Monitoring postoperative lung recovery using electrical impedance tomography in post anesthesia care unit: an observational study

Nadine Hochhausen, Torsten Kapell, Martin Dürbaum, Andreas Follmann, Rolf Rossaint, Michael Czaplik, Nadine Hochhausen, Torsten Kapell, Martin Dürbaum, Andreas Follmann, Rolf Rossaint, Michael Czaplik

Abstract

With electrical impedance tomography (EIT) recruitment and de-recruitment phenomena can be quantified and monitored at bedside. The aim was to examine the feasibility of EIT with respect to monitor atelectasis formation and resolution in the post anesthesia care unit (PACU). In this observational study, 107 postoperative patients were investigated regarding the presence and recovery of atelectasis described by the EIT-derived parameters Global Inhomogeneity Index (GI Index), tidal impedance variation (TIV), and the changes in end-expiratory lung impedance (ΔEELI). We examined whether the presence of obesity (ADP group) has an influence on pulmonary recovery compared to normal weight patients (NWP group). During the stay at PACU, measurements were taken every 15 min. GI Index, TIV, and ΔEELI were calculated for each time point. 107 patients were monitored and EIT-data of 16 patients were excluded for various reasons. EIT-data of 91 patients were analyzed off-line. Their length of stay averaged 80 min (25th and 75th quartile 52-112). The ADP group demonstrated a significantly higher GI Index at PACU arrival (p < 0.001). This finding disappeared during their stay at the PACU. Additionally, the ADP group showed a significant increase in ΔEELI between PACU arrival and discharge (p = 0.025). Furthermore, TIV showed a significantly lower value during the first 90 min of PACU stay as compared to the time period thereafter (p = 0.036). Our findings demonstrate that obesity has an influence on intraoperative atelectasis formation and de-recruitment during PACU stay. The application of EIT in spontaneously breathing PACU patients seems meaningful in monitoring pulmonary recovery.

Keywords: Electrical impedance tomography; Lung; Pulmonary atelectasis; Recovery room.

Conflict of interest statement

The authors have no conflicts of interest to declare that are relevant to the content of this article.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Global Inhomogeneity Index (GI Index) at arrival to and discharge from the post anesthesia care unit (PACU). The box plot shows the GI Index at admission and discharge from the PACU. At admission, there is a significant difference between obese (ADP group; white) and normal weight patients (NWP group; grey). At discharge, this difference is no longer visible
Fig. 2
Fig. 2
End-expiratory lung impedance (ΔEELI) at discharge from the post anesthesia care unit (PACU). The box plot shows the ΔEELI at discharge from the PACU. During PACU stay, the obese patients (ADP group; white) showed a significant increase in ΔEELI between PACU arrival and discharge. In normal weight patients (NWP group; grey), no significant change occurred.
Fig. 3
Fig. 3
Tidal impedance variation (TIV) at different time periods.The box plot shows the statistical difference of the TIV comparing the first time period (0–75 min) to the second time period (90–180 min) in obese patients (ADP group; white). In normal weight patients (NWP group; grey), no significant change occurred

