomas A.J., Jr., Agarwal A. Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil. Steril. 2004;81:349–354. doi: 10.1016/j.fertnstert.2003.06.026.
    1. Plante M., de Lamirande E., Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil. Steril. 1994;62:387–393. doi: 10.1016/S0015-0282(16)56895-2.
    1. Agarwal A., Rosas I.M., Anagnostopoulou C., Cannarella R., Boitrelle F., Munoz L.V., Finelli R., Durairajanayagam D., Henkel R., Saleh R. Oxidative Stress and Assisted Reproduction: A Comprehensive Review of Its Pathophysiological Role and Strategies for Optimizing Embryo Culture Environment. Antioxidants. 2022;11:477. doi: 10.3390/antiox11030477.
    1. Aitken R.J., Finnie J.M., Muscio L., Whiting S., Connaughton H.S., Kuczera L., Rothkirch T.B., De Iuliis G.N. Potential importance of transition metals in the induction of DNA damage by sperm preparation medium. Hum. Reprod. 2014;29:2136–2147. doi: 10.1093/humrep/deu204.
    1. Muratori M., Tarozzi N., Carpentiero F., Danti S., Perrone F.M., Cambi M., Casini A., Azzari C., Boni L., Maggi M., et al. Sperm selection with density gradient centrifugation and swim up: Effect on DNA fragmentation in viable spermatozoa. Sci. Rep. 2019;9:7492. doi: 10.1038/s41598-019-43981-2.
    1. Barbonetti A., Castellini C., Di Giammarco N., Santilli G., Francavilla S., Francavilla F. In vitro exposure of human spermatozoa to bisphenol A induces pro-oxidative/apoptotic mitochondrial dysfunction. Reprod. Toxicol. 2016;66:61–67. doi: 10.1016/j.reprotox.2016.09.014.
    1. Kotwicka M., Skibinska I., Jendraszak M., Jedrzejczak P. 17beta-estradiol modifies human spermatozoa mitochondrial function in vitro. Reprod. Biol. Endocrinol. 2016;14:50.
    1. Gualtieri R., Kalthur G., Barbato V., Longobardi S., Di Rella F., Adiga S.K., Talevi R. Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development. Antioxidants. 2021;10:1025. doi: 10.3390/antiox10071025.
    1. Alvarez J.G., Storey B.T. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol. Reprod. Dev. 1995;42:334–346. doi: 10.1002/mrd.1080420311.
    1. Agarwal A., Saleh R.A., Bedaiwy M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 2003;79:829–843. doi: 10.1016/S0015-0282(02)04948-8.
    1. De Lamirande E., Gagnon C. Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J. Androl. 1992;13:368–378.
    1. Twigg J.P., Irvine D.S., Aitken R.J. Oxidative damage to DNA in human spermatozoa does not preclude pronucleus formation at intracytoplasmic sperm injection. Hum. Reprod. 1998;13:1864–1871. doi: 10.1093/humrep/13.7.1864.
    1. Kemal Duru N., Morshedi M., Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil. Steril. 2000;74:1200–1207. doi: 10.1016/S0015-0282(00)01591-0.
    1. Aitken R., Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497–506. doi: 10.1530/rep.0.1220497.
    1. Mahfouz R., Sharma R., Thiyagarajan A., Kale V., Gupta S., Sabanegh E., Agarwal A. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertil. Steril. 2010;94:2141–2146. doi: 10.1016/j.fertnstert.2009.12.030.
    1. Bauer N.C., Corbett A.H., Doetsch P.W. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res. 2015;43:10083–10101. doi: 10.1093/nar/gkv1136.
    1. Smith T.B., Dun M.D., Smith N.D., Curry B.J., Connaughton H.S., Aitken R.J. The presence of a truncated base excision repair pathway in human spermatozoa, Mediated by OGG1. J. Cell Sci. 2013;126:1488–1497. doi: 10.1242/jcs.121657.
    1. Martin-Hidalgo D., Bragado M.J., Batista A.R., Oliveira P.F., Alves M.G. Antioxidants and Male Fertility: From Molecular Studies to Clinical Evidence. Antioxidants. 2019;8:89. doi: 10.3390/antiox8040089.
