Environmental Factors-Induced Oxidative Stress: Hormonal and Molecular Pathway Disruptions in Hypogonadism and Erectile Dysfunction

Shubhadeep Roychoudhury, Saptaparna Chakraborty, Arun Paul Choudhury, Anandan Das, Niraj Kumar Jha, Petr Slama, Monika Nath, Peter Massanyi, Janne Ruokolainen, Kavindra Kumar Kesari, Shubhadeep Roychoudhury, Saptaparna Chakraborty, Arun Paul Choudhury, Anandan Das, Niraj Kumar Jha, Petr Slama, Monika Nath, Peter Massanyi, Janne Ruokolainen, Kavindra Kumar Kesari

Abstract

Hypogonadism is an endocrine disorder characterized by inadequate serum testosterone production by the Leydig cells of the testis. It is triggered by alterations in the hypothalamic-pituitary-gonadal axis. Erectile dysfunction (ED) is another common disorder in men that involves an alteration in erectile response-organic, relational, or psychological. The incidence of hypogonadism and ED is common in men aged over 40 years. Hypogonadism (including late-onset hypogonadism) and ED may be linked to several environmental factors-induced oxidative stresses. The factors mainly include exposure to pesticides, radiation, air pollution, heavy metals and other endocrine-disrupting chemicals. These environmental risk factors may induce oxidative stress and lead to hormonal dysfunctions. To better understand the subject, the study used many keywords, including "hypogonadism", "late-onset hypogonadism", "testosterone", "erectile dysfunction", "reactive oxygen species", "oxidative stress", and "environmental pollution" in major online databases, such as SCOPUS and PUBMED to extract relevant scientific information. Based on these parameters, this review summarizes a comprehensive insight into the important environmental issues that may have a direct or indirect association with hypogonadism and ED in men. The study concludes that environmental factors-induced oxidative stress may cause infertility in men. The hypothesis and outcomes were reviewed critically, and the mechanistic approaches are applied through oxidant-sensitive pathways. This study also provides reccomendations on future therapeutic interventions and protective measures against such adverse environmental factors-induced hypogonadism and ED.

Keywords: air pollution; endocrine-disrupting chemicals; erectile dysfunction; heavy metals; hypogonadism; infertility; pesticide; radiation; testosterone.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Endocrine regulation of testosterone metabolism and spermatogenesis, and the possible attack points of ROS-induced pathologies. Normal physiology of testosterone metabolism and spermatogenesis is regulated by the hormones secreted by the hypothalamus, pituitary gland and Leydig cells. The pituitary gland produces LH and FSH in response to GnRH secreted by the hypothalamus. LH stimulates the Leydig cells to produce testosterone, and FSH upregulates the production of ABP in the Sertoli cells. Testosterone binds to ABP and brings about the functional response required for spermatogenesis. ROS stimulates the HPA axis, thereby mediating the adrenal cortex to synthesize cortisol, which inhibits the action of LH. ROS also upregulate the production of inhibin and estradiol and downregulates the concentration of testicular sialic acid—all these negatively affect the action of testosterone. Increased production of LTH resulting from excessive ROS generation may also create hindrance in the HPG axis. ROS may directly affect the HPG axis by inhibiting the production of FSH or stimulate the generation of cytokines, such as TNF-α, IL-1β and IL-6, which in turn block the HPG axis. Red arrows represent the increase and decrease of respective substances, which negatively affects the HPG axis. (GnRH: gonadotropin-releasing hormone; LH: luteinizing hormone; FSH: follicle-stimulating hormone; ABP: androgen-binding protein; CRH: corticotropin-releasing hormone; ACTH: adrenocorticotropic hormone; LTH: luteotropic hormone; TNF-α: tumor necrosis factor-alpha; IL-1β: interleukin- 1 beta; IL-6: interleukin 6; HPG: hypothalamic–pituitary–gonadal; HPA: hypothalamic–pituitary–adrenal; ROS: reactive oxygen species).
Figure 2
Figure 2
Probable mechanism of association of pesticide-induced ROS with hypogonadism and ED. Diazinon enhances LTH levels, which in turn lowers the activity of LH. Diazinon also stimulates producing serotonin that inhibits the action of both LH and FSH, thereby decreasing testosterone levels. Chlorpyrifos can reduce the activity of AChE in the hypothalamus. Consequently, the entire HPG axis is disrupted, leading to reduced testosterone production. Chlorpyrifos also reduces the concentration of sialic acid, which then inhibits Leydig cells. Cypermethrin disrupts the HPG axis by inhibiting the activity of the hypothalamus. Organophosphorus pesticides diazinon and chlorpyrifos, as well as pyrethroid pesticide cypermethrin, cause a decline in the antioxidant enzyme activity, thereby enhancing ROS generation. ROS causes lipid peroxidation and DNA damage, which inhibits the activity of Leydig cells, followed by reduced testosterone synthesis. Reduction in testosterone levels brings about the inactivity of the NOS enzyme, which ultimately leads to ED. Red arrows represent the increase and decrease of the respective substances, which have a negative impact on testosterone production, leading to hypogonadism and ED. (LTH: luteotropic hormone, AChE: acetylcholinesterase, GnRH: gonadotropin-releasing hormone, LH: luteinizing hormone, FSH: follicle-stimulating hormone, SOD: superoxide dismutase, NOS: nitric oxide synthase, ED: erectile dysfunction, ROS: reactive oxygen species).
Figure 3
Figure 3
Probable mechanism of association of radiation-induced ROS with hypogonadism and ED. Nonionizing radiations damage the Leydig cells, which reduces testosterone synthesis and subsequent inhibition of spermatozoa. Such radiations negatively affect sperm parameters, including count, motility, morphology, viability and motility. Nonionizing radiations also stimulate NO activity, which along with ROS, brings about lipid peroxidation and damage to testicular tissues. These tissues are also damaged by apoptosis mediated by elevated ROS levels. Nonionizing radiation-induced ROS further causes DNA damage and decreases the concentration of histone kinase along with a reduction of SOD and glutathione peroxidase activity. Whereas ionizing radiations cause a decline in testosterone production by damaging Leydig cells and by inhibiting the activity of steroidogenic enzymes. Such radiations enhance LDH activity, which results in cellular damage. Damage to the penile smooth muscles and reduced ICP may cause ED. ED is also caused by decreased cGMP levels and damage to the corpus cavernosum, which are brought about by ionizing radiation-induced oxidative stress. Red arrows represent the increase and decrease of the respective substances and sperm parameters beyond harmful levels. (NO: nitric oxide, SOD: superoxide dismutase, LDH: lactate dehydrogenase, ICP: intracavernosal pressure, ODO: oxadiazoloquinoxalin-1-one, cGMP: cyclic guanosine monophosphate, ED: erectile dysfunction, ROS: reactive oxygen species).
Figure 4
Figure 4
Probable mechanism of association of ROS induced by air pollutants (heavy metals Cd and Pb, and PM2.5) with hypogonadism and ED. Heavy air pollutant Cd increases NO and decreases LDH activity to inhibit spermatogenesis. It also lowers DLD and cAMP levels, which reduces testosterone. Cd decreases antioxidant enzymes along with a decrease in total antioxidant capacity. Through these mechanisms, Cd increases ROS production, which in turn causes lipid peroxidation, testicular necrosis, fibrosis and reduced testicular size. These factors, together with lowered levels of testosterone, contribute to the cause of infertility. Another heavy metal Pb reduces testosterone levels and estradiol, which leads to the inhibition of spermatogenesis. PM2.5 downregulates GnRH activity, thereby declining LH and FSH levels. Reduction in LH inhibits the action of Leydig cells, thereby lowering testosterone production. PM2.5 also induces ED by damaging penile arteries, reducing the ICP/MAP ratio and inhibiting endothelial NO activity. PM2.5 further stimulates the generation of ROS that can damage DNA and spermatogenic cells. PM2.5-induced ROS may also have a negative impact on sperm quality, particularly motility, viability, functioning and membrane fluidity. Red arrows represent the increase and decrease of the respective substances and sperm parameters beyond harmful levels. (NO: nitric oxide, LDH: lactate dehydrogenase, DLD: dihydrolipoamide dehydrogenase, cAMP: cyclic adenosine monophosphate, TAC: total antioxidant capacity, GnRH: gonadotropin-releasing hormone, LH: luteinizing hormone, FSH: follicle-stimulating hormone, ICP: intracavernosal pressure, MAP: mean arterial pressure, ED: erectile dysfunction ROS: reactive oxygen species).
Figure 5
Figure 5
Probable mechanism of association of ROS induced by BPA, phthalates, PFAS and PCB with hypogonadism and ED. BPA downregulates the production of LH, FSH and steroidogenic enzymes along with upregulation of ROS, which, in turn, causes a decline in testosterone levels followed by inhibition of spermatogenesis. BPA-mediated ROS generation may also suppress testosterone activity and spermatogenic processes directly. Phthalates cause damage to testicular tissues and lower the levels of LH and FSH, which further reduces testosterone levels. ROS generation by phthalates may bring about the apoptosis of Sertoli cells and germ cells, ultimately inhibiting spermatogenesis. Lowered testosterone levels also result in diminished sexual desire and reduce spontaneous erection, which may lead to ED. PFAS, such as PFOS and PFOA, may also cause damage to Leydig cells leading to reduced testosterone levels. PFOS and PFOA may induce cortisol production, which leads to ROS generation, ultimately resulting in suppression of the hormonal activity of Leydig cells. PCBs damage testicular tissues and lower the activity of LH and FSH together with reducing the steroidogenic enzymes, which may lead to lowered testosterone levels. PCBs can also reduce the levels of antioxidant enzymes, and resulting in oxidative stress induces lipid peroxidation in Leydig cells, thus lowering the level of testosterone. PCB-induced reduction of testosterone may also give rise to ED. Red arrows represent the increase and decrease of the respective substances, which negatively impact testosterone level, thereby inhibiting spermatogenesis and causing hypogonadism and ED. (BPA: bisphenol A, PFAS: perfluoroalkyl substances, PFOS: perfluorooctanesulfonic acid, PFOA: perfluorooctanoic acid, PCB: polychlorinated biphenyls, LH: luteinizing hormone, FSH: follicle-stimulating hormone, ED: erectile dysfunction, ROS: reactive oxygen species).

References

    1. Jungwirth A., Giwercman A., Tournaye H., Diemer T., Kopa Z., Dohle G., Krausz C. European Association of Urology guidelines on male infertility: The 2012 update. Eur. Urol. 2012;62:324–332. doi: 10.1016/j.eururo.2012.04.048.
    1. Tüttelmann F., Nieschlag E. Classification of andrological disorders. In: Nieschlag E., Behre H.M., Nieschlag S., editors. Andrology, Male Reproductive Health and Dysfucntion. 3rd ed. Springer; Berlin/Heidelberg, Germany: 2010. pp. 87–92.
    1. Salonia A., Rastrelli G., Hackett G., Seminara S.B., Huhtaniemi I.T., Rey R.A., Hellstorm W.J.G., Palmert M.R., Corona G., Dohle G.R., et al. Paediatric and adult-onset hypogonadism. Nat. Rev. Dis. Primers. 2019;5:38. doi: 10.1038/s41572-019-0087-y.
    1. Sizar O., Schwartz J. Hypogonadism. Stat Pearls Publishing; Treasure Island, FL, USA: 2019.
    1. Kim K.M. Late-onset hypogonadism. Korean J. Fam. Pract. 2013;3:245–254.
    1. European Association of Urology Guidelines on Male Hypogonadism. [(accessed on 15 February 2021)]; Available online: .
