Functional networks in prolonged disorders of consciousness

Hui Li, Xiaonian Zhang, Xinting Sun, Linghui Dong, Haitao Lu, Shouwei Yue, Hao Zhang, Hui Li, Xiaonian Zhang, Xinting Sun, Linghui Dong, Haitao Lu, Shouwei Yue, Hao Zhang

Abstract

Prolonged disorders of consciousness (DoC) are characterized by extended disruptions of brain activities that sustain wakefulness and awareness and are caused by various etiologies. During the past decades, neuroimaging has been a practical method of investigation in basic and clinical research to identify how brain properties interact in different levels of consciousness. Resting-state functional connectivity within and between canonical cortical networks correlates with consciousness by a calculation of the associated temporal blood oxygen level-dependent (BOLD) signal process during functional MRI (fMRI) and reveals the brain function of patients with prolonged DoC. There are certain brain networks including the default mode, dorsal attention, executive control, salience, auditory, visual, and sensorimotor networks that have been reported to be altered in low-level states of consciousness under either pathological or physiological states. Analysis of brain network connections based on functional imaging contributes to more accurate judgments of consciousness level and prognosis at the brain level. In this review, neurobehavioral evaluation of prolonged DoC and the functional connectivity within brain networks based on resting-state fMRI were reviewed to provide reference values for clinical diagnosis and prognostic evaluation.

Keywords: fMRI; functional connectivity; network; neuroimaging; prolonged DoC.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2023 Li, Zhang, Sun, Dong, Lu, Yue and Zhang.

Figures

Figure 1
Figure 1
Functional networks in prolonged DoC. The distribution of seven primary networks that control the resting state of functional connectivity in prolonged DoC. DMN, default mode network; PCC, posterior cingulate cortex; mPFC, medial prefrontal cortex; LPC, lateral parietal cortex; DAN, dorsal attention network; IPS, intraparietal sulcus; TPJ, temporoparietal junction; ECN, executive control network; DLPFC, dorsolateral prefrontal cortex; PPC, posterior parietal cortex; SN, salience network; ACC, anterior cingulate cortex; AIC, anterior insula cortex; FIC, frontoinsular cortices; AN, auditory network; VN, visual network; SMN, sensorimotor network; SMA, supplementary motor area.

References

    1. Ahrens M. M., Veniero D., Freund I. M., Harvey M., Thut G. (2019). Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation. Cortex 117, 168–181. 10.1016/j.cortex.02.031
    1. Albrechtsen S. S., Riis R. G. C., Amiri M., Tanum G., Bergdal O., Blaabjerg M., et al. . (2022). Impact of MRI on decision-making in ICU patients with disorders of consciousness. Behav. Brain Res. 421, 113729. 10.1016/j.bbr.2021.113729
    1. Aloi D., Jalali R., Tilsley P., Miall R. C., Fernandez-Espejo D. (2022). tDCS modulates effective connectivity during motor command following; A potential therapeutic target for disorders of consciousness. Neuroimage 247, 118781. 10.1016/j.neuroimage.2021.118781
    1. Amico E., Marinazzo D., Di Perri C., Heine L., Annen J., Martial C., et al. . (2017). Mapping the functional connectome traits of levels of consciousness. Neuroimage 148, 201–211. 10.1016/j.neuroimage.01.020
    1. Andrews-Hanna J. R. (2012). The brain's default network and its adaptive role in internal mentation. Neuroscientist 18, 251–270. 10.1177/1073858411403316
    1. Andrews-Hanna J. R., Smallwood J., Spreng R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29–52. 10.1111/nyas.12360
    1. Ansado J., Chasen C., Bouchard S., Northoff G. (2021). How brain imaging provides predictive biomarkers for therapeutic success in the context of virtual reality cognitive training. Neurosci. Biobehav. Rev. 120, 583–594. 10.1016/j.neubiorev.05.018
    1. Bender Pape T. L., Herrold A. A., Livengood S. L., Guernon A., Weaver J. A., Higgins J. P., et al. . (2020). Pilot trial examining the merits of combining amantadine and repetitive transcranial magnetic stimulation as an intervention for persons with disordered consciousness after TBI. J. Head Trauma Rehabil. 35, 371–387. 10.1097/HTR.0000000000000634
    1. Binder M., Górska U., Wójcik-Krzemień A., Gociewicz K. A. (2018). validation of the Polish version of the Coma Recovery Scale-Revised (CRSR). Brain Injury 32, 242–246. 10.1080/02699052.2017.1406991
    1. Bodien Y. G., Threlkeld Z. D., Edlow B. L. (2019). Default mode network dynamics in covert consciousness. Cortex 119, 571–574. 10.1016/j.cortex.01.014
    1. Boly M., Faymonville M. E., Schnakers C., Peigneux P., Lambermont B., Phillips C., et al. . (2008). Perception of pain in the minimally conscious state with PET activation: An observational study. Lancet Neurol. 7, 1013–1020. 10.1016/S1474-4422(08)70219-9
    1. Boly M., Perlbarg V., Marrelec G., Schabus M., Laureys S., Doyon J., et al. . (2012). Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc. Natl. Acad. Sci. U. S. A. 109, 5856–5861. 10.1073/pnas.1111133109
    1. Boly M., Tshibanda L., Vanhaudenhuyse A., Noirhomme Q., Schnakers C., Ledoux D., et al. . (2009). Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum. Brain Mapp. 30, 2393–2400. 10.1002/hbm.20672
    1. Bonfiglio L., Piarulli A., Olcese U., Andre P., Arrighi P., Frisoli A., et al. . (2014). Spectral parameters modulation and source localization of blink-related alpha and low-beta oscillations differentiate minimally conscious state from vegetative state/unresponsive wakefulness syndrome. PLoS ONE 9, e93252. 10.1371/journal.pone.0093252