    1. Humaidan P., Haahr T., Povlsen B.B., Kofod L., Laursen R.J., Alsbjerg B., Elbaek H.O., Esteves S.C. The combined effect of lifestyle intervention and antioxidant therapy on sperm DNA fragmentation and seminal oxidative stress in IVF patients: A pilot study. Int. Braz. J. Urol. 2022;48:131–156. doi: 10.1590/s1677-5538.ibju.2021.0604.
    1. Panner Selvam M.K., Agarwal A., Henkel R., Finelli R., Robert K.A., Iovine C., Baskaran S. The effect of oxidative and reductive stress on semen parameters and functions of physiologically normal human spermatozoa. Free Radic. Biol. Med. 2020;152:375–385. doi: 10.1016/j.freeradbiomed.2020.03.008.
    1. Wang L., Tang J., Wang L., Tan F., Song H., Zhou J., Li F. Oxidative stress in oocyte aging and female reproduction. J. Cell. Physiol. 2021;236:7966–7983. doi: 10.1002/jcp.30468.
    1. Wang Y., Sharma R.K., Falcone T., Goldberg J., Agarwal A. Importance portance of reactive oxygen species in the peritoneal fluid of women with endometriosis or idiopathic infertility. Fertil. Steril. 1997;68:826–830. doi: 10.1016/S0015-0282(97)00343-9.
    1. Agarwal A., Gupta S., Sharma R. Oxidative stress and its implications in female infertility–A clinician’s perspective. Reprod. Biomed. Online. 2005;11:641–650. doi: 10.1016/S1472-6483(10)61174-1.
    1. Agarwal A., Gupta S., Sharma R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005;3:28–48. doi: 10.1186/1477-7827-3-28.
    1. Wall P.D., Pressman E.K., Woods J.R. Preterm premature rupture of the membranes and antioxidants: The free radical connection. J. Périnat. Med. 2002;30:447–457. doi: 10.1515/JPM.2002.071.
    1. Myatt L., Cui X. Oxidative stress in the placenta. Histochem. Cell Biol. 2004;122:369–382. doi: 10.1007/s00418-004-0677-x.
    1. Murphy A.A., Arlene N.S., Morales J., Parthasarathy S. Lysophosphatidyl Choline, a Chemotactic Factor for Monocytes/T-Lymphocytes Is Elevated in Endometriosis. J. Clin. Endocrinol. Metab. 1998;83:2110–2113. doi: 10.1210/jcem.83.6.4823.
    1. Suzuki T., Sugino N., Fukaya T., Sugiyama S., Uda T., Takaya R., Yajima A., Sasano H. Superoxide dismutase in normal cycling human ovaries: Immunohistochemical localization and characterization. Fertil. Steril. 1999;72:720–726. doi: 10.1016/S0015-0282(99)00332-5.
    1. Vega M., Carrasca I., Castillo T., Troncoso J.L., Videla I.A., Devoto L. Functional luteolysis in response to hydrogen peroxide in human luteal cells. J. Endocrinol. 1995;147:177–182. doi: 10.1677/joe.0.1470177.
    1. Watson A.L., Skepper J.N., Jauniaux E., Burton G.J. Changes in concentration, localization and activity of catalase within the human placenta during early gestation. Placenta. 1998;19:27–34. doi: 10.1016/S0143-4004(98)90095-9.
    1. Watson A.l., Palmer M.E., Jauniaux E., Burton G.J. Variations in expression of copper/zinc superoxide dismutase in villous trophoblast of the human placenta with gestational age. Placenta. 1997;18:295–299. doi: 10.1016/S0143-4004(97)80064-1.
    1. Kaya C., Erkan A.F., Cengiz S.D., Dünder I., Demirel E., Bilgihan A. Advanced oxidation protein products are increased in women with polycystic ovary syndrome: Relationship with traditional and nontraditional cardiovascular risk factors in patients with polycystic ovary syndrome. Fertil. Steril. 2009;92:1372–1377. doi: 10.1016/j.fertnstert.2008.08.016.
    1. Amato G., Conte M., Mazziotti G., Lalli E., Vitolo G., Tucker A.T., Bellastella A., Carella C., Izzo A. Serum and follicular fluid cytokines in polycystic ovary syndrome during stimulated cycles. Obstet. Gynecol. 2003;101:1177–1182.