    1. Huhtaniemi I. Late-onset hypogonadism: Current concepts and controversies of pathogenesis, diagnosis and treatment. Asian J. Androl. 2014;16:192–202. doi: 10.4103/1008-682X.122336.
    1. Huhtaniemi I., Makinen J.I., Perheentupa A., Raitakari O.T. Late-onset hypogonadism in men. Experience form Turku Male Aging Study (TuMAS) Hormones. 2008;7:36–45. doi: 10.14310/horm.2002.1111036.
    1. Yan Y.Y. Awareness and knowledge of andropause among Chinese males in Hong Kong. Am. J. Men’s Health. 2009;4:231–236. doi: 10.1177/1557988309335154.
    1. Guay A., Seftel A.D., Traish A. Hypogonadism in men with erectile dysfunction may be related to a host of chronic illness. Int. J. Impot. Res. 2010;22:9–19. doi: 10.1038/ijir.2009.46.
    1. Shamloul R., Ghanem H. Erectile dysfunction. Lancet. 2013;381:153–165. doi: 10.1016/S0140-6736(12)60520-0.
    1. Agarwal A., Nandipati K.C., Sharma R.K., Zippe C.D., Raina R. Role of oxidative stress in the pathophysiological mechanisms of erectile dysfunction. J. Androl. 2006;27:335–347. doi: 10.2164/jandrol.05136.
    1. Yafi F.A., Jenkins L., Albersen M., Corona G., Isidori A.M., Goldfarb S., Maggi M., Nelson C.J., Parish S., Salonia A., et al. Erectile dysfunction. Nat. Rev. Dis. Primers. 2016;2:16003. doi: 10.1038/nrdp.2016.3.
    1. Rew K.T., Heidelbaugh J.J. Erectile dysfunction. Am. Fam. Phys. 2016;94:820–827.
    1. Darbandi M., Darbandi S., Agarwal A., Sengupta P., Durairajanayagam D., Henkel R., Sadeghi M.R. Reactive oxygen species and male reproductive hormones. Reprod. Biol. Endocrinol. 2018;16:87. doi: 10.1186/s12958-018-0406-2.
    1. Burton G.J., Jauniaux E. Oxidative stress. Best Pract. Res. Clin. Obstet. Gynecol. 2011;25:287–299. doi: 10.1016/j.bpobgyn.2010.10.016.
    1. Darbandi S., Darbandi M. Lifestyle modifications on further reproductive problems. Cresco J. Reprod. Sci. 2016;1:1–2.
    1. Zirkin B.R., Chen H. Regulation of Leydig cell steroidogenic function during aging. Biol. Reprod. 2000;63:977–981. doi: 10.1095/biolreprod63.4.977.
    1. Turner T.T., Bang H.J., Lysiak J.J. Experimental testicular torsion: Reperfusion blood flow and subsequent testicular venous plasma testosterone concentrations. Urology. 2005;65:390–394. doi: 10.1016/j.urology.2004.09.033.
    1. Cartledge J., Minhas S., Eardley I. The role of nitric oxide in penile erection. Expert Opin. Pharmacother. 2001;2:95–107. doi: 10.1517/14656566.2.1.95.
    1. Jones R.W.A., Rees R.W., Minhas S., Ralph D., Persad R.A., Jeremy J.Y. Oxygen free radicals and the penis. Expert Opin. Pharmacother. 2002;3:889–897. doi: 10.1517/14656566.3.7.889.
    1. Jeremy J.Y., Jones R.A., Koupparis A.J., Hotston M., Persad R., Angelini G.D., Shukla N. Reactive oxygen species and erectile dysfunction: Possible role of NADPH oxidase. Int. J. Impot. Res. 2007;19:265–280. doi: 10.1038/sj.ijir.3901523.
    1. Fattahi E., Parivar K., Jorsaraei S.G.A., Moghadamnia A.A. The effects of diazinon on testosterone, FSH and LH levels and testicular tissue in mice. Int. J. Reprod. Biomed. 2009;7:59–64.
    1. Kesari K.K., Kumar S., Behari J. Effects of radiofrequency electromagnetic wave exposure from cellular phones on the reproductive pattern in male wistar rats. Appl. Biochem. Biotechnol. 2011;164:546–559. doi: 10.1007/s12010-010-9156-0.
    1. Wang X., Yang Y., Li J., Bai Y., Tang Y., Han Y. Effects of fine particulate matter (PM2.5) on erectile function and its potential mechanism in rats. Urology. 2016;102:e9–e265. doi: 10.1016/j.urology.2016.08.034.
    1. Alaee S., Talaiekhozani A., Rezaei S., Alaee K., Yousefian E. Cadmium and male fertility. J. Int. Reprod. Biol. 2014;2:62–69.
    1. Rahman M.S., Pang M.G. Understanding the molecular mechanisms of bisphenol A action in spermatozoa. Clin. Exp. Reprod. Med. 2019;46:99–106. doi: 10.5653/cerm.2019.00276.
    1. Smith L.B., Walker W.H. The regulation of spermatogenesis by androgens. Semin. Cell Dev. Biol. 2014;30:2–13. doi: 10.1016/j.semcdb.2014.02.012.
    1. Clavijo R.I., Hsiao W. Update on male reproductive endocrinology. Trans. Androl. Urol. 2018;7:367–372. doi: 10.21037/tau.2018.03.25.
    1. Tsai M.-Y., Yeh S.-D., Wang R.-S., Yeh S., Zhang C., Lin H.-Y., Tzeng C.-R., Chang C. Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proc. Natl. Acad. Sci. USA. 2006;103:18975–18980. doi: 10.1073/pnas.0608565103.
    1. Joshi S.C., Mathur R., Gulati N. Testicular toxicity of chlorpyrifos (an organophosphate pesticide) in albino rat. Toxicol. Ind. Health. 2007;23:439. doi: 10.1177/0748233707080908.
    1. Chinoy N.J., Bhattacharya S. Effects of chronic administration of aluminium chloride on reproductive function of testis and some accessory sex organs of male mice. Ind. J. Environ. Toxicol. 1997;7:12–22.
    1. Johnson L., Thompson D.L., Jr., Varner D.D. Role of Sertoli cell number and function on regulation of spermatogenesis. Anim. Reprod. Sci. 2008;105:23–51. doi: 10.1016/j.anireprosci.2007.11.029.
    1. Cheng C.Y., Wong E.W.P., Lie P.P.Y., Li M.W.M., Su L., Siu E.R., Yan H.H.N., Mannu J., Mathur P.P., Bonanomi M., et al. Environmental toxicants and male reproductive functions. Spermatogenesis. 2010;1:2–13. doi: 10.4161/spmg.1.1.13971.
    1. Li M.W.M., Mruk D.D., Cheng C.Y. Gap junctions and blood-testis barriers. Adv. Exp. Med. Biol. 2012;763:260–280. doi: 10.1007/978-1-4614-4711-5_13.
    1. Siu E.R., Mruk D.D., Porto C.S., Cheng C.Y. Cadmium-induced testicular injury. Toxicol. Appl. Pharmacol. 2009;238:240–249. doi: 10.1016/j.taap.2009.01.028.
    1. Mruk D.D., Cheng C.Y. Environmental contaminants: Is male reproductive health at risk? Spermatogenesis. 2011;1:283–290. doi: 10.4161/spmg.1.4.18328.
    1. Pointis G., Gilleron J., Carette D., Segretain D. Testicular connexin 43, a precocious molecular target for the effect of environmental toxicants on male fertility. Spermatogenesis. 2011;1:303–317. doi: 10.4161/spmg.1.4.18392.
    1. Pierantoni R., Cobellis G., Meccariello R., Fasano S. Evolutionary aspects of cellular communication in the vertebrate hypothalamo-hypophysio-gonadal axis. Int. Rev. Cytol. 2002;218:69–141. doi: 10.1016/s0074-7696(02)18012-0.
    1. Madhukar D., Rajender S. hormonal treatment of male infertility: Promises and pitfalls. J. Androl. 2009;30:95–112. doi: 10.2164/jandrol.108.005694.
    1. Magon N., Singh S., Saxena A., Sahay R. Growth hormone in male infertility. Indian J. Endocrinol. Metab. 2011;15:248–249. doi: 10.4103/2230-8210.84877.
    1. Gangwar P.K., Sankhwar S.N., Pant S., Krishna A., Singh B.P., Mahdi A.A., Singh R. Increased gonadotropins and prolactin are linked to infertility in males. Bioinformation. 2020;16:176–182. doi: 10.6026/97320630016176.
    1. Lu C., Yang W., Chen M., Liu T., Yang J., Tan P., Li L., Hu X., Fan C., Hu Z., et al. Inhibin A inhibits follicle-stimulating hormone (FSH) action by supressing its receptor expression in cultured rat granulosa cells. Mol. Cell Endocrinol. 2009;298:48–56. doi: 10.1016/j.mce.2008.09.039.
    1. Vermeulen A. Androgens in the aging male. J. Clin. Endocrinol. Metab. 1991;73:221–224. doi: 10.1210/jcem-73-2-221.
    1. Morley J.E., Kaiser F.E., Perry H.M., III, Patrick P., Morley P.M., Stauber P.M., Vellas B., Baumgartenr R.N., Garry P.J. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism. 1997;46:410–413. doi: 10.1016/S0026-0495(97)90057-3.
    1. Seidman S.N. Testosterone deficiency and mood in aging men: Pathogenic and therapeutic interactions. World J. Biol. Psychiatry. 2003;4:14–20. doi: 10.3109/15622970309167905.
    1. Chong H., Pangas S.A., Bernard D.J., Wang E., Gitch J., Chen W., Draper L.B., Cox E.T., Woodruff T.K. Structure and expression of a membrane component of the inhibin receptor system. Endocrinology. 2000;141:2600–2607. doi: 10.1210/endo.141.7.7540.
    1. Andreassen M., Juul A., Feldt-Rasmussen U., Jorgensen N. Semen quality in patients with pituitary disease and adult-onset hypogonadotropic hypogonadism. Endocr. Connect. 2018;7:523–533. doi: 10.1530/EC-18-0061.
    1. Harris I.D., Fronczak C., Roth L., Meacham R.B. Fertility and the aging male. Rev. Urol. 2011;13:e184–e190.
    1. Schwartz D., Mayaux M.J., Spira A., Moscato M.L., Jouannet P., Czyglik F., David G. Semen characteristics as a function of age in 833 fertile men. Fertil. Steril. 1983;39:530–535. doi: 10.1016/S0015-0282(16)46946-3.
    1. Hellstorm W.J.G., Sikka S.C. Effects of acute treatment with tamsulosin versus alfuzosin on ejaculatory function in normal volunteers. J. Urol. 2006;176:1529–1533. doi: 10.1016/j.juro.2006.06.004.
    1. Elzanaty S., Erenpreiss J., Becker C. Seminal plasma albumin: Origin and relation to the male reproductive parameters. Andrologia. 2007;39:60–65. doi: 10.1111/j.1439-0272.2007.00764.x.
    1. Tang W.H., Zhuang X.J., Shu R.M., Guan D., Ji Y.D., Zhang B.L., Wang C.G., Zhuang L.H., Yang Z., Hong K., et al. The prevalence of erectile dysfunction among subjects with late-onset hypogonadism: A population-based study in China. Int. J. Clin. Exp. Med. 2015;8:13901–13910.
