Altered Gut Microbiota and Short-Chain Fatty Acids After Vonoprazan-Amoxicillin Dual Therapy for Helicobacter pylori Eradication

Yi Hu, Xin Xu, Yao-Bin Ouyang, Cong He, Nian-Shuang Li, Chuan Xie, Chao Peng, Zhen-Hua Zhu, Xu Shu, Yong Xie, Nong-Hua Lu, Yin Zhu, Yi Hu, Xin Xu, Yao-Bin Ouyang, Cong He, Nian-Shuang Li, Chuan Xie, Chao Peng, Zhen-Hua Zhu, Xu Shu, Yong Xie, Nong-Hua Lu, Yin Zhu

Abstract

The combination of vonoprazan (VPZ) and amoxicillin (VA therapy) has been shown to achieve acceptable eradication rates for Helicobacter pylori (H. pylori). Herein, our aim was to explore the short-term effect of VA therapy on the gut microbiota and short-chain fatty acids (SCFAs) using human fecal samples. A total of 119 H. pylori-positive patients were randomized into low- or high-dose VA therapy (i.e., amoxicillin 1 g b.i.d. or t.i.d. and VPZ 20 mg b.i.d.) for 7 or 10 days. Thirteen H. pylori-negative patients served as controls. Fecal samples were collected from H. pylori-positive and H. pylori-negative patients. The gut microbiota and SCFAs were analyzed using 16S rRNA gene sequencing and gas chromatography-mass spectrometry, respectively. The gut microbiota in H. pylori-positive patients exhibited increased richness, diversity, and better evenness than matched patients. Fifty-three patients studied before and after H. pylori eradication were divided into low (L-VA) and high (H-VA) amoxicillin dose groups. The diversity and composition of the gut microbiota among L-VA patients exhibited no differences at the three time points. However, among H-VA patients, diversity was decreased, and the microbial composition was altered immediately after H-VA eradication but was restored by the confirmation time point. The decreased abundance of Anaerostipes, Dialister, and Lachnospira induced by H-VA was associated with altered SCFA levels. VA dual therapy for H. pylori eradication has minimal negative effects on gut microbiota and SCFAs.

Keywords: Helicobacter pylori; amoxicillin; eradication; gut microbiota; short-chain fatty acids; vonoprazan.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Hu, Xu, Ouyang, He, Li, Xie, Peng, Zhu, Shu, Xie, Lu and Zhu.