    1. Bonhomme V., Vanhaudenhuyse A., Demertzi A., Bruno M. A., Jaquet O., Bahri M. A., et al. . (2016). Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology 125, 873–888. 10.1097/ALN.0000000000001275
    1. Bonnelle V., Ham T. E., Leech R., Kinnunen K. M., Mehta M. A., Greenwood R. J., et al. . (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proc. Natl. Acad. Sci. U. S. A. 109, 4690–4695. 10.1073/pnas.1113455109
    1. Bourgeois A., Chica A. B., Valero-Cabré A., Bartolomeo P. (2013). Cortical control of inhibition of return: Causal evidence for task-dependent modulations by dorsal and ventral parietal regions. Cortex 49, 2229–2238. 10.1016/j.cortex.10.017
    1. Boveroux P., Vanhaudenhuyse A., Bruno M. A., Noirhomme Q., Lauwick S., Luxen A., et al. . (2010). Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113, 1038–1053. 10.1097/ALN.0b013e3181f697f5
    1. Braga R. M., Hellyer P. J., Wise R. J. S., Leech R. (2017). Auditory and visual connectivity gradients in frontoparietal cortex. Hum. Brain Map. 38, 255–270. 10.1002/hbm.23358
    1. Buckner R. L., Krienen F. M. (2013). The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17, 648–665. 10.1016/j.tics.09.017
    1. Cavanna F., Vilas M. G., Palmucci M., Tagliazucchi E. (2018). Dynamic functional connectivity and brain metastability during altered states of consciousness. Neuroimage 180, 383–395. 10.1016/j.neuroimage.09.065
    1. Chen A. C., Oathes D. J., Chang C., Bradley T., Zhou Z. W., Williams L. M., et al. . (2013). Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc. Natl. Acad. Sci. U. S. A. 110, 19944–19949. 10.1073/pnas.1311772110
    1. Chennu S., Annen J., Wannez S., Thibaut A., Chatelle C., Cassol H., et al. . (2017). Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness. Brain 140, 2120–2132. 10.1093/brain/awx163
    1. Childs N. L., Mercer W. N., Childs H. W. (1993). Accuracy of diagnosis of persistent vegetative state. Neurology 43, 1465–1467. 10.1212/WNL.43.8.1465
    1. Chong J. S. X., Ng G. J. P., Lee S. C., Zhou J. (2017). Salience network connectivity in the insula is associated with individual differences in interoceptive accuracy. Brain Struct. Funct. 222, 1635–1644. 10.1007/s00429-016-1297-7
    1. Cojan Y., Piguet C., Vuilleumier P. (2015). What makes your brain suggestible? Hypnotizability is associated with differential brain activity during attention outside hypnosis. Neuroimage 117, 367–374. 10.1016/j.neuroimage.05.076
    1. Colás I., Triviño M., Chica A. B. (2017). Interference control modulations over conscious perception. Front. Psychol. 8, 712. 10.3389/fpsyg.2017.00712
    1. Coulborn S., Taylor C., Naci L., Owen A. M., Fernandez-Espejo D. (2021). Disruptions in effective connectivity within and between default mode network and anterior forebrain mesocircuit in prolonged disorders of consciousness. Brain Sci. 11, 60749. 10.3390/brainsci11060749
    1. Craig A. D. B. (2009). How do you feel–now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70. 10.1038/nrn2555
    1. Crone J. S., Lutkenhoff E. S., Vespa P. M., Monti M. M. (2020). A systematic investigation of the association between network dynamics in the human brain and the state of consciousness. Neurosci. Conscious 2020, niaa008. 10.1093/nc/niaa008
    1. Crone J. S., Schurz M., Holler Y., Bergmann J., Monti M., Schmid E., et al. . (2015). Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network. Neuroimage 110, 101–109. 10.1016/j.neuroimage.01.037
    1. Crone J. S., Soddu A., Holler Y., Vanhaudenhuyse A., Schurz M., Bergmann J., et al. . (2014). Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. Neuroimage Clin. 4, 240–248. 10.1016/j.nicl.12.005
    1. Cusick A., Lannin N. A., Hanssen R., Allaous J. (2014). Validating the Western Neuro Sensory Stimulation Profile for patients with severe traumatic brain injury who are slow-to-recover. Aust. Occup. Ther. J. 61, 276–283. 10.1111/1440-1630.12128
    1. da Conceicao Teixeira L., Blacker D., Campos C., Garrett C., Duport S., Rocha N. B., et al. . (2021). Repeated clinical assessment using sensory modality assessment and rehabilitation technique for diagnosis in prolonged disorders of consciousness. Front. Hum. Neurosci. 15, 728637. 10.3389/fnhum.2021.728637
    1. De Paepe P., Lemoyne S., Buylaert W. (2012). Disorders of consciousness induced by intoxication. Neurol. Clin. 30, 359–384. 10.1016/j.ncl.10.003
    1. Demertzi A., Antonopoulos G., Heine L., Voss H. U., Crone J. S., de Los Angeles C., et al. . (2015). Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain 138, 2619–2631. 10.1093/brain/awv169
    1. Demertzi A., Gomez F., Crone J. S., Vanhaudenhuyse A., Tshibanda L., Noirhomme Q., et al. . (2014). Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Cortex 52, 35–46. 10.1016/j.cortex.11.005
    1. Demertzi A., Soddu A., Faymonville M. E., Bahri M. A., Gosseries O., Vanhaudenhuyse A., et al. . (2011). Hypnotic modulation of resting state fMRI default mode and extrinsic network connectivity. Progr. Brain Res. 193, 309–322. 10.1016/B978-0-444-53839-0.00020-X
    1. Desai A. A., Strother M. K., Faraco C. C., Morgan V. L., Ladner T. R., Dethrage L. M., et al. . (2015). The contribution of common surgically implanted hardware to functional MR imaging artifacts. Am. J. Neuroradiol. 36, 2068–2073. 10.3174/ajnr.A4419
    1. Di Perri C., Bahri M. A., Amico E., Thibaut A., Heine L., Antonopoulos G., et al. . (2016). Neural correlates of consciousness in patients who have emerged from a minimally conscious state: A cross-sectional multimodal imaging study. Lancet Neurol. 15, 830–842. 10.1016/S1474-4422(16)00111-3
