Fetal Middle Cerebral Artery Pulsatility Index in No-Risk Pregnancies: Effects of Auditory Stimulation and Pregnancy Order

Ljiljana Jeličić, Svetlana Janković, Mirjana Sovilj, Tatjana Adamović, Ivana Bogavac, Aleksandar Gavrilović, Miško Subotić, Ljiljana Jeličić, Svetlana Janković, Mirjana Sovilj, Tatjana Adamović, Ivana Bogavac, Aleksandar Gavrilović, Miško Subotić

Abstract

Pulsatility index (PI) values in a fetal middle cerebral artery (MCA) were compared in no-risk pregnancies to examine the differences related to auditory stimulation test and pregnancy order. The study included 196 women with no-risk pregnancies selected from the database of more than 1000 pregnant women divided into two groups. Group 1 consisted of 98 nulliparous women (C1 = 98) and Group 2 consisted of 98 parous women (C2 = 98). All pregnant women were of comparable age and fetal gestational age (GA) when MCA-PI values were recorded. Measurements of PI values in fetal MCA were obtained before and immediately after the application of fetal auditory stimulation test. The MCA-PI measuring was conducted in the period between the 36th and the 41st week of GA. The results showed that PI baseline values and PI values after defined auditory stimulation were significantly different when measured in nulliparous women compared to parous women (p = 0.001; p = 0.003, respectively), while no group differences were observed in relative PI value changes due to auditory stimulation. These findings suggest that hemodynamic changes in fetal MCA caused by defined auditory stimulation measured by PI value changes may be valuable in the assessment of fetal auditory perception functionality and its development.

Keywords: Pulsatility index; fetal auditory perception; middle cerebral artery; parous and nulliparous pregnancy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The values of Pulsatility index baseline in C1(-) and C2 (x) compared to referent values in Tarzamni [27]. The blue line represents the 10th percentile, the red line represents 50th and the black line represents the 90th percentile.
Figure 2
Figure 2
Dependence of RePI from PIR. Black line represents linear approximation.
Figure 3
Figure 3
Dependence of mean AbsPI value up to gestational age (GA). AbsPI = absolute PI changes. Mean (AbsPI) represents the mean of all pregnant women AbsPI values in a given gestational week.