Figures

Figure 1
Figure 1
The flowchart of this study and diversity of the gut microbiota between H. pylori-positive patients and normal controls. (A) Overview of the study design. Bacterial alpha diversity estimated by Chao1 (B), Shannon (C), and Pielou indices (D) between H. pylori-positive patients and normal controls. (E) Bacterial beta diversity estimated by PCoA between H. pylori-positive patients and normal controls. L-VA: dual therapy consisting of a low dose of amoxicillin (1000 mg b.i.d.) and VPZ (20 mg b.i.d.); H-VA: dual therapy consisting of a high dose of amoxicillin (1000 mg t.i.d.) and VPZ (20 mg b.i.d.); SCFAs, short-chain fatty acids; Hp, H. pylori-positive; Control, H. pylori-negative; PCoA, principal coordinate analysis. *P < 0.05, **P < 0.01.
Figure 2
Figure 2
The composition and predicted functional differences between H. pylori-positive patients and normal controls. (A) The composition of the gut microbiota between H. pylori-positive patients and normal controls at the phylum level (the abundance of the top 10 is shown). (B) Differences in specific bacterial taxa between H. pylori-positive and normal controls by LEfSe. (C) Significant signaling pathways associated with H.pylori infection according to KEGG pathway analysis. Ecological co-occurrence network between H. pylori-positive (D), and normal controls (E) Hp: H.pylori-positive; Control: H. pylori-negative.
Figure 3
Figure 3
Analysis of SCFAs in H. pylori-positive patients and normal controls. (A) Heatmap of SCFA differences across different samples in H. pylori-positive and normal control groups. The quantification of total SCFAs (B), acetic acid (C), propionic acid (D), butyric acid (E), isobutyric acid (F), isovaleric acid (G), valeric acid (H), and hexanoic acid (I) in the H. pylori-positive patients and normal control groups. Hp: H. pylori-positive; Control: H. pylori-negative.
Figure 4
Figure 4
The diversity of the gut microbiota between the L-VA and H-VA therapy groups. Bacterial alpha diversity estimated by Chao1 (A), Shannon (B), and Pielou indices (C) at the three time points of L-VA therapy. The Chao1 (D), Shannon (E), and Pielou indices (F) at the three time points of H-VA therapy. Bacterial beta diversity estimated by PCoA at three time points of L-VA (G) and H-VA (H) therapy. L-VA: dual therapy consisting of a low dose of amoxicillin (1000 mg b.i.d.) and VPZ (20 mg b.i.d.); H-VA: dual therapy consisting of a high dose of amoxicillin (1000 mg t.i.d.) and VPZ (20 mg b.i.d.); L-1: the time point before eradication in the L-VA group; L-2: the time point after eradication in the L-VA group; L-3: the time point of confirmation in the L-VA group; H-1: the time point before eradication in the H-VA group; H-2: the time point after eradication in the H-VA group; H-3: the time point of confirmation in the H-VA group; * P<0.05.
Figure 5
Figure 5
Composition differences at the three time points in L-VA and H-VA therapy. The composition of the gut microbiota between L-VA (A) and H-VA (B) therapy at the phylum level (the abundance of Top 10 are shown). Differences in specific bacterial taxa when comparing L-1 and L-2 (C), L-2 and L-3 (D), H-1 and H-2 (E), and H-2 and H-3 (F) by LEfSe. L-1: the time point before eradication in the L-VA group; L-2: the time point after eradication in the L-VA group; L-3: the time point of confirmation in the L-VA group; H-1: the time point before eradication in the H-VA group; H-2: the time point after eradication in the H-VA group; H-3: the time point of confirmation in the H-VA group.
Figure 6
Figure 6
SCFA analysis of L-VA therapy. Heatmap of SCFA differences across different samples at the three time points of L-VA therapy (A for L-1 and L-2, B for L-2 and L-3, C for L-1 and L-3). The quantification of total SCFAs (D) and acetic acid (E) at the three time points of L-VA therapy. Red represents a positive association, and blue represents a negative association. L-1: the time point before eradication in the L-VA group; L-2: the time point after eradication in the L-VA group; L-3: the time point of confirmation in the L-VA group; * P<0.05.
Figure 7
Figure 7
SCFA analysis of H-VA therapy. Heatmap of SCFA differences across different samples at the three time points of H-VA therapy (A for H-1 and H-2, B for H-2 and H-3, C for H-1 and H-3), red represents a positive association, and blue represents a negative association. The quantification of total SCFAs (D), acetic acid (E), propionic acid (F), and valeric acid (G) at the three time points of H-VA therapy. (H) Integrated analysis of SCFA alterations associated with gut microbiota among the H-VA group, blue represents a positive association, and red represents a negative association. H-1: the time point before eradication in the H-VA group; H-2: the time point after eradication in the H-VA group; H-3: the time point of confirmation in the H-VA group; * P<0.05.