    1. Di H. B., Yu S. M., Weng X. C., Laureys S., Yu D., Li J. Q., et al. . (2007). Cerebral response to patient's own name in the vegetative and minimally conscious states. Neurology 68, 895–899. 10.1212/01.wnl.0000258544.79024.d0
    1. Edlow B. L., Claassen J., Schiff N. D., Greer D. M. (2021). Recovery from disorders of consciousness: Mechanisms, prognosis and emerging therapies. Nat. Rev. Neurol. 17, 135–156. 10.1038/s41582-020-00428-x
    1. Favaretto C., Allegra M., Deco G., Metcalf N. V., Griffis J. C., Shulman G. L., et al. . (2022). Subcortical-cortical dynamical states of the human brain and their breakdown in stroke. Nat. Commun. 13, 5069. 10.1038/s41467-022-32304-1
    1. Fernandez-Espejo D., Soddu A., Cruse D., Palacios E. M., Junque C., Vanhaudenhuyse A., et al. . (2012). A role for the default mode network in the bases of disorders of consciousness. Ann. Neurol. 72, 335–343. 10.1002/ana.23635
    1. Flamand M., Boudet S., Lopes R., Vignal J. P., Reyns N., Charley-Monaca C., et al. . (2018). Confusional arousals during non-rapid eye movement sleep: Evidence from intracerebral recordings. Sleep 41, zsy139. 10.1093/sleep/zsy139
    1. Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., Raichle M. E., et al. . (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 102, 9673–9678. 10.1073/pnas.0504136102
    1. Fransson P., Marrelec G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage 42, 1178–1184. 10.1016/j.neuroimage.05.059
    1. Friedman N. P., Robbins T. W. (2022). The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 47, 72–89. 10.1038/s41386-021-01132-0
    1. Giacino J. T., Hirsch J., Schiff N., Laureys S. (2006). Functional neuroimaging applications for assessment and rehabilitation planning in patients with disorders of consciousness. Arch. Phys. Med. Rehabil. 87(12 Suppl 2), S67–S76. 10.1016/j.apmr.07.272
    1. Giacino J. T., Katz D. I., Schiff N. D., Whyte J., Ashman E. J., Ashwal S., et al. . (2018). Practice guideline update recommendations summary: Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology 91, 450–460. 10.1212/WNL.0000000000005926
    1. Giacino J. T., Sherer M., Christoforou A., Maurer-Karattup P., Hammond F. M., Long D., et al. . (2020). Behavioral recovery and early decision making in patients with prolonged disturbance in consciousness after traumatic brain injury. J. Neurotrauma 37, 357–365. 10.1089/neu.2019.6429
    1. Golkowski D., Larroque S. K., Vanhaudenhuyse A., Plenevaux A., Boly M., Di Perri C., et al. . (2019). Changes in whole brain dynamics and connectivity patterns during sevoflurane- and propofol-induced unconsciousness identified by functional magnetic resonance imaging. Anesthesiology 130, 898–911. 10.1097/ALN.0000000000002704
    1. Goulden N., Khusnulina A., Davis N. J., Bracewell R. M., Bokde A. L., McNulty J. P., et al. . (2014). The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. Neuroimage 99, 180–190. 10.1016/j.neuroimage.05.052
    1. Gretenkord S., Rees A., Whittington M. A., Gartside S. E. (2017). LeBeau FEN. Dorsal vs. ventral differences in fast Up-state-associated oscillations in the medial prefrontal cortex of the urethane-anesthetized rat. J. Neurophysiol. 117, 1126–1142. 10.1152/jn.00762.2016
    1. Gui P., Jiang Y., Zang D., Qi Z., Tan J., Tanigawa H., et al. . (2020). Assessing the depth of language processing in patients with disorders of consciousness. Nat. Neurosci. 23, 761–770. 10.1038/s41593-020-0639-1
    1. Guldenmund P., Vanhaudenhuyse A., Sanders R. D., Sleigh J., Bruno M. A., Demertzi A., et al. . (2017). Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. Br. J. Anaesth. 119, 674–684. 10.1093/bja/aex257
    1. Guo H., Liu R., Sun Z., Liu B., Xiang Y., Mao J., et al. . (2019). Evaluation of prognosis in patients with severe traumatic brain injury using resting-state functional magnetic resonance imaging. World Neurosurg. 121, e630–e39. 10.1016/j.wneu.09.178
    1. Gusnard D. A., Akbudak E., Shulman G. L., Raichle M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 98, 4259–4264. 10.1073/pnas.071043098
    1. Guterstam A., Björnsdotter M., Gentile G., Ehrsson H. H. (2015). Posterior cingulate cortex integrates the senses of self-location and body ownership. Curr. Biol. 25, 1416–1425. 10.1016/j.cub.03.059
    1. Guzman-Velez E., Diez I., Schoemaker D., Pardilla-Delgado E., Vila-Castelar C., Fox-Fuller J. T., et al. . (2022). Amyloid-beta and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A. 119, e2113641119. 10.1073/pnas.2113641119
    1. Hampton O. L., Buckley R. F., Manning L. K., Scott M. R., Properzi M. J., Pena-Gomez C., et al. . (2020). Resting-state functional connectivity and amyloid burden influence longitudinal cortical thinning in the default mode network in preclinical Alzheimer's disease. Neuroimage Clin. 28, 102407. 10.1016/j.nicl.2020.102407
    1. Han H. J., Kim E. J., Lee H. J., Pyun S. B., Joa K. L., Jung H. Y., et al. . (2018). Validation of Korean version of coma recovery scale-revised (K-CRSR). Ann. Rehabil. Med. 42, 536–541. 10.5535/arm.42.4.536
    1. Hannawi Y., Lindquist M. A., Caffo B. S., Sair H. I., Stevens R. D. (2015). Resting brain activity in disorders of consciousness: A systematic review and meta-analysis. Neurology. 84, 1272–1280. 10.1212/WNL.0000000000001404
    1. Haugg A., Cusack R., Gonzalez-Lara L. E., Sorger B., Owen A. M., Naci L., et al. . (2018). Do patients thought to lack consciousness retain the capacity for internal as well as external awareness? Front. Neurol. 9, 492. 10.3389/fneur.2018.00492