    1. Wu F.C.W., Tajar A., Beynon J.M., Pye S.R., Silman A.J., Finn J.D., O’Neill T.W., Bartfai G., Casanueva F.F., Forti G., et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N. Engl. J. Med. 2010;363:123–135. doi: 10.1056/NEJMoa0911101.
    1. Vishwanathan V., Eugster E.A. Etiology and treatment of hypogonadism in adolescents. Pediatr. Clin. N. Am. 2011;58:1181–1200. doi: 10.1016/j.pcl.2011.07.009.
    1. Brauner R., Neve M., Allali S., Trivin C., Lottmann H., Bashaamboo A., McElreavey K. Clinical, biological and genetic analysis of anorchia in 26 boys. PLoS ONE. 2011;6:e23292. doi: 10.1371/journal.pone.0023292.
    1. Rodprasert W., Virtanen H.E., Makela J.-A., Toppari J. Hypogonadism and cryptorchidism. Front. Endocrinol. 2020;10:906. doi: 10.3389/fendo.2019.00906.
    1. Kumar P., Kumar N., Thakur D.S., Patidar A. Male hypogonadism: Symptoms and treatment. J. Adv. Pharm. Technol. Res. 2010;1:297–301. doi: 10.4103/0110-5558.72420.
    1. Achermann J.C., Gu W.X., Kotlar T.J., Meeks J.J., Sabacan L.P., Seminara S.B., Habiby R.L., Hindmarsh P.C., Bick D.P., Sherins R.J., et al. Mutational analysis of DAX1 in patients with hypogonadotropic hypogonadism or pubertal delay. J. Clin. Endocrinol. Metab. 1999;84:4497–4500. doi: 10.1210/jc.84.12.4497.
    1. Lawrence K.L., Stewart F., Larson B.M. Approaches to male hypogonadism in primary care. Nurse Pract. 2017;42:32–37. doi: 10.1097/01.NPR.0000511774.51873.da.
    1. Pelusi C., Gasparini D.I., Bianchi N., Pasquali R. Endocrine dysfunction in hereditary hemochromatosis. J. Endocrinol. Investig. 2016;39:837–847. doi: 10.1007/s40618-016-0451-7.
    1. Osta R.E., Grandpre N., Monnin N., Hubert J., Koscinski I. Hypogonadotropic hypogonadism in men with hereditary hemochromatosis. Basic Clin. Androl. 2017;27:13. doi: 10.1186/s12610-017-0057-8.
    1. Leichtmann-Bardoogo Y., Cohen L.A., Weiss A., Marohn B., Schubert S., Meinhardt A., Meyron-Holtz E.G. Compartmentalization and regulation of iron metabolism proteins protect male germ cells from iron overload. Am. J. Physiol. Endocrinol. Metab. 2012;302:1519–1530. doi: 10.1152/ajpendo.00007.2012.
    1. Nieschlag E. Late-onset hypogonadism: A concept comes of age. Andrologia. 2019;8:1506–1511. doi: 10.1111/andr.12719.
    1. Scaglione F., Donde S., Hassan T.A., Jannini E.A. Phosphodiesterase type 5 inhibitors for the treatment of erectile dysfunction: Pharmacology and clinical impact of the sildenafil citrate orodispersible tablet formulation. Clin. Ther. 2017;39:370–377. doi: 10.1016/j.clinthera.2017.01.001.
    1. Shridharani A.N., Brant W.O. The treatment of erectile dysfunction in patients with neurogenic disease. Transl. Androl. Urol. 2016;5:88–101. doi: 10.3978/j.issn.2223-4683.2016.01.07.
    1. Irfan M., Hussain N.H.N., Noor N.M., Mohamed M., Sidi H., Ismail S.B. Epidemiology of male sexual dysfunction in Asian and European regions: A systematic review. Am. J. Mens Health. 2020;14:1557988320937200. doi: 10.1177/1557988320937200.
    1. Dowsett G.W., Lyons A., Duncan D., Wassersug R.J. Flexibility in men’s sexual practices in response to iatrogenic erectile dysfunction after prostate cancer treatment. Sex. Med. 2014;2:115–120. doi: 10.1002/sm2.32.
    1. Baba K., Yajima M., Carrier S., Morgan D.M., Nunes L., Lue T.F., Iwamoto T. Delayed testosterone replacement restores nitric oxide synthase-containing nerve fibres and the erectile response in rat penis. BJU Int. 2000;85:953–958. doi: 10.1046/j.1464-410x.2000.00598.x.
    1. Soran H., Wu F.C.W. Endocrine causes of erectile dysfunction. Int. J. Androl. 2005;28:28–34. doi: 10.1111/j.1365-2605.2005.00596.x.
    1. Lunenfeld B., Mskhalaya G., Kalinchenko S., Tishova Y. Recommendations on the diagnosis, treatment and monitoring of late-onset hypogonadism in men—A suggested update. Aging Male. 2013;16:143–150. doi: 10.3109/13685538.2013.853731.
    1. Attia A.A., Hassan F.A., Kamel M.I., Ayoub M.R. Quality of life in erectile dysfunction patients and their partners responding to tadalafil versus sildenafil citrate. Egypt. J. Dermatol. Venerol. 2013;33:32–36. doi: 10.7123/01.EJDV.0000431583.00793.33.
    1. Bai W.J., Li H.J., Jin J.J., Xu W.P., Sebastian S., Wang X.F. A randomized clinical trial investigating treatment choice in Chinese men receiving sildenafil citrate and tadalafil for treating erectile dysfunction. Asian J. Androl. 2017;19:500–504. doi: 10.4103/1008-682X.175782.
    1. Selvin E., Burnett A.L., Platz E.A. Prevalence and risk factors for erectile dysfunction in the US. Am. J. Med. 2007;120:151–157. doi: 10.1016/j.amjmed.2006.06.010.
    1. Sand M.S., Fisher W., Rosen R., Heiman J., Eardly I. Erectile dysfunction and constructs of masculinity and quality of life in the multinational Men’s Attitudes to Life Events and Sexuality (MALES) study. J. Sex. Med. 2008;5:583–594. doi: 10.1111/j.1743-6109.2007.00720.x.
    1. Corona G., Boddi V., Balercia G., Rastrelli G., De Vita G., Sforza A., Forti G., Mannucci E., Maggi M. The effect of statin therapy on testosterone levels in subjects consulting for erectile dysfunction. J. Sex. Med. 2010;4:1547–1556. doi: 10.1111/j.1743-6109.2009.01698.x.
    1. Hafez E.S.E., Hafez S.D. Erectile dysfunction: Anatomical parameters, etiology, diagnosis, and therapy. Arch. Androl. 2005;51:15–31. doi: 10.1080/1485010490475147.
    1. Makhlouf A.A., Mohamed M.A., Seftel A.D., Neiderberger C. Hypogonadism is associated with overt depression in men with erectile dysfuncion. Int. J. Impot. Res. 2008;20:157–161. doi: 10.1038/sj.ijir.3901576.
    1. Vermeulen A. Environment, human reproduction, menopause, and andropause. Environ. Health Perspect. 1993;101:91–100. doi: 10.1289/ehp.93101s291.
    1. Roychoudhury S., Bhattacharjee R. Environmental issues resulting in andropause and hypogonadism. In: Sikka S.C., Hellstrorm W.J.G., editors. Bioenvironmental Issues Affecting Men’s Reproductive and Sexual Health. 1st ed. Academic Press; Cambridge, MA, USA: 2018. pp. 262–273.
    1. Park S. Genetic factors and environmental factors affecting male infertility. Int. Res. J. Adv. Eng. Sci. 2016;1:115–118.
    1. Da Ros C.T., Graziottin T.M. Environmental issues resulting in hypogonadism in Brazilian men. In: Sikka S.C., Hellstrorm W.J.G., editors. Bioenvironmental Issues Affecting Men’s Reproductive and Sexual Health. 1st ed. Academic Press; Cambridge, MA, USA: 2018. pp. 33–40.
    1. Tallon L.A., Manjourides J., Pun V.C., Mittleman M.A., Kioumourtzoglou M.A., Coull B., Suh H. Erectile dysfunction and exposure to ambient Air pollution in a nationally representative cohort of older. Men Environ. Health. 2017;16:12. doi: 10.1186/s12940-017-0216-6.
    1. Hafez E.M., Issa S.Y., AI-Mazroua M.K., Ibrahim K.T., Rahman S.M.A. The neonicotinoid insecticide imidacloprid: A male reproductive system toxicity inducer-human and experimental study. Toxicol. Open Access. 2016;1:109. doi: 10.4172/2476-2067.1000109.
    1. Wilson V.S., Blystone C.R., Hotchkiss A.K., Rider C.V., Gray L.E., Jr. Diverse mechanisms of anti-androgen action: Impact on male rat reproductive tract development. Int. J. Androl. 2008;31:178–187. doi: 10.1111/j.1365-2605.2007.00861.x.
    1. Kaur R.P., Gupta V., Christopher A.F., Bansal P. Potential pathways of pesticide action on erectile function—A contributory factor in male infertility. Asian Pac. J. Reprod. 2015;4:322–330. doi: 10.1016/j.apjr.2015.07.012.
    1. Toman R., Tunegová M. Selenium, cadmium and diazinon insecticide in tissues of rats after peroral exposure. Potr. Slovak J. Food Sci. 2017;11:718–724. doi: 10.5219/827.
    1. Krockova J., Massanyi P., Toman R., Danko J., Roychoudhury S. In vivo and in vitro effect of bendiocarb on rabbit testicular structure and spermatozoa motility. J. Environ. Sci. Health. 2012;47:1301–1311. doi: 10.1080/10934529.2012.672136.
    1. Slimani S., Boulakoud M.S., Abdennour C. Pesticide exposure and reproductive biomarkers among male farmers from north-east Algeria. Ann. Biol. Res. 2011;2:290–297.
    1. Brook J.S., Brook D.W., Rosa M.D.L., Whiteman M., Johnson E., Montoya I. Adolescent illegal drug use: The impact of personality, family, and environmental factors. J. Behav. Med. 2001;24:183–203. doi: 10.1023/A:1010714715534.
    1. Lushchak V.I., Matviishyan T.M., Husak V.V., Storey J.M., Storey K.B. Pesticide toxicity: A mechanistic approach. EXCLI J. 2018;17:1101–1136. doi: 10.17179/excli2018-1710.
    1. Costa C., Virag R. The endothelial-erectile dysfunction connection: An essential update. J. Sex. Med. 2009;6:2390–2404. doi: 10.1111/j.1743-6109.2009.01356.x.
    1. Traish A.M., Park K., Dhir V., Kim N.N., Moreland R.B., Goldstein I. Effects of castration and androgen replacement on erectile function in a rabbit model. Endocrinology. 1999;140:1861–1868. doi: 10.1210/endo.140.4.6655.
    1. ElMazoudy R.H., Attia A.A. Endocrine-disrupting and cytotoxic potential of anticholinesterase insecticide, diazinon in reproductive toxicity of male mice. J. Hazard. Mater. 2012;209–210:111–120. doi: 10.1016/j.jhazmat.2011.12.073.
    1. Lafuente A., Cabaleiro T., Caride A., Esquifino A.I. Toxic effects of methoxychlor administered subcutaneously on the hypothalamic-pituitary-testicular axis in adult rats. Food Chem. Toxicol. 2008;46:1570–1575. doi: 10.1016/j.fct.2007.12.017.
    1. Lafuente A., Gonzalez-Carracedo A., Romero A., Cano P., Esquifino A.I. Effect of nitric oxide on prolactin secretion and hypothalamic biogenic amine contents. Life Sci. 2004;74:1681–1690. doi: 10.1016/j.lfs.2003.09.041.