References

    1. Kisilevsky B.S. Fetal Auditory Processing: Implications for Language Development? In: Reissland N., Kisilevsky B., editors. Fetal Development. Springer; Cham, Switzerland: 2016.
    1. Vujovic M., Sovilj M., Jeličić L.j., Stokić M., Plećaš D., Plešinac S., Nedeljković N. Effect of antenatal maternal anxiety on the reactivity of fetal cerebral circulation to auditory stimulation, and early child development. Dev. Psychobiol. 2018;60:15–29. doi: 10.1002/dev.21589.
    1. Vujović M., Sovilj M., Plešinac S., Rakonjac M., Jeličić L.j., Adamović T., Stokić M. Effect of antenatal maternal anxiety on the reactivity of fetal cerebral circulation to auditory stimulation, and early child development. Srpski arhiv za celokupno lekarstvo. 2019;147:327–334. doi: 10.2298/SARH181002024V.
    1. Pino O. Fetal Memory: The Effects of Prenatal Auditory Experience on Human Development. BAOJ Med. Nurs. 2016;2:020. doi: 10.24947/baojmn/2/2/120.
    1. Richards D.S., Frentzen B., Gerhardt K.J., McCann M.E., Abrams R.M. Sound levels in the human uterus. Obstet. Gynecol. 1992;80:186–190.
    1. Shahdullah S., Hepper P.G. The developmental origins of fetal responsiveness to an acoustic stimulus. J. Reprod. Infant Psychol. 1993;11:135–142. doi: 10.1080/02646839308403208.
    1. Shahdullah S., Hepper P.G. Frequency discrimination by the foetus. Early Hum. Dev. 1994;36:13–26. doi: 10.1016/0378-3782(94)90029-9.
    1. Granier-Deferre C., Abrams R.M. Effects of sound on fetal cerebral glucose utilization. Semin. Perinatol. 1989;13:371–379.
    1. Abrams R.M. Perception and cognition of music. In: Deliege I., Sloboda J.A., editors. Musical Beginnings. Psychology Press; Philadelphia, PA, USA: 1995. pp. 83–101.
    1. Logan B. Biological measurements of prenatal stimulation. In: Blum T., editor. Prenatal Perception, Learning and Bonding. Leonardo Publishers; Berlin, Germany: 1993.
    1. Logan B. Learning before Birth: Every Child Deserves Giftedness. 1stBooks Library; Bloomington, IN, USA: 2003.
    1. Porcaro C., Zappasodi F., Barbati G., Salustri C., Pizzela V., Rossini P.M., Tecchio F. Fetal auditory responses to external sounds and mother’s heart beat: Detection improved by independent component analysis. Brain Res. 2006;1101:51–58. doi: 10.1016/j.brainres.2006.04.134.
    1. Graven S.T., Browne J.V. Auditory development in the Fetus and Infant. Newborn Infant Nurs. Rev. 2008;8:187–193. doi: 10.1053/j.nainr.2008.10.010.
    1. Jardri R., Houfflin-Debarge V., Delion P., Pruvo J.P., Thomas P., Pins D. Assessing fetal response to maternal speech using a noninvasive functional brain imaging technique. Int. J. Dev. Neurosci. 2012;30:159–161. doi: 10.1016/j.ijdevneu.2011.11.002.
    1. Baldoli C., Scola E., Della Rosa P.A., Pontesilli S., Longaretti R., Poloniato A., Scotti R., Blasi V., Cirillo S., Iadanza A., et al. Maturation of preterm newborn brains: A fMRI–DTI study of auditory processing of linguistic stimuli and white matter development. Brain Struct. Funct. 2015;220:3733–3751. doi: 10.1007/s00429-014-0887-5.
    1. Chorna O.D., Hamm E.L., Shrivastava H., Maitre N.L. Feasibility of event-related potential (ERP) biomarker use to study effects of mother’s voice exposure on speech sound differentiation of preterm infants. Dev. Neuropsychol. 2018;43:123–134. doi: 10.1080/87565641.2018.1433671.
    1. Goldberg E. Master’s Thesis. The University of Western Ontario; London, UK: 2020. Using an Internal Auditory Stimulus to Activate the Developing Primary Auditory Cortex: A Fetal fMRI Study.
    1. Sovilj M., Ljubic A., Milenkovic V., Djokovic S. Possibilities of prenatal examination of reactions on acoustical stimulation of fetuses with congenital infections; Proceedings of the 10th Symposium of Perinatal Medicine of Serbian Medical Society; Belgrade, Serbia. 4 December 1992; pp. 17–18.
    1. J Dobrijević L.j., Ljubić A., Sovilj M., Ribarić-Jankes K., Miković Ž., Cerović N. Changes in Doppler blood flow velocity in middle cerebral artery in response to airborne sound in low- and high-risk human fetuses. Int. J. Pediatr. Otorhinolaryngol. 2009;73:1381–1384. doi: 10.1016/j.ijporl.2009.06.022.
    1. Plesinac S., Jankovic S., Plecas D., Antonovic O., Adamovic T., Sovilj M. Change of Pulsatility Index of the fetal middle cerebral artery after auditory stimulation in no risk pregnancies and in pregnancies with gestational hypertension. Clin. Exp. Hypertens. 2013;35:628–631. doi: 10.3109/10641963.2013.776571.
    1. Jankovic-Raznatovic S., Dragojevic-Dikic S., Rakic S., Nikolic B., Plesinac S., Tasic L., Perisic Z., Sovilj M., Adamovic T., Koruga D.j. Fetus sound stimulation: Cilia memristor effect of signal transduction. BioMed Res. Intern. 2014 doi: 10.1155/2014/273932.
    1. Arduini D., Rizzo G. Normal values of Pulsatility Index from fetal vessels: A cross-sectional study on 1556 healthy foetuses. J. Perinat. Med. 1990;18:165–172. doi: 10.1515/jpme.1990.18.3.165.