    1. He J. H., Yang Y., Zhang Y., Qiu S. Y., Zhou Z., Dang Y. Y., et al. . (2014). Hyperactive external awareness against hypoactive internal awareness in disorders of consciousness using resting-state functional MRI: Highlighting the involvement of visuo-motor modulation. NMR Biomed. 27, 880–886. 10.1002/nbm.3130
    1. Hebscher M., Barkan-Abramski M., Goldsmith M., Aharon-Peretz J., Gilboa A. (2016). Memory, decision-making, and the ventromedial prefrontal cortex (vmPFC): The roles of subcallosal and posterior orbitofrontal cortices in monitoring and control processes. Cereb. Cortex 26, 4590–4601. 10.1093/cercor/bhv220
    1. Heine L., Soddu A., Gómez F., Vanhaudenhuyse A., Tshibanda L., Thonnard M., et al. . (2012). Resting state networks and consciousness: Alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front. Psychol. 3, 295. 10.3389/fpsyg.2012.00295
    1. Hiser J., Koenigs M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol. Psychiatry 83, 638–647. 10.1016/j.biopsych.10.030
    1. Hocker S., Wijdicks E. F. (2015). Recovery from locked-in syndrome. J. Am. Med. Assoc. Neurol. 72, 832–833. 10.1001/jamaneurol.2015.0479
    1. Houldin E., Fang Z., Ray L. B., Stojanoski B., Owen A. M., Fogel S. M., et al. . (2021). Reversed and increased functional connectivity in non-REM sleep suggests an altered rather than reduced state of consciousness relative to wake. Sci. Rep. 11, 11943. 10.1038/s41598-021-91211-5
    1. Huang Z., Obara N., Davis H. H. t., Pokorny J., Northoff G. (2016). The temporal structure of resting-state brain activity in the medial prefrontal cortex predicts self-consciousness. Neuropsychologia 82, 161–170. 10.1016/j.neuropsychologia.01.025
    1. Humphreys G. W., Sui J. (2016). Attentional control and the self: The Self-Attention Network (SAN). Cogn. Neurosci. 7, 1044427. 10.1080/17588928.2015.1044427
    1. Hwang J., Bronder J., Martinez N. C., Geocadin R., Kim B. S., Bush E., et al. . (2022). Continuous electroencephalography markers of prognostication in comatose patients on extracorporeal membrane oxygenation. Neurocrit. Care 37, 236–245. 10.1007/s12028-022-01482-7
    1. Iazeva E. G., Legostaeva L. A., Zimin A. A., Sergeev D. V., Domashenko M. A., Samorukov V. Y., et al. . (2018). Russian validation study of the Coma Recovery Scale-Revised (CRS-R). Brain Injury 2018, 1–8. 10.1080/02699052.2018.1539248
    1. Ihalainen R., Gosseries O., de Steen F. V., Raimondo F., Panda R., Bonhomme V., et al. . (2021). How hot is the hot zone? Computational modelling clarifies the role of parietal and frontoparietal connectivity during anaesthetic-induced loss of consciousness. NeuroImage 231, 117841. 10.1016/j.neuroimage.2021.117841
    1. Jann K., Gee D. G., Kilroy E., Schwab S., Smith R. X., Cannon T. D., et al. . (2015). Functional connectivity in BOLD and CBF data: Similarity and reliability of resting brain networks. Neuroimage 106, 111–122. 10.1016/j.neuroimage.11.028
    1. Jasinska A. J., Chen B. T., Bonci A., Stein E. A. (2015). Dorsal medial prefrontal cortex (MPFC) circuitry in rodent models of cocaine use: Implications for drug addiction therapies. Addict. Biol. 20, 215–226. 10.1111/adb.12132
    1. Jiang H., White M. P., Greicius M. D., Waelde L. C., Spiegel D. (2017). Brain activity and functional connectivity associated with hypnosis. Cereb. Cortex 27, 4083–4093. 10.1093/cercor/bhw220
    1. Kang J. H., Choi J. H., Hwang E., Kim S. P. (2016). Changes in effective connectivity of sensorimotor rhythms in thalamocortical circuits during the induction and recovery of anesthesia in mice. J. Neurol. Sci. 369, 165–175. 10.1016/j.jns.08.031
    1. Keller C. J., Bickel S., Entz L., Ulbert I., Milham M. P., Kelly C., et al. . (2011). Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proc. Natl. Acad. Sci. U. S. A. 108, 10308–10313. 10.1073/pnas.1019750108
    1. Kempny A. M., James L., Yelden K., Duport S., Farmer S., Playford E. D., et al. . (2016). Functional near infrared spectroscopy as a probe of brain function in people with prolonged disorders of consciousness. Neuroimage Clin. 12, 312–319. 10.1016/j.nicl.07.013
    1. Kirsch M., Guldenmund P., Ali Bahri M., Demertzi A., Baquero K., Heine L., et al. . (2017). Sedation of patients with disorders of consciousness during neuroimaging: Effects on resting state functional brain connectivity. Anesth. Analg. 124, 588–598. 10.1213/ANE.0000000000001721
    1. Kondziella D., Bender A., Diserens K., van Erp W., Estraneo A., Formisano R., et al. . (2020). European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur. J. Neurol. 27, 741–756. 10.1111/ene.14151
    1. Konishi M., McLaren D. G., Engen H., Smallwood J. (2015). Shaped by the past: The default mode network supports cognition that is independent of immediate perceptual input. PLoS ONE 10, e0132209. 10.1371/journal.pone.0132209
    1. Krach S., Kamp-Becker I., Einhäuser W., Sommer J., Frässle S., Jansen A., et al. . (2015). Evidence from pupillometry and fMRI indicates reduced neural response during vicarious social pain but not physical pain in autism. Hum. Brain Map. 36, 4730–4744. 10.1002/hbm.22949
    1. Laureys S., Faymonville M. E., Degueldre C., Fiore G. D., Damas P., Lambermont B., et al. . (2000). Auditory processing in the vegetative state. Brain 123, 1589–601. 10.1093/brain/123.8.1589
    1. Laureys S., Schiff N. D. (2012). Coma and consciousness: Paradigms (re)framed by neuroimaging. Neuroimage 61, 478–491. 10.1016/j.neuroimage.12.041
    1. Lebedev A. V., Lövdén M., Rosenthal G., Feilding A., Nutt D. J., Carhart-Harris R. L., et al. . (2015). Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin. Hum. Brain Map. 36, 3137–3153. 10.1002/hbm.22833