    1. Svechnikov K., Izzo G., Landreh L., Weisser J., Soder O. Endocrine disruptors and Leydig cell function. J. Biomed. Biotechnol. 2010;2010:684504. doi: 10.1155/2010/684504.
    1. Leong C.T., D’Souza U.J.A., Iqbal M., Mustapha Z.A. Lipid peroxidation and decline in antioxidant status as one of the toxicity measures of diazinon in the testis. Redox Rep. 2013;18:155–164. doi: 10.1179/1351000213Y.0000000054.
    1. Bedwal R.S., Nair N., Mathur R.S. Effects of zinc deficiency and toxicity on reproductive organs, pregnancy and lactation—A review. Trace Elem. Med. 1991;8:89–100.
    1. Farag A.T., Radwan A.H., Sorour F., Okazy A.E., El-Agamy E., El-Sebae A.E. Chlorpyrifos induced reproductive toxicity in male mice. Reprod. Toxicol. 2010;29:80–85. doi: 10.1016/j.reprotox.2009.10.003.
    1. Khokhar J.Y., Tyndale R.F. Rat brain CYP2B-enzymatic activation of chlorpyrifos to the oxon mediates cholinergic neurotoxicity. Toxicol. Sci. 2012;126:325–335. doi: 10.1093/toxsci/kfs029.
    1. Adedara I.A., Owoeye O., Ajayi B.O., Awogbindin I.O., Rocha J.B.T., Farombi E.O. Diphenyl diselenide abrogates chlorpyrifos-induced hypothalamic-pituitary-testicular axis impairment in rats. Biochem. Biophys. Res. Commun. 2018;503:171–176. doi: 10.1016/j.bbrc.2018.05.205.
    1. Sai L., Li X., Liu Y., Guo Q., Xie L., Yu G., Bo C., Zhang Z., Li L. Effects of chlorpyrifos on reproductive toxicology of male rats. Environ. Toxicol. 2014;29:1083–1088. doi: 10.1002/tox.21838.
    1. Slimen S., Saloua E.F., Najoua G. Oxidative stress and cytotoxic potential of anticholinesterase insecticide, malathion in reproductive toxicology of male adolescent mice after acute exposure. Iran. J. Basic Med. Sci. 2014;17:522–530.
    1. Janssens L., Stoks R. Chlorpyrifos-induced oxidative damage is reduced under warming and predation risk: Explaining antagonistic interactions with a pesticide. Environ. Pollut. 2017;226:79–88. doi: 10.1016/j.envpol.2017.04.012.
    1. Mandal T.K., Das N.S. Correlation of testicular toxicity and oxidative stress induced by chlorpyrifos in rats. Hum. Exp. Toxicol. 2011;30:1529–1539. doi: 10.1177/0960327110392400.
    1. Mandal T.K., Das N.S. Testicular gametogenic and steroidogenic activities in chlorpyrifos insecticide-treated rats: A correlational study with testicular oxidative stress and role of antioxidant enzyme defence systems in Sprague-Dawley rats. Andrologia. 2012;44:102–115. doi: 10.1111/j.1439-0272.2010.01110.x.
    1. Peiris D.C., Dhanushka T. Low doses of chlorpyrifos interfere with spermatogenesis of rats through reduction of sex hormones. Environ. Sci. Pollut. Res. Int. 2017;24:20859–20867. doi: 10.1007/s11356-017-9617-x.
    1. Watkins S.S., Koob G.F., Markou A. Neural mechanisms underlying nicotine addiction: Acute positive reinforcement and withdrawal. Nicotine Tob. Res. 2000;2:19–37. doi: 10.1080/14622200050011277.
    1. Ala-Eldin E.A., El-Safei D.A., Abouhashem N.S. Individual and combined effect of chlorpyrifos and cypermethrin on reproductive system of adult male albino rats. Environ. Sci. Pollut. Res. 2017;24:1532–1543. doi: 10.1007/s11356-016-7912-6.
    1. Sharma P., Huq A.U., Singh R. Cypermethrin-induced reproductive toxicity in the rat is preserved by resveratrol. J. Hum. Reprod. Sci. 2014;7:99–106. doi: 10.4103/0974-1208.138867.
    1. Civen M., Brown C.B. The effect of organophosphate insecticides on adrenal corticosterone formation. Pestic. Biochem. Phys. 1947;4:254–259. doi: 10.1016/0048-3575(74)90108-4.
    1. Chattopadhyay A., Sarkar M., Biswas N.M. Dose-dependent effect of copper chloride on male reproductive function in immature rats. Kathmandu Univ. Med. J. 2005;3:392–400.
    1. Joshi S.C., Bansal B., Jasuja N.D. Evaluation of reproductive and developmental toxicity of cypermethrin in male albino rats. Toxicol. Environ. Chem. 2011;93:593–602. doi: 10.1080/02772248.2010.537441.
    1. Wang X.-Z., Liu S.-S., Sun Y., Wu J.-Y., Zhou Y.-L., Zhang J.-H. Beta-cypermethrin impairs reproductive function in male mice by inducing oxidative stress. Theriogenology. 2009;72:599–611. doi: 10.1016/j.theriogenology.2009.04.016.
    1. Wang Q., Wang H.-X., Shen J.-Y., Zhang R., Hong J.-W., Li Z., Chen G., Li M.-X., Ding Z., Li J., et al. The anti-androgenic effects of cypermethrin mediated by non-classical testosterone pathway activation of mitogen-activated protein kinase cascade in mouse Sertoli cells. Ecotoxicol. Environ. Saf. 2019;177:58–65. doi: 10.1016/j.ecoenv.2019.03.109.
    1. Solati J., Hajikhani R., Zaeim R.T. Effects of cypermethrin on sexual behaviour and plasma concentrations of pituitary-gonadal hormones. Int. J. Fertil. Steril. 2010;4:23–28.
    1. Avendano C., Mata A., Sarmiento C.A.S., Doncel G.F. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil. Steril. 2012;97:39–45. doi: 10.1016/j.fertnstert.2011.10.012.
    1. Kesari K., Kumar S., Behari J. Mobile phone usage and male infertility in Wistar rats. Indian J. Exp. Biol. 2010;48:987–992.
    1. Kesari K.K., Kumar S., Nirala J., Siddiqui M.H., Behari J. Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern. Cell Biochem. Biophys. 2013;65:85–96. doi: 10.1007/s12013-012-9414-6.
    1. McGill J.J., Agarwal A. The impact of cell phone, laptop computer, and microwave oven usage on male fertility. In: du Plessis S.S., Agarwal A., Sabanegh E.S. Jr., editors. Male Infertility: A Complete Guide to Lifestyle and Environmental Factors. Springer; New York, NY, USA: 2014. pp. 161–177.
    1. Kesari K.K., Agarwal A., Henkel R. Radiations and male fertility. Reprod. Biol. Endocrinol. 2018;16:118. doi: 10.1186/s12958-018-0431-1.
    1. Yu G., Tang Z., Chen H., Wang L., Cao H., Wang G., Xing J., Shen H., Chen Q., Li D., et al. Long-term exposure to 4G smartphone radiofrequency electromagneticradiation diminished male reproductive potential by directly disruptingSpock3–MMP2-BTB axis in the testes of adult rats. Sci. Total Environ. 2020;698:133860. doi: 10.1016/j.scitotenv.2019.133860.
    1. Daniell H.W., Clark J.C., Pereira S.E., Niazi Z.A., Ferguson D.W., Dunn S.R., Figueroa M.L., Stratte P.T. Hypogonadism following prostate-bed radiation therapy for prostate carcinoma. Cancer. 2001;91:1889–1895. doi: 10.1002/1097-0142(20010515)91:10<1889::AID-CNCR1211>;2-U.
    1. Incrocci L. Radiotherapy for prostate cancer and sexual health. Transl. Androl. Urol. 2015;4:124–130.
    1. Huyghe E., Matsuda T., Daudin M., Chevreau C., Bachaud J.M., Plante P., Bujan L., Thonneau P. Fertility after testicular cancer treatments: Results of a large multicenter study. Cancer. 2004;100:732–737. doi: 10.1002/cncr.11950.
    1. Brydøy M., Fosså S.D., Klepp O., Bremnes R.M., Wist E.A., Wentzel-Larsen T., Dahl O. Paternity following treatment for testicular cancer. J. Natl. Cancer Inst. 2005;97:1580–1588. doi: 10.1093/jnci/dji339.
    1. Huddart R.A., Norman A., Moynihan C., Horwich A., Parker C., Nicholls E., Dearnaley D.P. Fertility, gonadal and sexual function in survivors of testicular cancer. Br. J. Cancer. 2005;93:200–207. doi: 10.1038/sj.bjc.6602677.
    1. Pasqualotto F.F., Agarwal A. Impact of cancers and treatment on male fertility: Radiation effects on spermatogenesis. In: Mulhall J.P., Applegarth L.D., Oates R.D., Schlegel P.N., editors. Fertility Preservation in Male Cancer Patients. Cambridge University Press; Cambridge, UK: 2013. pp. 104–109.
    1. Arnon J., Meirow D., Lewis-Roness H., Ornoy A. Genetic and teratogenic effects of cancer treatments on gametes and embryos. Hum. Reprod. Update. 2001;7:394–403. doi: 10.1093/humupd/7.4.394.
    1. Meistrich M.L. The effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil. Steril. 2013;100:1180–1186. doi: 10.1016/j.fertnstert.2013.08.010.
    1. Martin R.H., Hildebrand K., Yamamoto J. An increased frequency of human sperm chromosomal abnormalities after radiotherapy. Mutat. Res. 1986;174:219–225. doi: 10.1016/0165-7992(86)90155-7.
    1. Behari J. General, Applied and Systems Toxicology. Wiley; Hoboken, NJ, USA: 2009. Biological correlates of low-level electromagnetic-field exposure; p. 109.
    1. Kesari K.K., Behari J. Evidence for mobile phone radiation exposure effects on reproductive pattern of male rats: Role of ROS. Electromagn. Biol. Med. 2012;31:13–222. doi: 10.3109/15368378.2012.700292.
    1. Kumar S., Nirala J.P., Behari J., Paulraj R. Effect of electromagnetic irradiation produced by 3G mobile phone on male rat reproductive system in a simulated scenario. Indian J. Exp. Biol. 2014;52:890–897.
    1. Zilberlicht A., Weiner-Megnazi Z., Sheinfeld Y., Grach B., Lahav-Baratz S., Dirnfeld M. Habits of cell phone usage and sperm quality–Does it warrant attention? Reprod. Biomed. 2015;31:421–426. doi: 10.1016/j.rbmo.2015.06.006.
    1. Agarwal A., Deepinder F., Sharma R.K. Effect of cell phone usage on semen analysis in men attending infertility clinic: An observational study. Fertil. Steril. 2008;89:124–128. doi: 10.1016/j.fertnstert.2007.01.166.
    1. Roychoudhury S., Jedlicka J., Ondruska L., Bulla J., Massanyi P., Kolesarova A. Does 50 Hz extra low frequency electromagnetic field affect rabbit spermatozoa motility in vitro? Res. J. Biotechnol. 2008;3:244–249.
    1. Roychoudhury S., Jedlicka J., Parkanya V., Ondruska L., Massanyi P., Bulla J. Influence of a 50 Hz extra low frequency electromagnetic field on spermatozoa motility and fertilization rates in rabbits. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2009;44:1041–1047. doi: 10.1080/10934520902997029.