    1. Rashidi B., Haghollahi F., Shariat M., Zayerii F. The Effects of Calcium-Vitamin D and Metformin on Polycystic Ovary Syndrome: A Pilot Study. Taiwan. J. Obstet. Gynecol. 2009;48:142–147. doi: 10.1016/S1028-4559(09)60275-8.
    1. Cuffe J.S.M., Holland O., Salomon C., Rice G.E., Perkins A.V. Review: Placental derived biomarkers of pregnancy disorders. Placenta. 2017;54:104–110. doi: 10.1016/j.placenta.2017.01.119.
    1. Biri A., Bozkurt N., Turp A., Kavutcu M., Himmetoglu Ö., Durak I. Role of Oxidative Stress in Intrauterine Growth Restriction. Gynecol. Obstet. Investig. 2007;64:187–192. doi: 10.1159/000106488.
    1. Wiener-Megnazi Z., Vardi L., Lissak A., Shnizer S., Reznick A.Z., Ishai D., Lahav-Baratz S., Shiloh H., Koifman M., Dirnfeld M. Oxidative stress indices in follicular fluid as measured by the thermochemiluminescence assay correlate with outcome parameters in in vitro fertilization. Fertil. Steril. 2004;82:1171–1176. doi: 10.1016/j.fertnstert.2004.06.013.
    1. Shkolnik K., Tadmor A., Ben-Dor S., Nevo N., Galiani D., Dekel N. Reactive oxygen species are indispensable in ovulation. Proc. Natl. Acad. Sci. USA. 2011;108:1462–1467. doi: 10.1073/pnas.1017213108.
    1. Babuška V., Cedíková M., Rajdl D., Racek J., Zech N.H., Trefil L., Mocková A., Ulčová-Gallová Z., Novotný Z., Králíčková M. Srovnání vybraných parametrů oxidačního stresu ve folikulární tekutině u žen s poruchou plodnosti a u zdravých fertilních dárkyň oocytů. [Comparison of selective oxidative stress parameters in the follicular fluid of infertile women and healthy fertile oocyte donors] Ceská Gynekol. Ceská Lékarská Spolecnost. J. Ev. Purkyne. 2012;77:543–548.
    1. Sasaki H., Hamatani T., Kamijo S., Iwai M., Kobanawa M., Ogawa S., Miyado K., Tanaka M. Impact of Oxidative Stress on Age-Associated Decline in Oocyte Developmental Competence. Front. Endocrinol. 2019;10:811. doi: 10.3389/fendo.2019.00811.
    1. Miyamoto K., Sato E.F., Kasahara E., Jikumaru M., Hiramoto K., Tabata H., Katsuragi M., Odo S., Utsumi K., Inoue M. Effect of oxidative stress during repeated ovulation on the structure and functions of the ovary, oocytes, and their mitochondria. Free. Radic. Biol. Med. 2010;49:674–681. doi: 10.1016/j.freeradbiomed.2010.05.025.
    1. Agarwal A., Allamaneni S.S. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod. Biomed. Online. 2004;9:338–347. doi: 10.1016/S1472-6483(10)62151-7.
    1. Tarin J.J. Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Mol. Hum. Reprod. 1996;2:717–724. doi: 10.1093/molehr/2.10.717.
    1. Tatone C., Carbone M., Falone S., Aimola P., Giardinelli A., Caserta D., Marci R., Pandolfi A., Ragnelli A., Amicarelli F. Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells. Mol. Hum. Reprod. 2006;12:655–660. doi: 10.1093/molehr/gal080.
    1. Myllynen P., Pasanen M., Pelkonen O. Human placenta: A human organ for developmental toxicology research and biomonitoring. Placenta. 2005;26:361–371. doi: 10.1016/j.placenta.2004.09.006.
    1. Strakovsky R.S., Pan Y.-X. In Utero Oxidative Stress Epigenetically Programs Antioxidant Defense Capacity and Adulthood Diseases. Antioxid. Redox Signal. 2012;17:237–253. doi: 10.1089/ars.2011.4372.
    1. Global Supplement Report. [(accessed on 28 January 2023)]. Available online:
    1. Showell M.G., Mackenzie-Proctor R., Jordan V., Hart R.J. Antioxidants for female sub-fertility. Cochrane Database Syst. Rev. 2020;8:CD007807.
    1. Elnashar A. Antioxidants for female infertility: Review of systematic reviews. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019;234:e84. doi: 10.1016/j.ejogrb.2018.08.341.