    1. Lee K., Khoo H. M., Lina J. M., Dubeau F., Gotman J., Grova C. (2018). Disruption, emergence and lateralization of brain network hubs in mesial temporal lobe epilepsy. NeuroImage Clin. 20, 71–84. 10.1016/j.nicl.06.029
    1. Leech R., Braga R., Sharp D. J. (2012). Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 32, 215–222. 10.1523/JNEUROSCI.3689-11.2012
    1. Leech R., Sharp D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain 137, 12–32. 10.1093/brain/awt162
    1. Liang P., Zhang H., Xu Y., Jia W., Zang Y., Li K., et al. . (2015). Disruption of cortical integration during midazolam-induced light sedation. Hum. Brain Map. 36, 4247–4261. 10.1002/hbm.22914
    1. Lu M., Li Z. N., Wang Y., Pan G. (2019). Deep attention network for egocentric action recognition. IEEE Trans. Image Process. 28, 3703–3713. 10.1109/TIP.2019.2901707
    1. Luo C., Yang T., Tu S., Deng J., Liu D., Li Q., et al. . (2014). Altered intrinsic functional connectivity of the salience network in childhood absence epilepsy. J. Neurol. Sci. 339, 189–195. 10.1016/j.jns.02.016
    1. Luppi A. I., Carhart-Harris R. L., Roseman L., Pappas I., Menon D. K., Stamatakis E. A., et al. . (2021a). LSD alters dynamic integration and segregation in the human brain. Neuroimage 227, 117653. 10.1016/j.neuroimage.2020.117653
    1. Luppi A. I., Golkowski D., Ranft A., Ilg R., Jordan D., Menon D. K., et al. . (2021b). Brain network integration dynamics are associated with loss and recovery of consciousness induced by sevoflurane. Hum. Brain Map. 42, 2802–2822. 10.1002/hbm.25405
    1. Lutkenhoff E. S., Nigri A., Rossi Sebastiano D., Sattin D., Visani E., Rosazza C., et al. . (2022). Power spectra and subcortical pathology in chronic disorders of consciousness. Psychol. Med. 52, 1491–1500. 10.1017/S003329172000330X
    1. Lyu D., Pappas I., Menon D. K., Stamatakis E. A. A. (2021). Precuneal causal loop mediates external and internal information integration in the human brain. J. Neurosci. 41, 9944–9956. 10.1523/JNEUROSCI.0647-21.2021
    1. Malagurski B., Liem F., Oschwald J., Merillat S., Jancke L. (2020). Longitudinal functional brain network reconfiguration in healthy aging. Hum. Brain Mapp. 41, 4829–4845. 10.1002/hbm.25161
    1. Malekmohammadi M., Price C. M., Hudson A. E., DiCesare J. A. T., Pouratian N. (2019). Propofol-induced loss of consciousness is associated with a decrease in thalamocortical connectivity in humans. Brain 142, 2288–2302. 10.1093/brain/awz169
    1. Mallas E. J., De Simoni S., Scott G., Jolly A. E., Hampshire A., Li L. M., et al. . (2021). Abnormal dorsal attention network activation in memory impairment after traumatic brain injury. Brain 144, 114–127. 10.1093/brain/awaa380
    1. Martín-Signes M., Cano-Melle C., Chica A. B. (2021). Fronto-parietal networks underlie the interaction between executive control and conscious perception: Evidence from TMS and DWI. Cortex 134, 27. 10.1016/j.cortex.09.027
    1. Martin-Signes M., Paz-Alonso P. M., Chica A. B. (2019). Connectivity of frontoparietal regions reveals executive attention and consciousness interactions. Cereb. Cortex 29, 4539–4550. 10.1093/cercor/bhy332
    1. McGeown W. J., Mazzoni G., Vannucci M., Venneri A. (2015). Structural and functional correlates of hypnotic depth and suggestibility. Psychiatry Res. 231, 151–159. 10.1016/j.pscychresns.11.015
    1. Medina J. P., Nigri A., Stanziano M., D'Incerti L., Sattin D., Ferraro S., et al. . (2022). Resting-state fMRI in chronic patients with disorders of consciousness: The role of lower-order networks for clinical assessment. Brain Sci. 12, 30355. 10.3390/brainsci12030355
    1. Menon D. K., Owen A. M., Williams E. J., Minhas P. S., Allen C. M., Boniface S. J., et al. . (1998). Cortical processing in persistent vegetative state. Wolfson Brain Imaging Centre Team. Lancet 352, 200. 10.1016/S0140-6736(05)77805-3
    1. Menon V., D'Esposito M. (2022). The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology 47, 90–103. 10.1038/s41386-021-01152-w
    1. Miao D., Zhou X., Wu X., Chen C., Tian L. (2022). Distinct profiles of functional connectivity density aberrance in Alzheimer's disease and mild cognitive impairment. Front. Psychiatry 13, 1079149. 10.3389/fpsyt.2022.1079149
    1. Mikell C. B., Banks G. P., Frey H. P., Youngerman B. E., Nelp T. B., Karas P. J., et al. . (2015). Frontal networks associated with command following after hemorrhagic stroke. Stroke 46, 49–57. 10.1161/STROKEAHA.114.007645
    1. Mitra A., Snyder A. Z., Tagliazucchi E., Laufs H., Raichle M. E. (2015). Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep. Elife 4, 10781. 10.7554/eLife.10781
    1. Miyata J. (2019). Toward integrated understanding of salience in psychosis. Neurobiol. Dis. 131, 104414. 10.1016/j.nbd.03.002
    1. Naro A., Leo A., Manuli A., Cannavò A., Bramanti A., Bramanti P., et al. . (2017). How far can we go in chronic disorders of consciousness differential diagnosis? The use of neuromodulation in detecting internal and external awareness. Neuroscience 349, 165–173. 10.1016/j.neuroscience.02.053
    1. Nejati V., Majdi R., Salehinejad M. A., Nitsche M. A. (2021). The role of dorsolateral and ventromedial prefrontal cortex in the processing of emotional dimensions. Sci. Rep. 11, 1971. 10.1038/s41598-021-81454-7
    1. Norton L., Hutchison R. M., Young G. B., Lee D. H., Sharpe M. D., Mirsattari S. M., et al. . (2012). Disruptions of functional connectivity in the default mode network of comatose patients. Neurology 78, 175–181. 10.1212/WNL.0b013e31823fcd61