    1. Lukac N., Massanyi P., Roychoudhury S., Capcarova M., Tvrda E., Knazicka Z., Kolesarova A., Danko J. In vitro effects of radiofrequency electromagnetic waves on bovine spermatozoa motility. J. Environ. Sci. Health. 2011;46:1417–1423. doi: 10.1080/10934529.2011.607037.
    1. Jaffar F.H.F., Osman K., Ismail H.N., Chin K.Y., Ibrahim S.F. Adverse effects of wifi–Radiation on male reproductive system: A systematic review. Tohoku J. Exp. Med. 2019;248:169–179. doi: 10.1620/tjem.248.169.
    1. Saygin M., Asci H., Ozmen O., Cankara F.N., Dincoglu D., Ilhan I. Impact of 2.45 GHz microwave radiation on testicular inflammatory pathway biomarkers in young rats: Role of gallic acid. Environ. Toxicol. 2016;31:1771–1784. doi: 10.1002/tox.22179.
    1. Jonwal C., Sisodia R., Saxena V.K., Kesari K.K. Effect of 2.45GHz microwave radiation on fertility pattern in male mice. Gen. Physiol. Biophys. 2018;37:453–460. doi: 10.4149/gpb_2017059.
    1. Meena R., Kumari K., Kumar J., Rajamani P., Verma H.N., Kesari K.K. Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats. Electromagn. Biol. Med. 2013:1–11. doi: 10.3109/15368378.2013.781035.
    1. Lin Y.Y., Wu T., Liu J.Y., Gao P., Li K.C., Guo Q.Y., Yuan M., Lang H.Y., Zeng L.H., Guo G.Z. 1950MHz radio frequency electromagnetic radiation inhibits testosterone secretion of mouse Leydig cells. Int. J. Environ. Res. Public Health. 2017;15:17. doi: 10.3390/ijerph15010017.
    1. Qin F., Cao H., Yuan H., Guo W., Pei H., Cao Y., Tong J. 1800MHz radiofrequency fields inhibitstestosteroneproduction viaCaMKI /RORα pathway. Reprod. Toxicol. 2018 doi: 10.1016/j.reprotox.2018.08.014.
    1. Song B., Wang F., Wang W. Effect of aqueous extract from Morindaofficinalis F. C. Howon microwave-induced hypothalamic-pituitary-testis axis impairment in male Sprague-Dawley rats. Evid. Based Complement. Alternat. Med. 2015;2015 doi: 10.1155/2015/360730.
    1. Walker W.H. Non-classical actions of testosterone and spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol.Sci. 2010;365:1557–1569. doi: 10.1098/rstb.2009.0258.
    1. Ramaswamy S., Weinbauer G.F. Endocrine control of spermatogenesis: Role of FSH and LH/testosterone. Spermatogenesis. 2014;4:e996025. doi: 10.1080/21565562.2014.996025.
    1. Zhang Y., Guo X., Li T., Zhang M., Feng Y., Li W., Zhu X., Gu R., Zhou L. Effect and safety evaluation of XETHRU X4 radar radiation on sexual hormone levels in mice. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019;2019:1318–1320. doi: 10.1109/EMBC.2019.8857733.
    1. Shahin S., Singh S.P., Chaturvedi C.M. 2.45 GHz microwave radiation induced oxidative and nitrosativestress mediated testicular apoptosis: Involvement of a p53 dependent bax-caspase-3 mediated pathway. Environ. Toxicol. 2018;33:931–945. doi: 10.1002/tox.22578.
    1. Kesari K.K., Behari J. Microwave exposure affecting reproductive system in male rats. Appl. Biochem. Biotechnol. 2010;162:416–428. doi: 10.1007/s12010-009-8722-9.
    1. Condell R.A., Tappel A.L. Evidence for suitability of glutathione peroxidase as a protective enzyme: Studies of oxidative damage, restoration and proteolysis. Arch. Biochem. Biophy. 1993;223:407. doi: 10.1016/0003-9861(83)90604-5.
    1. Russo A., Troncoso N., Sanchez F., Vanella A. Propolis protects human spermatozoa from DNA damage caused by benzopyrene and exogenous reactive oxygen species. Life Sci. 2006;78:1401–1406. doi: 10.1016/j.lfs.2004.10.085.
    1. Aitken R.J., Baker M.A. Oxidative stress, sperm survival and fertility control. Mol. Cell. Endocrinol. 2006;250:66–69. doi: 10.1016/j.mce.2005.12.026.
    1. Kalia S., Bansal M.P. P53 is involved in inducing testicular apoptosis in mice by the altered redox status following tertiary butyl hydroperoxide treatment. Chem. Biol. Interact. 2008;174:193–200. doi: 10.1016/j.cbi.2008.06.004.
    1. Li D., Ueta E., Kimura T., Yamamoto T., Osaki T. Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci. 2004;95:644–650. doi: 10.1111/j.1349-7006.2004.tb03323.x.
    1. Mishra D.P., Pal R., Shaha C. Changes in cytosolic Ca2+ levels regulate Bcl-xSandBcl-xL expression in spermatogenic cells during apoptotic death. J. Biol. Chem. 2006;281:2133–2143. doi: 10.1074/jbc.M508648200.
    1. Chandra J., Samali A., Orrenius S. Triggering and modulation of apo-ptosis by oxidative stress. Free Radic. Biol. Med. 2000;29:323–333. doi: 10.1016/S0891-5849(00)00302-6.
    1. Lazebnik Y.A., Kaufmann S.H., Desnoyers S., Poirier G.G., Earnshaw W.C. Cleavageofpoly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 1994;371:346–347. doi: 10.1038/371346a0.
    1. Rowley M.J., Leach D.R., Warner G.A., Heller C.G. Effect of graded doses of ionizing radiation on the human testis. Radiat. Res. 1974;59:665–678. doi: 10.2307/3574084.
    1. Nichols R.C., Hu C., Bahary J.P., Zeitzer K.L., Souhami L., Leibenhaut M.H., Rotman M., Gore E.M., Balogh A.G., McGowan D., et al. Serum testosterone changes in patients treated with radiation therapy alone for prostate cancer on NRG oncology RTOG 9408. Adv. Radiat. Oncol. 2017;2:608–614. doi: 10.1016/j.adro.2017.07.004.
    1. Ishiyama H., Teh B.S., Paulino A.C., Yogeswarern S., Mai W., Xu B., Butler E.B. Serum testosterone level after intensity-modulated radio therapy in low-risk prostate cancer patients: Does testicular dose correlate with testosterone level? J. Radiat. Oncol. 2012;1:173–177. doi: 10.1007/s13566-012-0007-1.
    1. Pickles T., Graham P., Members of the British Columbia Cancer Agency Prostate Cohort Outcomes Initiative What happens to testosterone after prostate radiation mono therapy, and does it matter? J. Urol. 2002;167:2448–2452. doi: 10.1016/S0022-5347(05)65002-1.
    1. Pompe R.S., Karakiewicz P.I., Zaffuto E., Smith A., Bandini M., Marchioni M., Tian Z., Ley-Bannurah S., Schiffmann J., Delouya G., et al. External beam radiotherapy affects serum testosterone in patients with localized prostate cancer. J. Sex. Med. 2017;14:876–882. doi: 10.1016/j.jsxm.2017.04.675.
    1. Filchenkov G.N., Popoff E.H., Naumov A.D. The low dose gamma ionizing radiation impact upon cooperativity of androgen specific proteins. J. Environ. Radioact. 2013 doi: 10.1016/j.jenvard.2013.02.002.
    1. Zagars G.K., Pollack A. Serum testosterone levels after external beam radiation for clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 1997;39:85–89. doi: 10.1016/S0360-3016(97)00311-8.
    1. Zagars G.K. Management of stage I seminoma: Radiotherapy. In: Horwich A., editor. Testicular Cancer, Investigation and Management. Chapman & Hall Medical; London, UK: 1991. pp. 83–107.
    1. Shapiro E., Kinsella T.J., Makuch R.W., Fraass B.A., Glatstein E., Rosenberg S.A., Sherins R.J. Effects of fractionated irradiation on endocrine aspects of testicular function. J. Clin. Oncol. 1985;3:1232–1239. doi: 10.1200/JCO.1985.3.9.1232.
    1. Oberley-Deegan R.E., Steffan J.J., Rove K.O., Pate K.M., Weaver M.W., Spasojevic I., Frederick B., Raben D., Meacham R.B., Crapo J.D., et al. The antioxidant, MnTE-2-PyP, prevents side-effects incurred by prostate cancer irradiation. PLoS ONE. 2012;7:e44178. doi: 10.1371/journal.pone.0044178.
    1. Kimura M., Rabbani Z.N., Zodda A.R., Yan H., Jackson I.L., Polascik T.J., Donatucci C.F., Moul J.W., Vujaskovic Z., Koontz B.F. Role of oxidative stress in a rat model of radiation-induced erectile dysfunction. J. Sex. Med. 2012;9:1535–1549. doi: 10.1111/j.1743-6109.2012.02716.x.
    1. Ji H.J., Wang D.M., Wu Y.P., Niu Y.Y., Jia L.L., Liu B.W., Feng Q.J., Feng M.L. Wuzi Yanzong pill, a Chinese poly herbal formula, alleviates testicular damage in mice induced by ionizing radiation. BMC Complement. Altern. Med. 2016;16:509. doi: 10.1186/s12906-016-1481-6.
    1. Ezz M.K., Ibrahim N.K., Said M.M., Farrag M.A. The beneficial radioprotective effect of tomato seed oil against gamma radiation–induced damage in male rats. J. Diet Suppl. 2018;15:923–938. doi: 10.1080/19390211.2017.1406427.
    1. Bala S., Chugh N.A., Bansal S.C., Garg M.L., Koul A. Protective role of Aloe vera against X-ray induced testicular dysfunction. Andrologia. 2016:1–12. doi: 10.1111/and.12697.
    1. Chatterjee A., Kosmacek E.A., Oberly-Deegan R.E. MnTE-2-PyP treatment, or NOX4 inhibition, protects against radiation-, induced damage in mouse primary prostate fibroblasts by inhibiting the TGF-Beta 1 signaling pathway. Radiat. Res. 2017;187:367–381. doi: 10.1667/RR14623.1.
    1. Gorbunov N.V., Sharma P. Protracted oxidative alterations in the mechanism of hematopoietic acute radiation syndrome. Antioxidants. 2015;4:134–152. doi: 10.3390/antiox4010134.
    1. Batinic-Haberle I., Benov L., Spasojevic I., Fridovich I. The ortho effect makes manganese(III) meso-tetrakis(N-methylpyridinium-2-yl) porphyrin a powerful and potentially useful superoxide dismutase mimic. J. Biol. Chem. 1998;273:24521–24528. doi: 10.1074/jbc.273.38.24521.
    1. Beckman J.S., Koppenol W.H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am. J. Physiol. 1996;271:C1424–C1427. doi: 10.1152/ajpcell.1996.271.5.C1424.
    1. Zou M., Martin C., Ullrich V. Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite. Biol. Chem. 1997;378:707–713. doi: 10.1515/bchm.1997.378.7.707.
    1. Khan M.A., Thompsom C.S., Mumtaz F.H., Mikhailidis D.P., Morgan R.J., Bruckdorfer R.K., Naseem K.M. The effect of nitric oxide and peroxynitrate on rabbit cavernosal smooth muscle relaxation. World J. Urol. 2001;19:220–224. doi: 10.1007/s003450000162.