    1. Fang F., Ni K., Cai Y., Shang J., Zhang X., Xiong C. Effect of vitamin D supplementa-tion on polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Complement. Clin. Pract. 2017;26:53–60. doi: 10.1016/j.ctcp.2016.11.008.
    1. Arhin S.K., Zhao Y., Lu X., Chetry M., Lu J. Effect of micronutrient supplementation on IVF outcomes: A systematic review of the literature. Reprod. Biomed. Online. 2017;35:715–722. doi: 10.1016/j.rbmo.2017.08.018.
    1. Guérin P., El Mouatassim S., Ménézo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update. 2001;7:175–189. doi: 10.1093/humupd/7.2.175.
    1. Harvey A.J., Kind K.L., Thompson J.G. REDOX regulation of early embryo development. Reproduction. 2002;123:479–486. doi: 10.1530/rep.0.1230479.
    1. Agarwal A., Said T.M., Bedaiwy M.A., Banerjee J., Alvarez J.G. Oxidative stress in an assisted reproductive techniques setting. Fertil. Steril. 2006;86:503–512. doi: 10.1016/j.fertnstert.2006.02.088.
    1. Bedaiwy M.A., Falcone T., Mohamed M.S., Aleem A.A.N., Sharma R.K., Worley S.E., Thornton J., Agarwal A. Differential growth of human embryos in vitro: Role of reactive oxygen species. Fertil. Steril. 2004;82:593–600. doi: 10.1016/j.fertnstert.2004.02.121.
    1. Mohammadi M. Oxidative stress and polycystic ovary syndrome: A brief review. Int. J. Prev. Med. 2019;10:86. doi: 10.4103/ijpvm.IJPVM_576_17.
    1. Scutiero G., Iannone P., Bernardi G., Bonaccorsi G., Spadaro S., Volta C.A., Greco P., Nappi L. Oxidative Stress and Endometriosis: A Systematic Review of the Literature. Oxidative Med. Cell. Longev. 2017;2017:7265238. doi: 10.1155/2017/7265238.
    1. von Mengden L., Klamt F., Smitz J. Redox Biology of Human Cumulus Cells: Basic Concepts, Impact on Oocyte Quality, and Potential Clinical Use. Antioxid. Redox Signal. 2020;32:522–535. doi: 10.1089/ars.2019.7984.
    1. Aitken R.J., Irvine D.S., Wu F.C. Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am. J. Obstet. Gynecol. 1991;164:542–551. doi: 10.1016/S0002-9378(11)80017-7.
    1. Gianaroli L., Magli M., Ferraretti A.P., Fiorentino A., Tosti E., Panzella S., Dale B. Reducing the time of sperm-oocyte interaction in human in-vitro fertilization improves the implantation rate. Hum. Reprod. 1996;11:166–171. doi: 10.1093/oxfordjournals.humrep.a019011.
    1. Quinn P., Lydic M.L., Ho M., Bastuba M., Hendee F., Brody S.A. Confirmation of the Beneficial Effects of Brief Coincubation of Gametes in Human In Vitro Fertilization. Fertil. Steril. 1998;69:399–402. doi: 10.1016/S0015-0282(97)00576-1.
    1. Boone W.R., Johnson J.E. Clinical Assisted Reproduction: Extending the Coincubation Time of Gametes Improves In Vitro Fertilization. J. Assist. Reprod. Genet. 2001;18:18–20. doi: 10.1023/A:1026442411577.
    1. Fujii J., Iuchi Y., Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod. Biol. Endocrinol. 2005;3:43. doi: 10.1186/1477-7827-3-43.
    1. Lee T.-H., Lee M.-S., Liu C.-H., Tsao H.-M., Huang C.-C., Yang Y.-S. The Association Between Microenvironmental Reactive Oxygen Species and Embryo Development in Assisted Reproduction Technology Cycles. Reprod. Sci. 2012;19:725–732. doi: 10.1177/1933719111432858.
    1. Yang H.W., Hwang K.J., Kwon H.C., Kim H.S., Choi K.W., Oh K.S. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 1998;13:998–1002. doi: 10.1093/humrep/13.4.998.