    1. Norton L., Kazazian K., Gofton T., Debicki D. B., Fernandez-Espejo D., Peelle J. E., et al. . (2023). Functional neuroimaging as an assessment tool in critically ill patients. Ann. Neurol. 93, 131–141. 10.1002/ana.26530
    1. O'Donnell J. C., Browne K. D., Kilbaugh T. J., Chen H. I., Whyte J., Cullen D. K., et al. . (2019). Challenges and demand for modeling disorders of consciousness following traumatic brain injury. Neurosci. Biobehav. Rev. 98, 336–346. 10.1016/j.neubiorev.12.015
    1. O'Neal C. M., Schroeder L. N., Wells A. A., Chen S., Stephens T. M., Glenn C. A., et al. . (2021). Patient outcomes in disorders of consciousness following transcranial magnetic stimulation: A systematic review and meta-analysis of individual patient data. Front. Neurol. 12, 694970. 10.3389/fneur.2021.694970
    1. Palanca B. J., Mitra A., Larson-Prior L., Snyder A. Z., Avidan M. S., Raichle M. E., et al. . (2015). Resting-state functional magnetic resonance imaging correlates of sevoflurane-induced unconsciousness. Anesthesiology 123, 346–356. 10.1097/ALN.0000000000000731
    1. Palhano-Fontes F., Andrade K. C., Tofoli L. F., Santos A. C., Crippa J. A. S., Hallak J. E. C., et al. . (2015). The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network. PLoS ONE 10, e0118143. 10.1371/journal.pone.0118143
    1. Panda R., Thibaut A., Lopez-Gonzalez A., Escrichs A., Bahri M. A., Hillebrand A., et al. . (2022). Disruption in structural-functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness. Elife 11, 77462. 10.7554/eLife.77462.sa2
    1. Pape T. L., Rosenow J. M., Steiner M., Parrish T., Guernon A., Harton B., et al. . (2015). Placebo-controlled trial of familiar auditory sensory training for acute severe traumatic brain injury: A preliminary report. Neurorehabil. Neural Repair. 29, 537–547. 10.1177/1545968314554626
    1. Pape T. L. B., Mallinson T., Guernon A. (2014). Psychometric properties of the disorders of consciousness scale. Archiv. Phys. Med. Rehabil. 95, 1672–1684. 10.1016/j.apmr.04.015
    1. Park S., Davis A. E. (2016). Effectiveness of direct and non-direct auditory stimulation on coma arousal after traumatic brain injury. Int. J. Nurs. Pract. 22, 391–396. 10.1111/ijn.12448
    1. Patil A. U., Madathil D., Huang C. M. (2021). Healthy aging alters the functional connectivity of creative cognition in the default mode network and cerebellar network. Front. Aging Neurosci. 13, 607988. 10.3389/fnagi.2021.607988
    1. Peran P., Malagurski B., Nemmi F., Sarton B., Vinour H., Ferre F., et al. . (2020). Functional and structural integrity of frontoparietal connectivity in traumatic and anoxic coma. Crit. Care Med. 48, e639–e47. 10.1097/CCM.0000000000004406
    1. Peters S. K., Dunlop K., Downar J. (2016). Cortico-striatal-thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment. Front. Syst. Neurosci. 10, 104. 10.3389/fnsys.2016.00104
    1. Phillips A. A., Chan F. H., Zheng M. M. Z., Krassioukov A. V., Ainslie P. N. (2016). Neurovascular coupling in humans: Physiology, methodological advances and clinical implications. J. Cereb. Blood Flow Metabol. 36, 647–664. 10.1177/0271678X15617954
    1. Preller K. H., Razi A., Zeidman P., Stampfli P., Friston K. J., Vollenweider F. X., et al. . (2019). Effective connectivity changes in LSD-induced altered states of consciousness in humans. Proc. Natl. Acad. Sci. U. S. A. 116, 2743–2748. 10.1073/pnas.1815129116
    1. Qin P., Wu X., Duncan N. W., Bao W., Tang W., Zhang Z., et al. . (2015b). receptor deficits predict recovery in patients with disorders of consciousness: A preliminary multimodal [(11) C]Flumazenil PET and fMRI study. Hum. Brain Map. 36, 3867–3877. 10.1002/hbm.22883
    1. Qin P., Wu X., Huang Z., Duncan N. W., Tang W., Wolff A., et al. . (2015a). How are different neural networks related to consciousness? Ann. Neurol. 78, 594–605. 10.1002/ana.24479
    1. Qin P., Wu X., Wu C., Wu H., Zhang J., Huang Z., et al. . (2021). Higher-order sensorimotor circuit of the brain's global network supports human consciousness. Neuroimage 231, 117850. 10.1016/j.neuroimage.2021.117850
    1. Qiu M., Scheinost D., Ramani R., Constable R. T. (2017). Multi-modal analysis of functional connectivity and cerebral blood flow reveals shared and unique effects of propofol in large-scale brain networks. Neuroimage 148, 130–140. 10.1016/j.neuroimage.12.080
    1. Raichle M. E. (2011). The restless brain. Brain Connect. 1, 3–12. 10.1089/brain.2011.0019
    1. Raichle M. E. (2015). The brain's default mode network. Annu. Rev. Neurosci. 38, 433–447. 10.1146/annurev-neuro-071013-014030
    1. Ren J., Chi Q., Hubbard C. S., Cui W., Wang D., Li L., et al. . (2022). Personalized functional imaging identifies brain stimulation target for a patient with trauma-induced functional disruption. Brain Stimul. 15, 53–56. 10.1016/j.brs.11.005
    1. Rodriguez-Rojas R., Machado C., Alvarez L., Carballo M., Estevez M., Perez-Nellar J., et al. . (2013). Zolpidem induces paradoxical metabolic and vascular changes in a patient with PVS. Brain Inj. 27, 1320–1329. 10.3109/02699052.2013.794961
    1. Rue-Queralt J., Stevner A., Tagliazucchi E., Laufs H., Kringelbach M. L., Deco G., et al. . (2021). Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep. Commun. Biol. 4, 854. 10.1038/s42003-021-02369-7
    1. Samann P. G., Wehrle R., Hoehn D., Spoormaker V. I., Peters H., Tully C., et al. . (2011). Development of the brain's default mode network from wakefulness to slow wave sleep. Cereb. Cortex 21, 2082–2093. 10.1093/cercor/bhq295