    1. Steers W.D. Pharmacologic treatment of erectile dysfunction. Rev. Urol. 2002;4:S17–S25.
    1. Manisalidis I., Stavropoulou E., Stavropoulos A., Bezirtzoglou E. Environmental and health impacts of air pollution: A review. Front. Public Health. 2002;8:14. doi: 10.3389/fpubh.2020.00014.
    1. Wang L., Luo D., Liu X., Zhu J., Wang F., Li B., Li L. Effects of PM2.5 exposure on reproductive system and its mechanisms. Chemosphere. 2021;264:128436. doi: 10.1016/j.chemosphere.2020.128436.
    1. El-Maraghy S.A., Nasssar N.N. Modulatory effects of lipoic acid and selenium against cadmium-induced biochemical alterations in testicular steroidogenesis. Biochem. Mol. Toxicol. 2011;25:15–25. doi: 10.1002/jbt.20354.
    1. Alkhedaide A., Alsheri Z.S., Sabry A., Abdel-Gaffer T., Soliman M.M., Attia S. Protective effect of grape seed extract against cadmium-induced testicular dysfunction. Mol. Med. Rep. 2016;13:3101–3109. doi: 10.3892/mmr.2016.4928.
    1. Zhang Q., Zou P., Zhan H., Zhang M., Zhang M., Ge R.S., Huang Y. Dihydrolipoamide dehydrogenase and cAMP are associated with cadmium mediated Leydig cell damage. Toxicol. Lett. 2011;205:183–189. doi: 10.1016/j.toxlet.2011.06.003.
    1. Kresovich J.K., Argos M., Turyk M.E. Associations of lead and cadmium with sex hormones in adult males. Environ. Res. 2015;142:25–33. doi: 10.1016/j.envres.2015.05.026.
    1. El-Magd M.A., Kahilo K.A., Nasr N.E., Kamal T., Shukry M., Saleh A.A. A potential mechanism associated with lead-induced testicular toxicity in rats. Andrologia. 2017;49 doi: 10.1111/and.12750.
    1. Cacciola G., Chioccarelli T., Fasano S., Pierantoni R., Cobellis G. Estrogens and spermiogenesis: New insights from type 1 cannabinoid receptor knockout mice. Int. J. Endocrinol. 2013;2013:501350. doi: 10.1155/2013/501350.
    1. Carreau S., Hess R.A. Oestrogens and spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010;365:1517–1535. doi: 10.1098/rstb.2009.0235.
    1. Carreau S., de Vienne C., Galeraud-Denis I. Aromatase and estrogens in man reproduction: A review and latest advances. Adv. Med. Sci. 2008;53:139–144. doi: 10.2478/v10039-008-0022-z.
    1. Elmallah M.I.Y., Elkhadragy M.F., Al-Olayan E.M., Moneim A.E.A. Protective effect of Fragaria ananassa crude extract on cadmium-induced lipid peroxidation, antioxidant enzymes suppression, and apoptosis in rat testes. Int. J. Mol. Sci. 2017;18:957. doi: 10.3390/ijms18050957.
    1. Mouro V.G.S., de Melo F.C.S.A., Martins A.L.P., Gomes M.L.M., de Oliveria J.M., de Freitas M.B.D., Demuner A.J., Leite J.P.V., de Matta S.L.P. Euterpe oleracea (Martius) oil reverses testicular alterations caused after cadmium administration. Biol. Trace Elem. Res. 2020;197:555–570. doi: 10.1007/s12011-019-02004-x.
    1. Chatterjee P.K., Anantharaya V.N.M., Shiva R.K., Kumar N.A., Shetty S.B., Budihal S.V., Bhat M.R., Kunal Pre- and post-treatment effects: Estimation of serum testosterone and lipid peroxidation levels on Moringaolifera extract induced cadmium exposed rats. Pharmacogn. J. 2017;9:846–849. doi: 10.5530/pj.2017.6.132.
    1. Ekhoye E.I., Olerimi S.M., Ehebha S.E. Comparison of the deleterious effects of yajiandcadmium chloride on testicular physio morphological and oxidative stress status: The gonado protective effects of an omega-3 fatty acid. Clin. Exp. Reprod. Med. 2020;47:168–179. doi: 10.5653/cerm.2019.03517.
    1. Koriem K.M.M., Fathi G.E., Salem H.A., Akram N.H., Gamil S.A. Protective role of pectin against cadmium induced testiculartoxicity and oxidative stress in rats. Toxicol. Mech. Method. 2013 doi: 10.3109/15376516.2012.748857.
    1. Choong G., Liu Y., Templeton D.M. Interplay of calcium and cadmium in mediating cadmium toxicity. Chem. Biol. Interact. 2014;211:54–65. doi: 10.1016/j.cbi.2014.01.007.
    1. Marzec-Wróblewska U., Kaminski P., Lakota P. Influence of chemical elements on mammalian spermatozoa. Folia Biol. 2012;58:7–15.
    1. Khanna S., Mitra S., Lakhera P.C., Khandelwal S. N-acetylcysteine effectively mitigates cadmium induced oxidative damage and cell death in Leydig cells in vitro. Drug Chem. Toxicol. 2016;39:74–80. doi: 10.3109/01480545.2015.1028068.
    1. Kelainy E.G., Laila I.M.I., Ibrahim S.R. The effect of ferulic acid against lead-induced oxidative stress and DNA damage in kidney and testes of rats. Environ. Sci. Pollut. Res. 2019;26:31675–31684. doi: 10.1007/s11356-019-06099-6.
    1. Dorostghoal M., Seyyednejad S.M., Nejad M.N.T. Cichorium intybus L. extract ameliorates testicular oxidative stress induced by lead acetate in male rats. Clin. Exp. Reprod. Med. 2020;47:161–167. doi: 10.5653/cerm.2019.03496.
    1. Olayaki L.A., Alagbonsi I.A., Abdulrahim A.H., Adeyami W.J., Bakare M., Omeiza M. Melatonin prevents and ameliorates lead-induced gonado toxicity through antioxidative and hormonal mechanisms. Toxicol. Ind. Health. 2018;34:596–608. doi: 10.1177/0748233718773508.
    1. Wen L., Jiang X., Sun J., Li X., Li X., Tian L., Li Y. Cyanidin-3-O-glucoside promotes the biosynthesis of progesterone throughthe protection of mitochondrial function in Pb-exposed rat leydig cells. Food Chem. Toxicol. 2018;112:427–434. doi: 10.1016/j.fct.2017.10.008.
    1. El-Sayed Y.S., El-Neweshy M.S. Impact of lead toxicity on male ratreproduction at hormonal and histopathological levels. Toxicol. Environ. Chem. 2010;4:765–774. doi: 10.1080/02772240902984453.
    1. Rubio J., Riqueros M.I., Gasco M., Yucra S., Miranda S., Gonzales G.F. Lepidiummeyenii (Maca) reversed the lead acetate induced-damage on reproductive function in male rats. Food Chem. Toxicol. 2006;44:1114–1122. doi: 10.1016/j.fct.2006.01.007.
    1. Kasperczyk A., Kasperczyk S., Horak S., Ostalowska A., Grucka- Mamczar E., Romuk E., Olejek A., Birkner E. Assessment of semen function and lipid peroxidation among lead exposed men. Toxicol. Appl. Pharmacol. 2008;228:378–384. doi: 10.1016/j.taap.2007.12.024.
    1. Ghaffari M.A., Motlagh B. In vitro effect of lead, silver, tin, mercury, indium and bismuth on human sperm creatine kinase activity: A presumable mechanism for men infertility. Iran. Biomed. J. 2011;15:38–43.
    1. Abdel-Wahhab M.A., Aly S.E. Antioxidant property of Nigella sativa (Black cumin) and Syzygium aromaticum (Cloves) in rats during aflatoxicosis. J. Appl. Toxicol. 2005;25:218–223. doi: 10.1002/jat.1057.
    1. Nita M., Grybowski A. The role of reactive oxygen species and oxidative stress in the patho mechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longev. 2016;2016:3164734. doi: 10.1155/2016/3164734.
    1. Ercal N., Gurer-Orhan H., Aykin-Burns N. Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem. 2001;1:529–539. doi: 10.2174/1568026013394831.
    1. Szweda P.A., Friguet B., Szweda L.I. Proteolysis, free radicals, and aging. Free Radic. Biol. Med. 2002;33:29–36. doi: 10.1016/S0891-5849(02)00837-7.
    1. Silbergeld E.K., Waalkes M., Rice J.M. Lead as a carcinogen: Experimental evidence and mechanisms of action. Am. J. Ind. Med. 2000;38:316–323. doi: 10.1002/1097-0274(200009)38:3<316::AID-AJIM11>;2-P.
    1. US Environmental Protection Agency (EPA) Particulate Matter (PM) Pollution. [(accessed on 20 January 2021)]; Available online: .
    1. Brook R.D., Franklin B., Cascio W., Hong Y., Howard G., Lipsett M., Luepker R., Mittleman M., Samet J., Smith S.C., Jr., et al. Expert panel on population and prevention science of the American Heart Association: Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation. 2004;109:2655–2671. doi: 10.1161/01.CIR.0000128587.30041.C8.
    1. Kloner R.A., Speakman M. Erectile dysfunction and atherosclerosis. Curr. Atheroscler. Rep. 2002;4:397–401. doi: 10.1007/s11883-002-0078-3.
    1. Ying Z., Xu X., Bai Y., Zhong J., Chen M., Liang Y., Zhao J., Liu D., Morishita M., Sun Q., et al. Long-term exposure to concentrated ambient PM2.5 increases mouse blood pressure through abnormal activation of the sympathetic nervous system: A role for hypothalamic inflammation. Environ. Health Perspect. 2014;122:79–86. doi: 10.1289/ehp.1307151.
    1. Qiu L., Chen M., Wang X., Qin X., Chen S., Qian Y., Liu Z., Cao Q., Ying Z. Exposure to concentrated ambient PM2.5 compromises spermatogenesis in a mouse model: Role of suppression of hypothalamus-pituitary-gonads axis. Toxicol. Sci. 2018;162:318–326. doi: 10.1093/toxsci/kfx261.
    1. Jeng H.A., Yu L. Alteration of sperm quality and hormone levels by polycyclic aromatic hydrocarbons on airborne particulate particles. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2008;43:675–681. doi: 10.1080/10934520801959815.
    1. Corradi P.F., Corradi R.B., Greene L.W. Physiology of the hypothalamic pituitary gonadal axis in the male. Urol. Clin. N. Am. 2016;43:151–162. doi: 10.1016/j.ucl.2016.01.001.
    1. Yang Y., Yang T., Liu S., Cao Z., Zhao Y., Su X., Liao Z., Teng X., Hua J. Concentrated ambient PM2.5 exposure affects mice sperm quality and testosterone biosynthesis. PeerJ. 2019;7:e8109. doi: 10.7717/peerj.8109.
    1. Albersen M., Orabi H., Lue T.F. Evaluation and treatment of erectile dysfunction in the aging male: A mini review. Gerontology. 2012;58:3–14. doi: 10.1159/000329598.
    1. Vanhoutte P.M. Ageing and endothelial dysfunction. Eur. Heart J. Suppl. 2002;4:A8–A17. doi: 10.1016/S1520-765X(02)90068-4.
    1. Aitken R.J., Baker M.A. Reactive oxygen species generation by human spermatozoa: A continuing enigma. Int. J. Androl. 2002;25:191–194. doi: 10.1046/j.1365-2605.2002.03521.x.