    1. Várnagy A., Kőszegi T., Györgyi E., Szegedi S., Sulyok E., Prémusz V., Bódis J. Levels of total antioxidant capacity and 8-hydroxy-2′-deoxyguanosine of serum and follicular fluid in women undergoing in vitro fertilization: Focusing on endometriosis. Hum. Fertil. 2018;23:200–208. doi: 10.1080/14647273.2018.1535719.
    1. Du Plessis S.S., Makker K., Desai N.R., Agarwal A. Impact of oxidative stress on IVF. Expert Rev. Obstet. Gynecol. 2008;3:539–554. doi: 10.1586/17474108.3.4.539.
    1. Zhang X.D., Liu J.X., Liu W.W., Gao Y., Han W., Xiong S., Wu L.H., Huang G.N. Time of insemination culture and outcomes of in vitro fertilization: A systematic review and meta-analysis. Hum. Reprod. Updat. 2013;19:685–695. doi: 10.1093/humupd/dmt036.
    1. Martin K.L. Nutritional and metabolic requirements of early cleavage stage embryos and blastocysts. Hum. Fertil. 2000;3:247–254. doi: 10.1080/1464727002000199071.
    1. Thompson J.G., Sherman A.N.M., Allen N.W., McGowan L.T., Tervit H.R. Total protein content and protein synthesis within pre-elongation stage bovine embryos. Mol. Reprod. Dev. 1998;50:139–145. doi: 10.1002/(SICI)1098-2795(199806)50:2<139::AID-MRD3>;2-L.
    1. Sunderam S., Kissin D.M., Crawford S.B., Folger S.G., Jamieson D.J., Barfield W.D. Centers for Disease C and Prevention (2014). Assisted reproductive technology surveillance–United States. MMWR Surveill Summ. 2011;63:1–28.
    1. Pomeroy K.O., Reed M. The effect of light on embryos and embryo culture. J. Reprod. Biotechnol. Fertil. 2013;5:104–116. doi: 10.1017/cbo9781107294295.008.
    1. Ottosen L.D., Hindkjaer J., Ingerslev J. Light exposure of the ovum and preimplantation embryo during ART procedures. J. Assist. Reprod. Genet. 2007;24:99–103. doi: 10.1007/s10815-006-9081-x.
    1. Bódis J., Gödöny K., Várnagy Á., Kovács K., Koppán M., Nagy B., Erostyák J., Herczeg R., Szekeres-Barthó J., Gyenesei A., et al. How to Reduce the Potential Harmful Effects of Light on Blastocyst Development during IVF. Med. Princ. Pract. 2020;29:558–564. doi: 10.1159/000509016.
    1. Hockberger P.E., Skimina T.A., Centonze V.E., Lavin C., Chu S., Dadras S., Reddy J.K., White J.G. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc. Natl. Acad. Sci. USA. 1999;96:6255–6260. doi: 10.1073/pnas.96.11.6255.
    1. Hirao Y., Yanagimachi R. Detrimental effect of visible light on meiosis of mammalian eggs in vitro. J. Exp. Zool. 1978;206:365–369. doi: 10.1002/jez.1402060308.
    1. Bognar Z., Csabai T.J., Pallinger E., Balassa T., Farkas N., Schmidt J., Görgey E., Berta G., Szekeres-Bartho J., Bodis J. The effect of light exposure on the cleavage rate and implantation capacity of preimplantation murine embryos. J. Reprod. Immunol. 2019;132:21–28. doi: 10.1016/j.jri.2019.02.003.
    1. Lavi R., Ankri R., Sinyakov M., Eichler M., Friedmann H., Shainberg A., Breitbart H., Lubart R. The plasma membrane is involved in the visible light-tissue interaction. Photomed. Laser Surg. 2012;30:14–19. doi: 10.1089/pho.2011.3083.
    1. Abdelrazik H., Sharma R., Mahfouz R., Agarwal A. l-Carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos. Fertil. Steril. 2009;91:589–596. doi: 10.1016/j.fertnstert.2007.11.067.
    1. Martin-Romero F.J., Miguel-Lasobras E.M., Dominguez-Arroyo J.A., Gonzalez-Carrera E., Alvarez I.S. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod. Biomed. Online. 2008;17:652–661. doi: 10.1016/S1472-6483(10)60312-4.
    1. Menezo Y., Dale B., Cohen M. DNA damage and repair in human oocytes and embryos: A review. Zygote. 2010;18:357–365. doi: 10.1017/S0967199410000286.