    1. Schnakers C. (2020). Update on diagnosis in disorders of consciousness. Exp. Rev. Neurotherapeut. 20, 1796641. 10.1080/14737175.2020.1796641
    1. Schnakers C., Vanhaudenhuyse A., Giacino J., Ventura M., Boly M., Majerus S., et al. . (2009). Diagnostic accuracy of the vegetative and minimally conscious state: Clinical consensus versus standardized neurobehavioral assessment. BMC Neurol. 9, 35. 10.1186/1471-2377-9-35
    1. Schwiedrzik C. M., Sudmann S. S., Thesen T., Wang X., Groppe D. M., Mégevand P., et al. . (2018). Medial prefrontal cortex supports perceptual memory. Curr. Biol. 28, R1094–R95. 10.1016/j.cub.07.066
    1. Seel R. T., Sherer M., Whyte J., Katz D. I., Giacino J. T., Rosenbaum A. M., et al. . (2010). Assessment scales for disorders of consciousness: Evidence-based recommendations for clinical practice and research. Archiv. Phys. Med. Rehabil. 91, 1795–1813. 10.1016/j.apmr.07.218
    1. Shiel A., Horn S. A., Wilson B. A., Watson M. J., Campbell M. J., McLellan D. L., et al. . (2000). The Wessex Head Injury Matrix (WHIM) main scale: A preliminary report on a scale to assess and monitor patient recovery after severe head injury. Clin. Rehabil. 14, 408–416. 10.1191/0269215500cr326oa
    1. Silva S., de Pasquale F., Vuillaume C., Riu B., Loubinoux I., Geeraerts T., et al. . (2015). Disruption of posteromedial large-scale neural communication predicts recovery from coma. Neurology 85, 2036–2044. 10.1212/WNL.0000000000002196
    1. Snider S. B., Edlow B. L. (2020). MRI in disorders of consciousness. Curr. Opin. Neurol. 33, 676–683. 10.1097/WCO.0000000000000873
    1. Stawarczyk D., Jeunehomme O., D'Argembeau A. (2018). Differential contributions of default and dorsal attention networks to remembering thoughts and external stimuli from real-life events. Cereb. Cortex 28, 4023–4035. 10.1093/cercor/bhx270
    1. Supekar K., Uddin L. Q., Prater K., Amin H., Greicius M. D., Menon V., et al. . (2010). Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52, 290–301. 10.1016/j.neuroimage.04.009
    1. Tagliazucchi E., Roseman L., Kaelen M., Orban C., Muthukumaraswamy S. D., Murphy K., et al. . (2016). Increased global functional connectivity correlates with LSD-induced ego dissolution. Curr. Biol. 26, 1043–1050. 10.1016/j.cub.02.010
    1. Tamashiro M., Rivas M. E., Ron M., Salierno F., Dalera M., Olmos L. A., et al. . (2014). Spanish validation of the Coma Recovery Scale-Revised (CRS-R). Brain Inj. 28, 1744–1747. 10.3109/02699052.2014.947621
    1. Tarun A., Wainstein-Andriano D., Sterpenich V., Bayer L., Perogamvros L., Solms M., et al. . (2021). sleep stages specifically alter dynamical integration of large-scale brain networks. iScience 24, 101923. 10.1016/j.isci.2020.101923
    1. Thibaut A., Panda R., Annen J., Sanz L. R. D., Naccache L., Martial C., et al. . (2021). Preservation of brain activity in unresponsive patients identifies MCS star. Ann. Neurol. 90, ana.26095. 10.1002/ana.26095
    1. Thibaut A., Schiff N., Giacino J., Laureys S., Gosseries O. (2019). Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol. 18, 600–614. 10.1016/S1474-4422(19)30031-6
    1. Thome J., Steinbach R., Grosskreutz J., Durstewitz D., Koppe G. (2022). Classification of amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics. Hum. Brain Mapp. 43, 681–699. 10.1002/hbm.25679
    1. Threlkeld Z. D., Bodien Y. G., Rosenthal E. S., Giacino J. T., Nieto-Castanon A., Wu O., et al. . (2018). Functional networks reemerge during recovery of consciousness after acute severe traumatic brain injury. Cortex 106, 299–308. 10.1016/j.cortex.05.004
    1. Ueno D., Matsuoka T., Kato Y., Ayani N., Maeda S., Takeda M., et al. . (2020). Individual differences in interoceptive accuracy are correlated with salience network connectivity in older adults. Front. Aging Neurosci. 12, 592002. 10.3389/fnagi.2020.592002
    1. van Erp W. S., Lavrijsen J. C., Vos P. E., Bor H., Laureys S., Koopmans R. T., et al. . (2015). The vegetative state: prevalence, misdiagnosis, and treatment limitations. J. Am. Med. Dir. Assoc. 16, 85e9–85 e14. 10.1016/j.jamda.10.014
    1. Vanhaudenhuyse A., Charland-Verville V., Thibaut A., Chatelle C., Tshibanda J. L., Maudoux A., et al. . (2018). Conscious while being considered in an unresponsive wakefulness syndrome for 20 years. Front. Neurol. 9, 671. 10.3389/fneur.2018.00671
    1. Vanhaudenhuyse A., Noirhomme Q., Tshibanda L. J. F., Bruno M. A., Boveroux P., Schnakers C., et al. . (2010). Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133, 161–171. 10.1093/brain/awp313
    1. Veréb D., Szabó N., Tuka B., Tajti J., Király A., Faragó P., et al. . (2020). Temporal instability of salience network activity in migraine with aura. Pain 161, 856–864. 10.1097/j.pain.0000000000001770
    1. von Düring F., Ristow I., Li M., Denzel D., Colic L., Demenescu L. R., et al. . (2019). Glutamate in salience network predicts BOLD response in default mode network during salience processing. Front. Behav. Neurosci. 13, 232. 10.3389/fnbeh.2019.00232
    1. Wagner F., Hanggi M., Weck A., Pastore-Wapp M., Wiest R., Kiefer C., et al. . (2020). Outcome prediction with resting-state functional connectivity after cardiac arrest. Sci. Rep. 10, 11695. 10.1038/s41598-020-68683-y
    1. Wang F., Di H., Hu X., Jing S., Thibaut A., Di Perri C., et al. . (2015). Cerebral response to subject's own name showed high prognostic value in traumatic vegetative state. BMC Med. 13, 83. 10.1186/s12916-015-0330-7
    1. Wang J., Xu Y., Deshpande G., Li K., Sun P., Liang P., et al. . (2021). The effect of light sedation with midazolam on functional connectivity of the dorsal attention network. Brain Sci. 11, 81107. 10.3390/brainsci11081107
