Sildenafil increases muscle protein synthesis and reduces muscle fatigue

Melinda Sheffield-Moore, John E Wiktorowicz, Kizhake V Soman, Christopher P Danesi, Michael P Kinsky, Edgar L Dillon, Kathleen M Randolph, Shannon L Casperson, Dennis C Gore, Astrid M Horstman, James P Lynch, Barbara M Doucet, Joni A Mettler, Jeffrey W Ryder, Lori L Ploutz-Snyder, Jean W Hsu, Farook Jahoor, Kristofer Jennings, Gregory R White, Susan D McCammon, William J Durham, Melinda Sheffield-Moore, John E Wiktorowicz, Kizhake V Soman, Christopher P Danesi, Michael P Kinsky, Edgar L Dillon, Kathleen M Randolph, Shannon L Casperson, Dennis C Gore, Astrid M Horstman, James P Lynch, Barbara M Doucet, Joni A Mettler, Jeffrey W Ryder, Lori L Ploutz-Snyder, Jean W Hsu, Farook Jahoor, Kristofer Jennings, Gregory R White, Susan D McCammon, William J Durham

Abstract

Reductions in skeletal muscle function occur during the course of healthy aging as well as with bed rest or diverse diseases such as cancer, muscular dystrophy, and heart failure. However, there are no accepted pharmacologic therapies to improve impaired skeletal muscle function. Nitric oxide may influence skeletal muscle function through effects on excitation-contraction coupling, myofibrillar function, perfusion, and metabolism. Here we show that augmentation of nitric oxide-cyclic guanosine monophosphate signaling by short-term daily administration of the phosphodiesterase 5 inhibitor sildenafil increases protein synthesis, alters protein expression and nitrosylation, and reduces fatigue in human skeletal muscle. These findings suggest that phosphodiesterase 5 inhibitors represent viable pharmacologic interventions to improve muscle function.

Keywords: exercise; metabolism; protein S-nitrosylation; translational research.

© 2013 Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
Study time line.
Figure 2
Figure 2
Effects of sildenafil treatment on skeletal muscle function. (A) Isometric strength of knee extensors (mean percent baseline day ± standard error (SE)) after 8 days of treatment, determined using dynamometry. (B) Isokinetic (120° per second) strength of knee extensors (mean percent baseline day ± SE) after 8 days of treatment, determined using dynamometry. (C) Successful repetitions (mean percent baseline day ± SE) during fatiguing isokinetic (120° per second) contractions after 8 days of treatment. *p = 0.016 vs. placebo, unpaired t‐test, N = 6 placebo, 5 sildenafil. Individual numbers of successful repetitions before (pre) and after (post) treatment for those receiving placebo (upper panel) and sildenafil (lower panel) are shown at right.
Figure 3
Figure 3
Effects of sildenafil treatment on skeletal muscle proteome. (A) Skeletal muscle protein synthesis (mean ± SE) after 8 days of treatment, determined using the precursor‐product approach to determine fractional synthesis rate. *p = 0.004 vs. placebo, unpaired t‐test, N = 6 placebo, 5 sildenafil. Canonical (B) and functional (C) pathways differentially affected by sildenafil and placebo, determined using Ingenuity Pathways Analysis (IPA) of protein expression in skeletal muscle biopsy samples (top 6 pathways shown). Canonical (D) and functional (E) pathways differentially affected by sildenafil and placebo, determined using IPA of protein S‐nitrosylation in skeletal muscle biopsy samples (top six pathways shown).