    1. Alvarez J.G., Storey B.T. Taurine, hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility. Biol. Reprod. 1983;29:548–555. doi: 10.1095/biolreprod29.3.548.
    1. Shannon P. Factors affecting semen preservation and conception rates in cattle. J. Reprod. Fertil. 1978;54:519–527. doi: 10.1530/jrf.0.0540519.
    1. Labied S., Jouan C., Wenders F., Ravet S., Gaspard O., Thonon F., Gridelet V., Henry L., Perrier d’Hauterive S., Nisolle M. Comparison between paraffin and mineral oil covering on early human embryo culture: A prospective randomized study. Syst. Biol. Reprod. Med. 2019;65:81–86. doi: 10.1080/19396368.2018.1492645.
    1. Lan K.C., Lin Y.C., Chang Y.C., Lin H.J., Tsai Y.R., Kang H.Y. Limited relationships between reactive oxygen species levels in culture media and zygote and embryo development. J. Assist. Reprod. Genet. 2019;36:325–334. doi: 10.1007/s10815-018-1363-6.
    1. Pool T.B., Martin J.E. High continuing pregnancy rates after in vitro fertilization-embryo transfer using medium supplemented with a plasma protein fraction containing alpha- and beta-globulins. Fertil. Steril. 1994;61:714–719. doi: 10.1016/S0015-0282(16)56651-5.
    1. Aitken R.J. Impact of oxidative stress on male and female germ cells: Implications for fertility. Reproduction. 2020;159:R189–R201. doi: 10.1530/REP-19-0452.
    1. Shih Y.F., Lee T.H., Liu C.H., Tsao H.M., Huang C.C., Lee M.S. Effects of reactive oxygen species levels in prepared culture media on embryo development: A comparison of two media. Taiwan J. Obstet. Gynecol. 2014;53:504–508. doi: 10.1016/j.tjog.2013.12.009.
    1. Sills E.S., Palermo G.D. Human blastocyst culture in IVF: Current laboratory applications in reproductive medicine practice. Rom. J. Morphol. Embryol. 2010;51:441–445.
    1. Yamanaka K.I., Khatun H., Egashira J., Balboula A.Z., Tatemoto H., Sakatani M., Takenouchi N., Wada Y., Takahashi M. Heat-shock-induced cathepsin B activity during IVF and culture compromises the developmental competence of bovine embryos. Theriogenology. 2018;114:293–300. doi: 10.1016/j.theriogenology.2018.04.005.
    1. Hyun C.S., Cha J.H., Son W.Y., Yoon S.H., Kim K.A., Lim J.H. Optimal ICSI timing after the first polar body extrusion in in vitro matured human oocytes. Hum. Reprod. 2007;22:1991–1995. doi: 10.1093/humrep/dem124.
    1. Kharche S.D., Pathak J., Agarwal S., Kushwah B., Sikarwar A. Effect of Ca Ionophore on Blastocyst Production Following Intracytoplasmic Sperm Injection in Caprine Oocytes. Reprod. Domest. Anim. 2016;51:611–617. doi: 10.1111/rda.12701.
    1. Samiec M., Skrzyszowska M. Molecular conditions of the cell nucleus remodelling/reprogramming process and nuclear transferred embryo development in the intraooplasmic karyoplast injection technique: A review. Czech J. Anim. Sci. 2005;50:185–195. doi: 10.17221/4142-CJAS.
    1. Qu P., Shen C., Du Y., Qin H., Luo S., Fu S., Dong Y., Guo S., Hu F., Xue Y., et al. Melatonin Protects Rabbit Somatic Cell Nuclear Transfer (SCNT) Embryos from Electrofusion Damage. Sci. Rep. 2020;10:2186. doi: 10.1038/s41598-020-59161-6.
    1. Wiater J., Samiec M., Wartalski K., Smorąg Z., Jura J., Słomski R., Skrzyszowska M., Romek M. Characterization of Mono- and Bi-Transgenic Pig-Derived Epidermal Keratinocytes Expressing Human FUT2 and GLA Genes–In Vitro Studies. Int. J. Mol. Sci. 2021;22:9683. doi: 10.3390/ijms22189683.

Source: PubMed

3
Subskrybuj