References

    1. Bazurro S, Ball L, Pelosi P. Perioperative management of obese patient. Curr Opin Crit Care. 2018;24:560–7. doi: 10.1097/MCC.0000000000000555.
    1. Duggan M, Kavanagh BP. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102:838–54. doi: 10.1097/00000542-200504000-00021.
    1. Eichenberger A-S, Proietti S, Wicky S, Frascarolo P, Suter M, Spahn DR, et al. Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem. Anesth Analg. 2002;95:1788–92. doi: 10.1097/00000539-200212000-00060.
    1. Pelosi P, Croci M, Ravagnan I, Cerisara M, Vicardi P, Lissoni A, et al. Respiratory system mechanics in sedated, paralyzed, morbidly obese patients. J Appl Physiol. 1997;82:811–8. doi: 10.1152/jappl.1997.82.3.811.
    1. Hedenstierna G, Edmark L. Mechanisms of atelectasis in the perioperative period. Best Pract Res Clin Anaesthesiol. 2010;24:157–69. doi: 10.1016/j.bpa.2009.12.002.
    1. Carsetti A, Rhodes A. How to treat post-operative complications: An evidence-based approach. Best Pract Res Clin Anaesthesiol. 2016;30:229–36. doi: 10.1016/j.bpa.2016.04.001.
    1. Wrigge H, Zinserling J, Muders T, Varelmann D, Günther U, von der Groeben C, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med. 2008;36:903–9. doi: 10.1097/CCM.0B013E3181652EDD.
    1. Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72:83–93. doi: 10.1136/thoraxjnl-2016-208357.
    1. Zhao Z, Fu F, Frerichs I. Thoracic electrical impedance tomography in Chinese hospitals: a review of clinical research and daily applications. Physiol Meas. 2020;41:04TR01. doi: 10.1088/1361-6579/ab81df.
    1. Dalla Corte F, Mauri T, Spinelli E, Lazzeri M, Turrini C, Albanese M, et al. Dynamic bedside assessment of the physiologic effects of prone position in acute respiratory distress syndrome patients by electrical impedance tomography. Minerva Anestesiol. 2020;86:1057–64. doi: 10.23736/S0375-9393.20.14130-0.
    1. Adler A, Amato MB, Arnold JH, Bayford R, Bodenstein M, Böhm SH, et al. Whither lung EIT: where are we, where do we want to go and what do we need to get there? Physiol Meas. 2012;33:679–94. doi: 10.1088/0967-3334/33/5/679.
    1. Frerichs I, Dargaville PA, van Genderingen H, Morel DR, Rimensberger PC. Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med. 2006;174:772–9. doi: 10.1164/rccm.200512-1942OC.
    1. Zhao Z, Möller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution. Intensive Care Med. 2009;35:1900–6. doi: 10.1007/s00134-009-1589-y.
    1. Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, et al. Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol. 2002;93:660–6. doi: 10.1152/japplphysiol.00081.2002.
    1. Bikker IG, Leonhardt S, Bakker J, Gommers D. Lung volume calculated from electrical impedance tomography in ICU patients at different PEEP levels. Intensive Care Med. 2009;35:1362–7. doi: 10.1007/s00134-009-1512-6.
    1. Plaud B, Debaene B, Donati F, Marty J. Residual paralysis after emergence from anesthesia. Anesthesiology. 2010;112:1013–22. doi: 10.1097/ALN.0b013e3181cded07.
    1. Fawcett WJ, Dash A, Francis GA, Liban JB, Cashman JN. Recovery from neuromuscular blockade: residual curarisation following atracurium or vecuronium by bolus dosing or infusions. Acta Anaesthesiol Scand. 1995;39:288–93. doi: 10.1111/j.1399-6576.1995.tb04063.x.
    1. Nagappa M, Weingarten TN, Montandon G, Sprung J, Chung F. Opioids, respiratory depression, and sleep-disordered breathing. Best Pract Res Clin Anaesthesiol. 2017;31:469–85. doi: 10.1016/j.bpa.2017.05.004.
    1. Fulton R, Millar JE, Merza M, Johnston H, Corley A, Faulke D, et al. High flow nasal oxygen after bariatric surgery (OXYBAR), prophylactic post-operative high flow nasal oxygen versus conventional oxygen therapy in obese patients undergoing bariatric surgery: study protocol for a randomised controlled pilot trial. Trials. 2018;19:402. doi: 10.1186/s13063-018-2777-2.
    1. Hedenstierna G, Rothen HU. Atelectasis formation during anesthesia: causes and measures to prevent it. J Clin Monit Comput. 2000;16:329–35. doi: 10.1023/A:1011491231934.
    1. Magnusson L, Spahn DR. New concepts of atelectasis during general anaesthesia. Br J Anaesth. 2003;91:61–72. doi: 10.1093/bja/aeg085.
    1. Nestler C, Simon P, Petroff D, Hammermüller S, Kamrath D, Wolf S, et al. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: a randomized controlled clinical trial using electrical impedance tomography. Br J Anaesth. 2017;119:1194–205. doi: 10.1093/bja/aex192.
    1. Zhu C, Yao J-W, An L-X, Bai Y-F, Li W-J. Effects of intraoperative individualized PEEP on postoperative atelectasis in obese patients: study protocol for a prospective randomized controlled trial. Trials. 2020;21:618. doi: 10.1186/s13063-020-04565-y.