References

    1. Cesari M, Pahor M, Lauretani F, Zamboni V, Bandinelli S, Bernabei R, Guralnik JM, Ferrucci L. Skeletal muscle and mortality results from the InCHIANTI Study. J Gerontol A Biol Sci Med Sci. 2009; 64(3): 377–384.
    1. Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006; 61(1): 72–77.
    1. Manini, TM , Clark BC. Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci. 2012; 67(1): 28–40.
    1. Martin EA, Barresi R, Byrne BJ, Tsimerinov EI, Scott BL, Walker AE, Gurudevan SV, Anene F, Elashoff RM, Thomas GD, et al. Tadalafil alleviates muscle ischemia in patients with becker muscular dystrophy. Sci Transl Med. 2012; 4(162): 162ra155.
    1. Timmerman KL, Lee JL, Fujita S, Dhanani S, Dreyer HC, Fry CS, Drummond MJ, Sheffield‐Moore M, Rasmussen BB, Volpi E. Pharmacological vasodilation improves insulin‐stimulated muscle protein anabolism but not glucose utilization in older adults. Diabetes. 2010; 59(11): 2764–2771.
    1. Dillon EL, Casperson SL, Durham WJ, Randolph KM, Urban RJ, Volpi E, Ahmad M, Kinsky MP, Sheffield‐Moore M. Muscle protein metabolism responds similarly to exogenous amino acids in healthy younger and older adults during NO‐induced hyperemia. Am J Physiol Regul Integr Comp Physiol. 2011; 301(5): R1408–R1417.
    1. Ito N, Ruegg UT, Kudo A, Miyagoe‐Suzuki Y, Takeda S. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med. 2013; 19: 101–106.
    1. Brunelli S, Sciorati C, D'Antona G, Innocenzi A, Covarello D, Galvez BG, Perrotta C, Monopoli A, Sanvito F, Bottinelli R, et al. Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proc Natl Acad Sci U S A. 2007; 104(1): 264–269.
    1. Buono R, Vantaggiato C, Pisa V, Azzoni E, Bassi MT, Brunelli S, Sciorati C, Clementi E. Nitric oxide sustains long‐term skeletal muscle regeneration by regulating fate of satellite cells via signaling pathways requiring Vangl2 and cyclic GMP. Stem Cells. 2012; 30(2): 197–209.
    1. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 2003; 299(5608): 896–899.
    1. Joseph AM, Adhihetty PJ, Buford TW, Wohlgemuth SE, Lees HA, Nguyen LM, Aranda JM, Sandesara BD, Pahor M, Manini TM. et al. The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high‐ and low‐functioning elderly individuals. Aging Cell. 2012; 11(5): 801–809.
    1. Safdar A, Hamadeh MJ, Kaczor JJ, Raha S, Debeer J, Tarnopolsky MA. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS One. 2010; 5(5): e10778.
    1. Dillon EL, Volpi E, Wolfe RR, Sinha S, Sanford AP, Arrastia CD, Urban RJ, Casperson SL, Paddon‐Jones D, Sheffield‐Moore M. Amino acid metabolism and inflammatory burden in ovarian cancer patients undergoing intense oncological therapy. Clin Nutr. 2007; 26(6): 736–743.
    1. White JP, Baltgalvis KA, Puppa MJ, Sato S, Baynes JW, Carson JA. Muscle oxidative capacity during IL‐6‐dependent cancer cachexia. Am J Physiol Regul Integr Comp Physiol. 2011; 300(2): R201–R211.
    1. Sander M, Chavoshan B, Harris SA, Iannaccone ST, Stull JT, Thomas GD, Victor RG. Functional muscle ischemia in neuronal nitric oxide synthase‐deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2000; 97(25): 13818–13823.
    1. Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell. 1995; 82(5): 743–752.
    1. Percival JM, Anderson KN, Gregorevic P, Chamberlain JS, Froehner SC. Functional deficits in nNOSmu‐deficient skeletal muscle: myopathy in nNOS knockout mice. PLoS One. 2008; 3(10): e3387.
    1. Percival JM, Whitehead NP, Adams ME, Adamo CM, Beavo JA, Froehner SC. Sildenafil reduces respiratory muscle weakness and fibrosis in the mdx mouse model of Duchenne muscular dystrophy. J Pathol. 2012; 228(1): 77–87.
    1. Kobayashi YM, Rader EP, Crawford RW, Iyengar NK, Thedens DR, Faulkner JA, Parikh SV, Weiss RM, Chamberlain JS, Moore SA, et al. Sarcolemma‐localized nNOS is required to maintain activity after mild exercise. Nature. 2008; 456(7221): 511–515.
    1. Giuliano F, Jackson G, Montorsi F, Martin‐Morales A, Raillard P. Safety of sildenafil citrate: review of 67 double‐blind placebo‐controlled trials and the postmarketing safety database. Int J Clin Pract. 2010; 64(2): 240–255.
    1. Durham WJ, Aracena‐Parks P, Long C, Rossi AE, Goonasekera SA, Boncompagni S, Galvan DL, Gilman CP, Baker MR, Shirokova N, et al. RyR1 S‐nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell 2008; 133(1): 53–65.
    1. Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L, Matecki S, Lacampagne A, Marks AR. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 2009; 15(3): 325–330.
    1. Bellinger AM, Reiken S, Dura M, Murphy PW, Deng SX, Landry DW, Nieman D, Lehnart SE, Samaru M, LaCampagne A, et al. Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci U S A 2008; 105(6): 2198–2202.