    1. Mishra D.P., Shaha C. Estrogen-induced spermatogenic cell apoptosis occurs via the mitochondrial pathway: Role of superoxide and nitric oxide. J. Biol. Chem. 2005;280:6181–6196. doi: 10.1074/jbc.M405970200.
    1. Iremashvili V., Brackett N.L., Lynne C.M. Impact of spinal cord injury. In: Parekattil S., Agarwal A., editors. Male Infertility. 1st ed. Springer; New York, NY, USA: 2012. pp. 337–345.
    1. Brackett N.L., Ferrell S.M., Aballa T.C., Amador M.J., Lynne C.M. Semen quality in spinal cord injured men: Does it progressively decline postinjury? Arch. Phys. Med. Rehabil. 1998;79:625–628. doi: 10.1016/S0003-9993(98)90034-X.
    1. Gillon G., Barnea O. Erection mechanism of the penis: A model-based analysis. J. Urol. 2002;168:2711–2715. doi: 10.1016/S0022-5347(05)64249-8.
    1. Wang W., Deng Z., Feng Y., Liao F., Feng S., Wang X. PM2.5 induced apoptosis in endothelial cell through the activation of p53-bax-caspase pathway. Chemosphere. 2017;177:135–143. doi: 10.1016/j.chemosphere.2017.02.144.
    1. Künzli N., Jerrett M., Garcia-Esteban R., Basagaña X., Beckermann B., Gilliland F., Medina M., Peters J., Hodis H.N., Mack W.J. Ambient air pollution and the progression of atherosclerosis in adults. PLoS ONE. 2010;5:e9096. doi: 10.1371/annotation/21f6b02b-e533-46ca-9356-86a0eef8434e.
    1. Xie L.N., Wang X.C., Dong X.J., Su L.Q., Zhu H.J., Wang C., Zhang D.P., Liu F.Y., Hou S.S., Dong B., et al. Concentration, spatial distribution, and health risk assessment of PFASs in serum of teenagers, tap water and soil near a Chinese fluorochemical industrial plant. Environ. Int. 2021;146:106166. doi: 10.1016/j.envint.2020.106166.
    1. Castellini C., Totaro M., Parisi A., D’Andrea S., Lucente L., Cordeschi G., Francavilla S., Francevilla F., Barbonetti A. Bisphenol A and male fertility: Myths and realities. Front. Endocrinol. 2020;11:353. doi: 10.3389/fendo.2020.00353.
    1. Pan G., Hanaoka T., Yoshimura M., Zhang S., Wang P., Tsukino H., Inoue K., Nakazawa H., Tsugane S., Takahasi K. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): A cross-sectional study in China. Environ. Health Perspect. 2006;114:1643–1648. doi: 10.1289/ehp.9016.
    1. Leong J.Y., Blachman-Braun R., Patel A.S., Patel P., Ramasamy R. Association between polychlorinated biphenyl 153 exposure and serum testosterone levels: Analysis of the National Health and Nutrition Examination Survey. Transl. Androl. Urol. 2019;8:666–672. doi: 10.21037/tau.2019.11.26.
    1. Lopez-Espinosa M.J., Fletcher T., Armstrong B., Genser B., Dhatariya K., Mondal D., Ducatman A., Leonardi G. Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with age of puberty among children living near a chemical plant. Environ. Sci. Technol. 2011;45:8160–8166. doi: 10.1021/es1038694.
    1. Li D., Zhou Z., Qing D., He Y., Wu T., Miao M., Wang J., Weng X., Ferber J.R., Herrinton L.J., et al. Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction. Hum. Reprod. 2010;255:19–27. doi: 10.1093/humrep/dep381.
    1. Groves-Kirkby N. BPA worsens male sexual function. Nat. Rev. Urol. 2010;7:60. doi: 10.1038/nrurol.2009.246.
    1. Hanaoka. T., Kawamura N., Hara K., Tsugane S. Urinary bisphenol A and plasma hormone concentrations in male workers exposed to bisphenol A diglycidyl ether and mixed organic solvents. Occup. Environ. Med. 2002;59:625–628. doi: 10.1136/oem.59.9.625.
    1. Xi W., Lee C.K., Yeung W.S., Giesy J.P., Wong M.H., Zhang X., Hecker M., Wong C.K. Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus-pituitary-gonadal axis of CD-1 mice. Reprod. Toxicol. 2011;31:409–417. doi: 10.1016/j.reprotox.2010.12.002.
    1. Nakamura D., Yanagiba Y., Duan Z., Ito Y., Okamura A., Asaeda N., Tagawa Y., Li C., Taya K., Zhang S.Y., et al. Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol. Lett. 2010;194:16–25. doi: 10.1016/j.toxlet.2010.02.002.
    1. Sanocka D., Kurpisz M. Reactive oxygen species and sperm cells. Reprod. Biol. Endocrinol. 2004;2:12. doi: 10.1186/1477-7827-2-12.
    1. Ullah A., Pirzada M., Jahan S., Ullah H., Turi N., Ullah W., Siddiqui M.F., Zakria M., Lodhi K.Z., Khan M.M. Impact of low-dose chronic exposure to bisphenol A and its analogue bisphenol B, bisphenol F and bisphenol S on hypothalamic-pituitary-testicular activities in adult rats: A focus on the possible hormonal mode of action. Food Chem. Toxicol. 2018;121:24–36. doi: 10.1016/j.fct.2018.08.024.
    1. Ha M., Guan X., Wei L., Li P., Yang M., Liu C. Di-(2-ethylhexyl) phthalate inhibits testosterone level through disturbed hypothalamic-pituitary-testis axis and ERK-mediated 5α-Reductase 2. Sci. Total Environ. 2016;563–564:566–575. doi: 10.1016/j.scitotenv.2016.04.145.
    1. Akingbemi B.T., Youker R.T., Sottas C.M., Ge R., Katz E., Klinefelter G.R., Zirkin B.R., Hardy M.P. Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate. Biol. Reprod. 2001;65:1252–1259. doi: 10.1095/biolreprod65.4.1252.
    1. Barlow N.J., Philips S.L., Wallace D.G., Sar M., Gaido K.W., Foster P.M.D. Quantitatve changes in gene expression in fetal rat testes following exposure to di(n-butyl) phthalate. Toxicol. Sci. 2003;73:431–441. doi: 10.1093/toxsci/kfg087.
    1. Sedha S., Kumar S., Shukla S. Role of oxidative stress in male reproductive dysfunctions with reference to phthalate compounds. Urol. J. 2015;12:2304–2316.
    1. Meroni S.B., Galardo M.N., Rindone G., Gorga A., Riera M.F., Cigorraga S.B. Molecular mechanisms and signaling pathways involved in Sertoli cell proliferation. Front. Endocrinol. 2019;10:224. doi: 10.3389/fendo.2019.00224.
    1. Zoeller R.T., Brown T.R., Doan L.L., Gore A.C., Skakkebaek N.E., Soto A.M., Woodruff T.J., Vom Saal F.S. Endocrine-disrupting chemicals and public health protection: A statement of principles from The Endocrine Society. Endocrinology. 2012;153:4097–4110. doi: 10.1210/en.2012-1422.
    1. Meeker J.D., Barr D.B., Hauser R. Pyrethroid insecticide metabolites are associated with serum hormone levels in adult men. Reprod. Toxicol. 2009;27:155–160. doi: 10.1016/j.reprotox.2008.12.012.
    1. Sansone A., Romanelli F., Gianfrilli D., Lenzi A. Endocrine evaluation of erectile dysfunction. Endocrine. 2014;46:423–430. doi: 10.1007/s12020-014-0254-6.
    1. Seftel A.D., Kathrins M., Niederberger C. Critical update of the 2010 endocrine society clinical practice guidelines for male hypogonadism: A systematic analysis. Mayo Clin. Proc. 2015;90:1104–1115. doi: 10.1016/j.mayocp.2015.06.002.
    1. Traish A.M., Miner M.M., Morgentaler A., Zitzmann M. Testosterone deficiency. Am. J. Med. 2011;124:578–587. doi: 10.1016/j.amjmed.2010.12.027.
    1. Talsness C.E., Andrade A.J., Kuriyama S.N., Taylor J.A., vom Saal F.S. Components of plastic: Experimental studies in animals and relevance for human health. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009;364:2079–2096. doi: 10.1098/rstb.2008.0281.
    1. Fromme H., Tittlemier S.A., Volkel W., Wilhelm M., Twardella D. Perfluorinated compounds--exposure assessment for the general population in Western countries. Int. J. Hyg. Environ. Health. 2009;212:239–270. doi: 10.1016/j.ijheh.2008.04.007.
    1. Joensen U.N., Veyrand B., Antignac J.P., Blomberg Jensen M., Petersen J.H., Marchand P., Skakkebaek N.E., Andersson A.M., Le Bizec B., Jorgensen N. PFOS (perfluorooctanesulfonate) in serum is negatively associated with testosterone levels, but not with semen quality, in healthy men. Hum. Reprod. 2013;28:599–608. doi: 10.1093/humrep/des425.
    1. Kraugerud M., Zimmer K.E., Ropstad E., Verhaegen S. Perfluorinated compounds differentially affect steroidogenesis and viability in the human adrenocortical carcinoma (H295R) in vitro cell assay. Toxicol. Lett. 2011;205:62–68. doi: 10.1016/j.toxlet.2011.05.230.
    1. Zhao B., Chu Y., Hardy D.O., Li X.K., Ge R.S. Inhibition of 3beta- and 17beta-hydroxysteroid dehydrogenase activities in rat Leydig cells by perfluoro octane acid. J. Steroid Biochem. Mol. Biol. 2010;118:13–17. doi: 10.1016/j.jsbmb.2009.09.010.
    1. Lu H., Zhang H., Gao J., Li Z., Bao S., Chen X., Wang Y., Ge R., Ye L. Effects of perfluorooctanoic acid on stem Leydig cell functions in the rat. Environ. Pollut. 2019;250:206–215. doi: 10.1016/j.envpol.2019.03.120.
    1. Eggert A., Cisneros-Montalvo S., Anandan S., Musilli S., Stukenborg J.B., Adamsson A., Nurmio M., Toppari J. The effects of perfluorooctanoic acid (PFOA) on fetal and adult rat testis. Reprod. Toxicol. 2019;90:68–76. doi: 10.1016/j.reprotox.2019.08.005.
    1. Wielsoe M., Long M., Ghisari M., Bonefeld-Jorgensen E.C. Perfluoro alkylated substances (PFAS) affect oxidative stress biomarkers in vitro. Chemosphere. 2015;129:239–245. doi: 10.1016/j.chemosphere.2014.10.014.
    1. Zeng Z., Song B., Xiao R., Zeng G., Gong J., Chen M., Xu P., Zhang P., Shen M., Yi H. Assessing the human health risk of perfluorooctane sulfonate by in vivo and in vitro studies. Environ. Int. 2019;126:598–610. doi: 10.1016/j.envint.2019.03.002.
    1. Ivanciuc. T., Ivanciuc O., Klein D.J. Modeling the bioconcentration factors and bioaccumulation factors of polychlorinated biphenyls with posetic quantitative super-structure/activity relationships (QSSAR) Mol. Divers. 2006;10:133–145. doi: 10.1007/s11030-005-9003-3.
    1. Murugesan P., Muthusamy T., Balasubramanian K., Arunakaran J. Polychlorinated biphenyl (Aroclor 1254) inhibits testosterone biosynthesis and antioxidant enzymes in cultured rat Leydig cells. Reprod. Toxicol. 2008;25:447–454. doi: 10.1016/j.reprotox.2008.04.003.