    1. Writing Committee for the PROBESE Collaborative Group of the PROtective VEntilation Network (PROVEnet) for the Clinical Trial Network of the European Society of Anaesthesiology. Bluth T, Serpa Neto A, Schultz MJ, Pelosi P, Gama de Abreu M, et al (2019) Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial. JAMA 321:2292–2305.
    1. Lindgren S, Odenstedt H, Olegård C, Söndergaard S, Lundin S, Stenqvist O. Regional lung derecruitment after endotracheal suction during volume- or pressure-controlled ventilation: a study using electric impedance tomography. Intensive Care Med. 2007;33:172–80. doi: 10.1007/s00134-006-0425-x.
    1. Isono S. Obstructive sleep apnea of obese adults: pathophysiology and perioperative airway management. Anesthesiology. 2009;110:908–21. doi: 10.1097/ALN.0b013e31819c74be.
    1. Gross JB, Bachenberg KL, Benumof JL, Caplan RA, Connis RT, Coté CJ, et al. Practice guidelines for the perioperative management of patients with obstructive sleep apnea: a report by the American Society of Anesthesiologists Task Force on Perioperative Management of patients with obstructive sleep apnea. Anesthesiology. 2006;104:1081–93. doi: 10.1097/00000542-200605000-00026.
    1. Ingrande J, Lemmens HJM. Dose adjustment of anaesthetics in the morbidly obese. Br J Anaesth. 2010;105(Suppl 1):i16–23. doi: 10.1093/bja/aeq312.
    1. Marquis F, Coulombe N, Costa R, Gagnon H, Guardo R, Skrobik Y. Electrical impedance tomography’s correlation to lung volume is not influenced by anthropometric parameters. J Clin Monit Comput. 2006;20:201–7. doi: 10.1007/s10877-006-9021-4.
    1. Karsten J, Stueber T, Voigt N, Teschner E, Heinze H. Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study. Crit Care. 2016;20:3. doi: 10.1186/s13054-015-1161-9.
    1. Lowhagen K, Lundin S, Stenqvist O. Regional intratidal gas distribution in acute lung injury and acute respiratory distress syndrome assessed by electric impedance tomography. Minerva Anestesiol. 2010;76:1024–35.
    1. Reifferscheid F, Elke G, Pulletz S, Gawelczyk B, Lautenschläger I, Steinfath M, et al. Regional ventilation distribution determined by electrical impedance tomography: reproducibility and effects of posture and chest plane. Respirology. 2011;16:523–31. doi: 10.1111/j.1440-1843.2011.01929.x.
    1. Vogt B, Mendes L, Chouvarda I, Perantoni E, Kaimakamis E, Becher T, et al. Influence of torso and arm positions on chest examinations by electrical impedance tomography. Physiol Meas. 2016;37:904–21. doi: 10.1088/0967-3334/37/6/904.
    1. Yoshida T, Torsani V, Gomes S, De Santis RR, Beraldo MA, Costa ELV, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188:1420–7. doi: 10.1164/rccm.201303-0539OC.
    1. Frerichs I, Hahn G, Golisch W, Kurpitz M, Burchardi H, Hellige G. Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol Scand. 1998;42:721–6. doi: 10.1111/j.1399-6576.1998.tb05308.x.
    1. Blankman P, Hasan D, van Mourik MS, Gommers D. Ventilation distribution measured with EIT at varying levels of pressure support and Neurally Adjusted Ventilatory Assist in patients with ALI. Intensive Care Med. 2013;39:1057–62. doi: 10.1007/s00134-013-2898-8.
    1. Blankman P, Hasan D, Groot Jebbink E, Gommers D. Detection of “best” positive end-expiratory pressure derived from electrical impedance tomography parameters during a decremental positive end-expiratory pressure trial. Crit Care. 2014;18:R95. doi: 10.1186/cc13866.
    1. Zhao Z, Steinmann D, Frerichs I, Guttmann J, Möller K. PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care. 2010;14:R8. doi: 10.1186/cc8860.
    1. Hochhausen N, Biener I, Rossaint R, Follmann A, Bleilevens C, Braunschweig T, et al. Optimizing PEEP by Electrical Impedance Tomography in a Porcine Animal Model of ARDS. Respir Care. 2017;62:340–9. doi: 10.4187/respcare.05060.
    1. Bickenbach J, Czaplik M, Polier M, Marx G, Marx N, Dreher M. Electrical impedance tomography for predicting failure of spontaneous breathing trials in patients with prolonged weaning. Crit Care. 2017;21:177. doi: 10.1186/s13054-017-1758-2.
    1. Hickmann CE, Montecinos-Munoz NR, Castanares-Zapatero D, Arriagada-Garrido RS, Jeria-Blanco U, Gizzatullin T, et al. Acute effects of sitting out of bed and exercise on lung aeration and oxygenation in critically Ill subjects. Respir Care. 2021;66:253–62. doi: 10.4187/respcare.07487.
    1. Bordes J, Goutorbe P, Cungi PJ, Boghossian MC, Kaiser E. Noninvasive ventilation during spontaneous breathing anesthesia: an observational study using electrical impedance tomography. J Clin Anesth. 2016;34:420–6. doi: 10.1016/j.jclinane.2016.04.016.

Source: PubMed

3
Subskrybuj