References

    1. Amieva M., Peek R. J. (2016). Pathobiology of Helicobacter Pylori-Induced Gastric Cancer. Gastroenterology 150 (1), 64–78. doi: 10.1053/j.gastro.2015.09.004
    1. Bolyen E., Rideout J. R., Dillon M. R., Bokulich N. A., Abnet C. C., Al-Ghalith G. A., et al. . (2019). Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 37 (8), 852–857. doi: 10.1038/s41587-019-0209-9
    1. Bui T., Manneras-Holm L., Puschmann R., Wu H., Troise A. D., Nijsse B., et al. . (2021). Conversion of Dietary Inositol Into Propionate and Acetate by Commensal Anaerostipes Associates With Host Health. Nat. Commun. 12 (1), 4798. doi: 10.1038/s41467-021-25081-w
    1. Chen C. C., Liou J. M., Lee Y. C., Hong T. C., El-Omar E. M., Wu M. S. (2021). The Interplay Between Helicobacter Pylori and Gastrointestinal Microbiota. Gut Microbes 13 (1), 1–22. doi: 10.1080/19490976.2021.1909459
    1. Desantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., et al. . (2006). Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible With ARB. Appl. Environ. Microbiol. 72 (7), 5069–5072. doi: 10.1128/AEM.03006-05
    1. Du Y., Zhu H., Liu J., Li J., Chang X., Zhou L., et al. . (2020). Consensus on Eradication of Helicobacter Pylori and Prevention and Control of Gastric Cancer in China (2019, Shanghai). J. Gastroenterol. Hepatol. 35 (4), 624–629. doi: 10.1111/jgh.14947
    1. El-Serag H. B., Kao J. Y., Kanwal F., Gilger M., Lovecchio F., Moss S. F., et al. . (2018). Houston Consensus Conference on Testing for Helicobacter Pylori Infection in the United States. Clin. Gastroenterol. Hepatol. 16 (7), 992–1002.e6. doi: 10.1016/j.cgh.2018.03.013
    1. Fitzgerald E., Lambert K., Stanford J., Neale E. P. (2021). The Effect of Nut Consumption (Tree Nuts and Peanuts) on the Gut Microbiota of Humans: A Systematic Review. Br. J. Nutr. 125 (5), 508–520. doi: 10.1017/S0007114520002925
    1. Frost F., Kacprowski T., Ruhlemann M., Bang C., Franke A., Zimmermann K., et al. . (2019). Helicobacter Pylori Infection Associates With Fecal Microbiota Composition and Diversity. Sci. Rep. 9 (1), 20100. doi: 10.1038/s41598-019-56631-4
    1. Furuta T., Yamade M., Kagami T., Uotani T., Suzuki T., Higuchi T., et al. . (2020). Dual Therapy With Vonoprazan and Amoxicillin Is as Effective as Triple Therapy With Vonoprazan, Amoxicillin and Clarithromycin for Eradication of Helicobacter Pylori . Digestion 101 (6), 743–751. doi: 10.1159/000502287
    1. Ge Z., Sheh A., Feng Y., Muthupalani S., Ge L., Wang C., et al. . (2018). Helicobacter Pylori-Infected C57BL/6 Mice With Different Gastrointestinal Microbiota Have Contrasting Gastric Pathology, Microbial and Host Immune Responses. Sci. Rep. 8 (1), 8014. doi: 10.1038/s41598-018-25927-2
    1. Gotoda T., Kusano C., Suzuki S., Horii T., Ichijima R., Ikehara H. (2020). Clinical Impact of Vonoprazan-Based Dual Therapy With Amoxicillin for H. Pylori Infection in a Treatment-Naive Cohort of Junior High School Students in Japan. J. Gastroenterol. 55 (10), 969–976. doi: 10.1007/s00535-020-01709-4
    1. Graham D. Y. (2015). Helicobacter Pylori Update: Gastric Cancer, Reliable Therapy, and Possible Benefits. Gastroenterology 148 (4), 719–731.e3. doi: 10.1053/j.gastro.2015.01.040
    1. Gravina A. G., Priadko K., Ciamarra P., Granata L., Facchiano A., Miranda A., et al. . (2020). Extra-Gastric Manifestations of Helicobacter Pylori Infection. J. Clin. Med. 9 (12), 3887. doi: 10.3390/jcm9123887
    1. Heimesaat M. M., Fischer A., Plickert R., Wiedemann T., Loddenkemper C., Gobel U. B., et al. . (2014). Helicobacter Pylori Induced Gastric Immunopathology Is Associated With Distinct Microbiota Changes in the Large Intestines of Long-Term Infected Mongolian Gerbils. PLoS One 9 (6), e100362. doi: 10.1371/journal.pone.0100362