    1. Lyche J.L., Oskam I.C., Skaare J.U., Reksen O., Sweeney T., Dahl E., Farstad W., Ropstad E. Effects of gestational and lactational exposure to low doses of PCBs 126 and 153 on anterior pituitary and gonadal hormones and on puberty in mice. Reprod. Toxicol. 2004;19:87–95. doi: 10.1016/j.reprotox.2004.05.005.
    1. Okino S.T., Whitlock J.P. The aromatic hydrocarbon receptor, transcription, and endocrine aspects of dioxin action. Vitam. Horm. 2000;59:241–264. doi: 10.1016/s0083-6729(00)59009-8.
    1. Chen H., Cangello D., Benson S., Folmer J., Zhu H., Trush M.A., Zirkin B.R. Age-related increase in mitochondrial superoxide generation in the testosterone-producing cells of Brown Norway rat testes: Relationship to reduced steroidogenic function? Exp. Gerontol. 2001;36:1361–1373. doi: 10.1016/S0531-5565(01)00118-8.
    1. Cao L., Leers-Sucheta S., Azhar S. Aging alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells. J. Steroid Biochem. Mol. Biol. 2004;88:61–67. doi: 10.1016/j.jsbmb.2003.10.007.
    1. Toppari. J., Larsen J.C., Christiansen P. Male reproductive health and environmental xenoestrogens. Environ. Health Perspect. 1996;104:741–803. doi: 10.1289/ehp.96104s4741.
    1. Wolff M.S., Camann D., Gammon M., Stellman S.D. Proposed PCB congener groupings for epidemiological studies. Environ. Health Perspect. 1997;105:13–14. doi: 10.1289/ehp.9710513.
    1. Melis M.R., Argiolas A. Nitric oxide donors induce penile erection and yawning when injected in the central nervous system of male rats. Eur. J. Pharmacol. 1995;294:1–9. doi: 10.1016/0014-2999(95)00508-0.
    1. Lugg J.A., Rajfer J., González-Cadavid N.F. Dihydrotestosterone is the active androgen in the maintenance of nitric oxide-mediated penile erection in the rat. Endocrinology. 1995;136:1495–1501. doi: 10.1210/endo.136.4.7534702.
    1. Mills T.M. Vasoconstriction and vasodilation in erectile physiology. Curr. Urol. Rep. 2002;3:477–483. doi: 10.1007/s11934-002-0101-9.
    1. Polsky J.Y., Aronson K.J., Heaton J.P., Adams M.A. Pesticides and polychlorinated biphenyls as potential risk factors for erectile dysfunction. J. Androl. 2007;28:28–37. doi: 10.2164/jandrol.106.000851.
    1. Sadeghi A., Farokhi F., Shalijar-Jalali A., Najafi G. Protective effect of vitamin E on sperm quality and in vitro fertilizing potential and testosterone concentration in polyvinyl chloride treated male rats. Vet. Res. Forum. 2020;11:257–263. doi: 10.30466/vrf.2019.911842206.
    1. Lamb D.J. An approach that someday may boost testosterone biosynthesis in males with late-onset hypogonadism (low testosterone) Proc. Natl. Acad. Sci. USA. 2019;116:22904–22906. doi: 10.1073/pnas.1916719116.
    1. Ankerst D.P., Hoefler J., Bock S., Goodman P.J., Vickers A., Hernandez J., Sokoll L.J., Sanda M.G., Wei J.T., Leach R.J., et al. Prostate cancer prevention trial risk calculator 2.0 for the prediction of low-vs-high grade prostate cancer. Urology. 2014;83:1362–1368. doi: 10.1016/j.urology.2014.02.035.
    1. Francomano D., Bruzziches R., Barbaro G., Lenzi A., Aversa A. Effects of testosterone undecanoate replacement and withdrawal on cardio-metabolic, hormonal and body composition outcomes in severely obese hypogonadal men: A pilot study. J. Endocrinol. Investig. 2014;37:401–411. doi: 10.1007/s40618-014-0066-9.
    1. Ide V., Vanderschueren D., Antonio L. Treatment of men with central hypogonadism: Alternatives for testosterone replacement therapy. Int. J. Mol. Sci. 2021;22:21. doi: 10.3390/ijms22010021.
    1. Sharma R., Oni O.A., Gupta K., Sharma M., Sharma R., Singh V., Parashara D., Kamalakar S., Dawn B., Chen G. Normalization of testosterone levels after testosterone replacement therapy is associated with decreased incidence of atrial fibrillation. J. Am. Heart. Assoc. 2017:e004880. doi: 10.1161/JAHA.116.004880.
    1. Li S., Zhao Y., Yang Y., Wang X., Nie M., Wu X., Mao J. Metabolic effects of testosterone replacement therapy in patients with type 2 diabetes mellitus or metabolic syndrome: A meta-analysis. Int. J. Endocrinol. 2020;2020:4732021. doi: 10.1155/2020/4732021.
    1. Dean J.D., McMahon C.G., Guay A.T., Morgentaler A., Althof S.E., Becher E.F., Bivalacqua T.J., Burnett A.L., Buvat J., Meliegy A.E., et al. The international society for sexual medicine’s process of care for the assessment and management of testosterone deficiency in adult men. J. Sex. Med. 2015;12:1660–1686. doi: 10.1111/jsm.12952.
    1. Khera M., Adaikan G., Buvat J., Carrier S., El-Meliegy A., Hatzimouratidis K., McCoullough A., Morgentaler A., Torres L.O., Salonia A. Diagnosis and treatment of testosterone deficiency: Recommendations from the fourth international consultation for sexual medicine (ICSM 2015) J. Sex. Med. 2016;13:1787–1804. doi: 10.1016/j.jsxm.2016.10.009.
    1. Üçer O., Gümüş B. The treatment of late-onset hypogonadism. Turk. J. Urol. 2014;40:170–179. doi: 10.5152/tud.2013.97752.
    1. Rodriguez K.M., Pastuzak A.W. A history of penile implants. Transl. Androl. Urol. 2017;6:S851–S857. doi: 10.21037/tau.2017.04.02.
    1. Gonçalves L., de Souza R.R., Maifrino L.B., Caperuto É.C., Carbone P.O., Rodrigues B., Gama E.F. Resistance exercise and testosterone treatment alters the proportion of numerical density of capillaries of the left ventricle of aging Wistar rats. Aging Male. 2014;17:243–247. doi: 10.3109/13685538.2014.919252.
    1. Hayes L.D., Sculthorpe N., Herbert P., Baker J.S., Hullin D.A., Kilduff L.P., Grace F.M. Resting steroid hormone concentrations in lifetime exercisers and lifetime sedentary males. Aging Male. 2015;18:22–26. doi: 10.3109/13685538.2014.977246.
    1. Drugs FDA FDA-Approved Drugs. U.S Food and Drug Administration. [(accessed on 15 March 2021)]; Available online:
    1. Guiliano F., Peña B.M., Mishra A., Smith M.D. Efficacy results and quality-of-life measures in men receiving sildenafil citrate for the treatment of erectile dysfunction. Qual. Life Res. 2001;10:359–369. doi: 10.1023/A:1012270220064.
    1. Janini E.A., Isidori A.M., Gravina G.L., Aversa A., Balercia G., Bocchio M., Boscaro M., Carini C., Corona G., Fabbari A., et al. The ENDOTRIAL study: A spontaneous, open-label, randomized, multicenter, crossover study on the efficacy of sildenafil, tadalafil, and vardenafil in the treatment of erectile dysfunction. J. Sex. Med. 2009;6:2547–2560. doi: 10.1111/j.1743-6109.2009.01375.x.
    1. Kim E.D., Owen R.C., White G.S., Elkelany O.O., Rahnema C.D. Endovascular treatment of vasculogenic erectile dysfunction. Asian J. Androl. 2015;17:40–43. doi: 10.4103/1008-682X.143752.
    1. Sanchez-Borrego R., Molero F., Castaño R., Castelo-Branco C., Honrado M., Jurado A.R., Laforet E., Prieto R., Cabello F., Larrazabal M., et al. Spanish consensus on sexual health in men and women over 50. Maturitas. 2014;78:138–145. doi: 10.1016/j.maturitas.2014.02.020.
    1. Urology Care Foundation, American Urological Association Erectile Dysfunction: Diagnosis. [(accessed on 20 March 2021)]; Available online: .
    1. Coulson C., Jenkins J. Complementary and alternative medicine utilisation in NHS and private clinic settings: A United Kingdom survey of 400 infertility patients. J. Exp. Clin. Assist. Reprod. 2005;2:5. doi: 10.1186/1743-1050-2-5.
    1. Yadav R., Yadav A., Kumar A., Singh J.P. Understanding of andropause and its ayurvedic management: Conceptual study. IAMJ. 2019;7:446–450.
    1. Singh S.K., Rajoria K. Review of andropause in ayurveda, rasayan, vajikarana and panchakarma perspective. RRJoAsYN. 2014;1:19–26.
    1. George A., Liske E. Acceptance of herbal medicine in andrology. In: Henkel R., Agarwal A., editors. Herbal Medicine in Andrology an Evidence-Based Update. 1st ed. Academic Press; Cambridge, MA, USA: 2021. pp. 215–255.
    1. Sengupta P., Agarwal A., Pogrebetskaya M., Roychoudhury S., Durairajanayagam D., Henkel R. Role of Withania somnifera (Ashwagandha) in the management of male infertility. Reprod. Biomed. 2017;36:311–326. doi: 10.1016/j.rbmo.2017.11.007.
    1. Lohiya N.K., Balasubramanian K., Ansari A.S. Indian folklore medicine in managing men’s health and wellness. Andrologia. 2016;48:894–907. doi: 10.1111/and.12680.
    1. Amano T., Imao T., Takemae K. Clinical efficacy of Japanese herbal medicine (Kampo) in patients with late-onset hypogonadism. Aging Male. 2010;13:166–173. doi: 10.3109/13685530903536684.
    1. Choi S.W., Jeon S.H., Kwon E.B., Zhu G.Q., Lee K.W., Choi J.B., Jeong H.C., Kim K.S., Bae S.R., Bae W.J., et al. Effect of Korean herbal formula (modified ojayeonjonghwan) on androgen receptor expression in an aging rat model of late onset hypogonadism. World J. Mens Health. 2019;37:105–112. doi: 10.5534/wjmh.180051.
    1. Zhang Z.J., Ji S.Y., Dong W., Zhang Y.N., Zhang E.H., Bin Z. A herbal medicine, saikokaryokotsuboreito, improves serum testosterone levels and affects sexual behavior of in old male mice. Aging Male. 2015;18:106–111. doi: 10.3109/13685538.2014.963042.
    1. Roychoudhury S., Chakraborty S., Das A., Guha P., Agarwal A., Henkel R. Herbal medicine used to treat andrological problems: Asian and Indian subcontinent: Ginkgo biloba, Curcuma longa, and Camellia sinensis. In: Henkel R., Agarwal A., editors. Herbal Medicine in Andrology an Evidence-Based Update. 1st ed. Academic Press; Cambridge, MA, USA: 2021. pp. 129–146.
    1. Roychoudhury S., Agarwal A., Cho C.L. Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reprod. Biomed. 2017;34:487–498. doi: 10.1016/j.rbmo.2017.02.006.
    1. Lee J.K.C., Tan R.B.W., Chung E. Erectile dysfunction treatment and traditional medicine—Can East and West medicine coexist? Transl. Androl. Urol. 2017;6:91–100. doi: 10.21037/tau.2016.11.13.

Source: PubMed

3
Subskrybuj