    1. Mari G., Deter R.L. Middle cerebral artery flow velocity waveforms in normal and small-for-gestational-age foetuses. Am. J. Obstet. Gynecol. 1992;166:1262–1270. doi: 10.1016/S0002-9378(11)90620-6.
    1. Bahlmann F., Reinhard I., Krummenauer F., Neubert S., Macchiella D., Wellek S. Blood flow velocity waveforms of the fetal middle cerebral artery in a normal population: Reference values from 18 weeks to 42 weeks of gestation. J. Perinat. Med. 2002;30:490–501. doi: 10.1515/JPM.2002.077.
    1. Ebbing C., Rasmussen S., Kiserud T. Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: Longitudinal reference ranges and terms for serial measurements. Ultrasound Obstet. Gynecol. 2007;30:287–296. doi: 10.1002/uog.4088.
    1. Palacio M., Figueras F., Zamora L., Jimenez J.M., Puerto B., Coll O., Cararach V., Vanrell J.A. Reference ranges for umbilical and middle cerebral artery pulsatility index and cerebroplacental ratio in prolonged pregnancies. Ultrasound Obstet. Gynecol. 2004;24:647–653. doi: 10.1002/uog.1761.
    1. Tarzamni M.K., Nezami N., Gatreh-Samani F., Vahedinia S., Tarzamni M. Doppler waveform indices of fetal middle cerebral artery in normal 20 to 40 weeks pregnancies. Arch. Iran. Med. 2009;12:29–34.
    1. Ciobanu A., Wright A., Syngelaki A., Wright D., Akolekar R., Nicolaides K.H. Fetal Medicine Foundation reference ranges for umbilical artery and middle cerebral artery pulsatility index and cerebroplacental ratio. Ultrasound Obstet. Gynecol. 2019;53:465–472. doi: 10.1002/uog.20157.
    1. Akolekar R., Sarno L., Wright A., Wright D., Nicolaides K.H. Fetal middle cerebral artery and umbilical artery pulsatilityindex: Effects of maternal characteristics and medical history. Ultrasound Obstet. Gynecol. 2015;45:402–408. doi: 10.1002/uog.14824.
    1. Shahdullah S., Hepper P.G. Hearing in the Fetuses: Prenatal detection of Deafness. Int. J. Prenat. Perinat. Stud. 1992;4:235–240.
    1. Gagnon R., Campbell K., Hunse C., Patrick J. Patterns of human fetal heart rate accelerations from 26 weeks to term. Am. J. Obstet. Gynecol. 1987;157:743–748. doi: 10.1016/S0002-9378(87)80042-X.
    1. Das R., Jana N., Arora N., Sengupta S. Ultrasound assessment of fetal hearing response to vibroacoustic stimulation. J. Matern.-Fetal Neonatal Med. 2019;8:1–7. doi: 10.1080/14767058.2018.1548600.
    1. Chorna O., Filippa M., Sa De Almeida J., Lordier L., Monaci M.G., Hüppi P., Grandjean D., Guzzetta A. Neuroprocessing Mechanisms of Music during Fetal and Neonatal Development: A Role in Neuroplasticity and Neurodevelopment. Neural Plast. 2019:3972918. doi: 10.1155/2019/3972918.
    1. Litovsky R. Development of the auditory system. Handb. Clin. Neurol. 2015;129:55–72.
    1. Anbuhl K.L., Uhler K.M., Werner L.A., Tollin D.J. Early Development of the Human Auditory System. In: Polin R.A., Abman S.H., Rowitch D., Benitz W.E., editors. Fetal and Neonatal Physiology. 5th ed. Elsevier; Philadelphia, PA, USA: 2017. pp. 1396–1411. Chapter 138.
    1. Bureš Z., Popelář J., Syka J. The effect of noise exposure during the developmental period on the function of the auditory system. Hear. Res. 2017;352:1–11. doi: 10.1016/j.heares.2016.03.008.
    1. Prior T., Mullins E., Bennett P., Kumar S. Influence of parity on fetal hemodynamics and amniotic fluid volume at term. Ultrasound Obstet. Gynecol. 2014;44:688–692. doi: 10.1002/uog.13332.
    1. Moore J.K., Guan Y.-L., Shi S.-R. Axogenesis in the fetal auditory system, demonstrating by neurofilament immunohistochemistry. Anat. Embryol. 1996;195:15–30. doi: 10.1007/s004290050021.
    1. Gosling R.G., King D.H. Arterial assessment by Doppler shift ultrasound. Proc. Royal Soc. Med. 1974;67:447–449. doi: 10.1177/00359157740676P113.
    1. Kisilevsky B.S., Fearon I., Muir D.W. Fetuses differentiate vibroacoustic stimuli. Infant Behav. Dev. 1998;21:25–46. doi: 10.1016/S0163-6383(98)90053-4.
    1. Graham F.K. Habituation and dishabituation of responses innervated by the autonomic nervous system. In: Peeke H.V.S., Herz M.J., editors. Habituation. Academic Press; New York, NY, USA: 1973. pp. 163–218.
    1. Lary S., Briassoulis G., De Vries L., Dubowitz L.M., Dubowitz V. Hearing Threshold in Preterm and Term Infants by Auditory Brainstem Response. J. Pediatr. 1985;107:593–599. doi: 10.1016/S0022-3476(85)80030-5.
    1. Sovilj M., Jeličić L.j., Vujović M., Barlov I. Fetal senses and behavior development and research in the field prenatal auditory perception and stimulation. In: Jovičić S., Sovilj M., editors. Speech and Language-Interdisciplinary Research: I. IEPSP; Belgrade, Serbia: 2004. pp. 321–342.
    1. Evans D.H., Barrie W.W., Asher M.J., Bently S., Bell P.R.F. The relationship between ultrasonic pulsatility index and proximal arterial stenosis in a canine model. Circ. Res. 1980;46:470–475. doi: 10.1161/01.RES.46.4.470.
    1. Kemp D.T. Otoacoustic emissions, their origin in cochlear function, and use. Br. Med. Bull. 2002;63:223–241. doi: 10.1093/bmb/63.1.223.

Source: PubMed

3
Subskrybuj