    1. Wang R. W. Y., Chang W. L., Chuang S. W., Liu I. N. (2019). Posterior cingulate cortex can be a regulatory modulator of the default mode network in task-negative state. Sci. Rep. 9, 7565. 10.1038/s41598-019-43885-1
    1. Wang S., Li Y., Qiu S., Zhang C., Wang G., Xian J., et al. . (2020). Reorganization of rich-clubs in functional brain networks during propofol-induced unconsciousness and natural sleep. Neuroimage Clin. 25, 102188. 10.1016/j.nicl.2020.102188
    1. Wang Y., Li Y., Ma X., Chen S., Peng Y., Hu G., et al. . (2022). Regional homogeneity alterations in patients with impaired consciousness. An observational resting-state fMRI study. Neuroradiology 64, 1391–1399. 10.1007/s00234-022-02911-2
    1. Wang Y., Lu W., Xie Y., Zhou J., Yan T., Han W., et al. . (2020). Functional alterations in resting-state visual networks in high-tension glaucoma: An independent component analysis. Front. Hum. Neurosci. 14, 330. 10.3389/fnhum.2020.00330
    1. Wannez S., Heine L., Thonnard M., Gosseries O., Laureys S. (2017). Coma science group C. The repetition of behavioral assessments in diagnosis of disorders of consciousness. Ann. Neurol. 81, 883–889. 10.1002/ana.24962
    1. Ward P. G. D., Orchard E. R., Oldham S., Arnatkevičiute A., Sforazzini F., Fornito A., et al. . (2020). Individual differences in haemoglobin concentration influence bold fMRI functional connectivity and its correlation with cognition. NeuroImage 221, 117196. 10.1016/j.neuroimage.2020.117196
    1. Weaver J. A., Liu J., Guernon A., Pape T. B., Mallinson T. (2021). Psychometric properties of the coma near-coma scale for adults in disordered states of consciousness: A rasch analysis. Arch. Phys. Med. Rehabil. 102, 591–597. 10.1016/j.apmr.10.119
    1. Weng L., Xie Q., Zhao L., Zhang R., Ma Q., Wang J., et al. . (2017). Abnormal structural connectivity between the basal ganglia, thalamus, and frontal cortex in patients with disorders of consciousness. Cortex 90, 71–87. 10.1016/j.cortex.02.011
    1. Wu X., Zou Q., Hu J., Tang W., Mao Y., Gao L., et al. . (2015). Intrinsic functional connectivity patterns predict consciousness level and recovery outcome in acquired brain injury. J. Neurosci. 35, 12932–12946. 10.1523/JNEUROSCI.0415-15.2015
    1. Xin F., Zhou F., Zhou X., Ma X., Geng Y., Zhao W., et al. . (2021). Oxytocin modulates the intrinsic dynamics between attention-related large-scale networks. Cereb. Cortex 31, 1848–1860. 10.1093/cercor/bhy295
    1. Xu P., Chen A., Li Y., Xing X., Lu H. (2019). Medial prefrontal cortex in neurological diseases. Physiol. Genom. 51, 432–442. 10.1152/physiolgenomics.00006.2019
    1. Yeshurun Y., Nguyen M., Hasson U. (2021). The default mode network: Where the idiosyncratic self meets the shared social world. Nat. Rev. Neurosci. 22, 181–192. 10.1038/s41583-020-00420-w
    1. Yu C., Zhou Y., Liu Y., Jiang T., Dong H., Zhang Y., et al. . (2011). Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. NeuroImage 54, 2571–2581. 10.1016/j.neuroimage.11.018
    1. Yu Y. T., Yang Y., Wang L. B., Fang J. L., Chen Y. Y., He J. H., et al. . (2017). Transcutaneous auricular vagus nerve stimulation in disorders of consciousness monitored by fMRI: The first case report. Brain Stimul. 10, 328–330. 10.1016/j.brs.12.004
    1. Zhang J., Kucyi A., Raya J., Nielsen A. N., Nomi J. S., Damoiseaux J. S., et al. . (2021). What have we really learned from functional connectivity in clinical populations? NeuroImage 242, 118466. 10.1016/j.neuroimage.2021.118466
    1. Zhang L., Luo L., Zhou Z., Xu K., Zhang L., Liu X., et al. . (2018). Functional connectivity of anterior insula predicts recovery of patients with disorders of consciousness. Front. Neurol. 9, 1024. 10.3389/fneur.2018.01024
    1. Zhang L., Zhang R., Guo Y., Zhao D., Li S., Chen M., et al. . (2022). Assessing residual motor function in patients with disorders of consciousness by brain network properties of task-state EEG. Cogn. Neurodyn. 16, 609–620. 10.1007/s11571-021-09741-7
    1. Zhang Y., Wang J., Schnakers C., He M., Luo H., Cheng L., et al. . (2019). Validation of the Chinese version of the Coma Recovery Scale-Revised (CRS-R). Brain Inj. 33, 529–533. 10.1080/02699052.2019.1566832
    1. Zhao C., Huang W. J., Feng F., Zhou B., Yao H. X., Guo Y. E., et al. . (2022). Abnormal characterization of dynamic functional connectivity in Alzheimer's disease. Neural Regen. Res. 17, 2014–2021. 10.4103/1673-5374.332161
    1. Zheng R. Z., Qi Z. X., Wang Z., Xu Z. Y., Wu X. H., Mao Y., et al. . (2022). Clinical decision on disorders of consciousness after acquired brain injury: Stepping forward. Neurosci. Bull. 22, 7. 10.1007/s12264-022-00909-7
    1. Zhou H. X., Chen X., Shen Y. Q., Li L., Chen N. X., Zhu Z. C., et al. . (2020). Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression. Neuroimage 206, 116287. 10.1016/j.neuroimage.2019.116287
    1. Zhou Y., Friston K. J., Zeidman P., Chen J., Li S., Razi A., et al. . (2018). The hierarchical organization of the default, dorsal attention and salience networks in adolescents and young adults. Cereb. Cortex 28, 726–737. 10.1093/cercor/bhx307
    1. Zhu J., Zeng Q., Shi Q., Li J., Dong S., Lai C., et al. . (2021). Altered brain functional network in subtypes of Parkinson's disease: A dynamic perspective. Front. Aging Neurosci. 13, 710735. 10.3389/fnagi.2021.710735
    1. Zou Q., Wu X., Hu J., Tang W., Mao Y., Zhu J., et al. . (2017). Longitudinal recovery of local neuronal activity and consciousness level in acquired brain injury. Hum. Brain Mapp. 38, 3579–3591. 10.1002/hbm.23611

Source: PubMed

3
Subskrybuj