    1. Samengo G, Avik A, Fedor B, Whittaker D, Myung KH, Wehling‐Henricks M, Tidball JG. Age‐related loss of nitric oxide synthase in skeletal muscle causes reductions in calpain S‐nitrosylation that increase myofibril degradation and sarcopenia. Aging Cell. 2012; 11(6): 1036–1045.
    1. Butt E, Bernhardt M, Smolenski A, Kotsonis P, Frohlich LG, Sickmann A, Meyer HE, Lohmann SM, Schmidt HH. Endothelial nitric‐oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide‐dependent protein kinases. J Biol Chem. 2000; 275(7): 5179–5187.
    1. Gebska MA, Stevenson BK, Hemnes AR, Bivalacqua TJ, Haile A, Hesketh GG, Murray CI, Zaiman AL, Halushka MK, Krongkaew N, et al. Phosphodiesterase‐5A (PDE5A) is localized to the endothelial caveolae and modulates NOS3 activity. Cardiovasc Res. 2011; 90(2): 353–363.
    1. Sakurada M, Shichiri M, Imamura M, Azuma H, Hirata Y. Nitric oxide upregulates dimethylarginine dimethylaminohydrolase‐2 via cyclic GMP induction in endothelial cells. Hypertension. 2008; 52(5): 903–909.
    1. Wolfe RR. C.D.: Isotope Tracers in Metabolic Research: Principles and Practice of Kinetic Analysis. 2nd edn New York: Wiley‐Liss; 2005.
    1. Wiktorowicz JE, Stafford S, Rea H, Urvil P, Soman K, Kurosky A, Perez‐Polo JR, Savidge TC. Quantification of cysteinyl S‐nitrosylation by fluorescence in unbiased proteomic studies. Biochemistry. 2011; 50(25): 5601–5614.
    1. Compher C, Frankenfield D, Keim N, Roth‐Yousey L. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006; 106(6): 881–903.
    1. Ferrando AA, Tipton KD, Doyle D, Phillips SM, Cortiella J, Wolfe RR. Testosterone injection stimulates net protein synthesis but not tissue amino acid transport. Am J Physiol. 1998; 275(5 Pt 1): E864–E871.
    1. Urban RJ, Bodenburg YH, Gilkison C, Foxworth J, Coggan AR, Wolfe RR, Ferrando A. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol. 1995; 269(5 Pt 1): E820–E826.
    1. Sheffield‐Moore M, Dillon EL, Casperson SL, Gilkison CR, Paddon‐Jones D, Durham WJ, Grady JJ, Urban RJ. A randomized pilot study of monthly cycled testosterone replacement or continuous testosterone replacement versus placebo in older men. J Clin Endocrinol Metab. 2011; 96(11): E1831–E1837.
    1. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, Chen X, Yarasheski KE, Magliano L, Dzekov C, et al. Testosterone dose‐response relationships in healthy young men. Am J Physiol Endocrinol Metab 2001; 281(6): E1172–81.
    1. Storer TW, Magliano L, Woodhouse L, Lee ML, Dzekov C, Dzekov J, Casaburi R, Bhasin S. Testosterone dose‐dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. J Clin Endocrinol Metab 2003; 88(4): 1478–85.
    1. Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile A, Francolini M, et al. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci U S A 2004; 101(47): 16507–12.
    1. Fitts RH, Booth FW, Winder WW, Holloszy JO. Skeletal muscle respiratory capacity, endurance, and glycogen utilization. Am J Physiol 1975; 228(4): 1029–33.
    1. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984; 56(4): 831–8.
    1. Balon TW, Nadler JL. Nitric oxide mediates skeletal glucose transport. Am J Physiol 1996; 270(6 Pt 1): E1058–9.
    1. Baron AD. The coupling of glucose metabolism and perfusion in human skeletal muscle. The potential role of endothelium‐derived nitric oxide. Diabetes 1996; 45 Suppl 1: S105–S109.
    1. Chai W, Dong Z, Wang N, Wang W, Tao L, Cao W, Liu Z. Glucagon‐like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide‐dependent mechanism. Diabetes. 2012; 61(4): 888–896.
    1. Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, Inoue M, Itoh S, Takamoto I, Sasako T, et al. Impaired insulin signaling in endothelial cells reduces insulin‐induced glucose uptake by skeletal muscle. Cell Metab. 2011; 13(3): 294–307.
    1. Mitschke MM, Hoffmann LS, Gnad T, Scholz D, Kruithoff K, Mayer P, Haas B, Sassmann A, Pfeifer A, Kilic A. Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB J. 2013; 27(4): 1621–1630.
    1. Ayala JE, Bracy DP, Julien BM, Rottman JN, Fueger PT, Wasserman DH. Chronic treatment with sildenafil improves energy balance and insulin action in high fat‐fed conscious mice. Diabetes 2007; 56(4): 1025–1033.
    1. Biggar KK, Storey KB. The emerging roles of microRNAs in the molecular responses of metabolic rate depression. J Mol Cell Biol. 2011; 3(3): 167–175.
    1. Reeds PJ, Wahle KW, Haggarty P. Energy costs of protein and fatty acid synthesis. Proc Nutr Soc 1982; 41(2): 155–159.

Source: PubMed

3
Subskrybuj