    1. He C., Peng C., Wang H., Ouyang Y., Zhu Z., Shu X., et al. . (2019). The Eradication of Helicobacter Pylori Restores Rather Than Disturbs the Gastrointestinal Microbiota in Asymptomatic Young Adults. Helicobacter 24 (4), e12590. doi: 10.1111/hel.12590
    1. He C., Yang Z., Cheng D., Xie C., Zhu Y., Ge Z., et al. . (2016). Helicobacter Pylori Infection Aggravates Diet-Induced Insulin Resistance in Association With Gut Microbiota of Mice. EBioMedicine 12, 247–254. doi: 10.1016/j.ebiom.2016.09.010
    1. He J., Zhang P., Shen L., Niu L., Tan Y., Chen L., et al. . (2020). Short-Chain Fatty Acids and Their Association With Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int. J. Mol. Sci. 21 (17), 6356. doi: 10.3390/ijms21176356
    1. Horii T., Suzuki S., Takano C., Shibuya H., Ichijima R., Kusano C., et al. . (2021). Lower Impact of Vonoprazan-Amoxicillin Dual Therapy on Gut Microbiota for Helicobacter Pylori Eradication. J. Gastroenterol. Hepatol. 36 (12), 3314–3321. doi: 10.1111/jgh.15572
    1. Hsu P. I., Pan C. Y., Kao J. Y., Tsay F. W., Peng N. J., Kao S. S., et al. . (2019). Short-Term and Long-Term Impacts of Helicobacter Pylori Eradication With Reverse Hybrid Therapy on the Gut Microbiota. J. Gastroenterol. Hepatol. 34 (11), 1968–1976. doi: 10.1111/jgh.14736
    1. Hsu P. I., Pan C. Y., Kao J. Y., Tsay F. W., Peng N. J., Kao S. S., et al. . (2018). Helicobacter Pylori Eradication With Bismuth Quadruple Therapy Leads to Dysbiosis of Gut Microbiota With an Increased Relative Abundance of Proteobacteria and Decreased Relative Abundances of Bacteroidetes and Actinobacteria. Helicobacter 23 (4), e12498. doi: 10.1111/hel.12498
    1. Huang Y., Ding Y., Xu H., Shen C., Chen X., Li C. (2021). Effects of Sodium Butyrate Supplementation on Inflammation, Gut Microbiota, and Short-Chain Fatty Acids in Helicobacter Pylori-Infected Mice. Helicobacter 26 (2), e12785. doi: 10.1111/hel.12785
    1. Ianiro G., Tilg H., Gasbarrini A. (2016). Antibiotics as Deep Modulators of Gut Microbiota: Between Good and Evil. Gut 65 (11), 1906–1915. doi: 10.1136/gutjnl-2016-312297
    1. Iino C., Shimoyama T., Chinda D., Sakuraba H., Fukuda S., Nakaji S. (2020). Influence of Helicobacter Pylori Infection and Atrophic Gastritis on the Gut Microbiota in a Japanese Population. Digestion 101 (4), 422–432. doi: 10.1159/000500634
    1. Koh A., De Vadder F., Kovatcheva-Datchary P., Backhed F. (2016). From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 165 (6), 1332–1345. doi: 10.1016/j.cell.2016.05.041
    1. Liou J. M., Chen C. C., Chang C. M., Fang Y. J., Bair M. J., Chen P. Y., et al. . (2019). Long-Term Changes of Gut Microbiota, Antibiotic Resistance, and Metabolic Parameters After Helicobacter Pylori Eradication: A Multicentre, Open-Label, Randomised Trial. Lancet Infect. Dis. 19 (10), 1109–1120. doi: 10.1016/S1473-3099(19)30272-5
    1. Liou J. M., Lee Y. C., Wu M. S. (2020. a). Treatment of Helicobacter Pylori Infection and its Long-Term Impacts on Gut Microbiota. J. Gastroenterol. Hepatol. 35 (7), 1107–1116. doi: 10.1111/jgh.14992
    1. Liou J. M., Malfertheiner P., Lee Y. C., Sheu B. S., Sugano K., Cheng H. C., et al. . (2020. b). Screening and Eradication of Helicobacter Pylori for Gastric Cancer Prevention: The Taipei Global Consensus. Gut 69 (12), 2093–2112. doi: 10.1136/gutjnl-2020-322368
    1. Liu W. Z., Xie Y., Lu H., Cheng H., Zeng Z. R., Zhou L. Y., et al. . (2018). Fifth Chinese National Consensus Report on the Management of Helicobacter Pylori Infection. Helicobacter 23 (2), e12475. doi: 10.1111/hel.12475
    1. Malfertheiner P., Megraud F., O'Morain C. A., Gisbert J. P., Kuipers E. J., Axon A. T., et al. . (2017). Management of Helicobacter Pylori Infection-the Maastricht V/Florence Consensus Report. Gut 66 (1), 6–30. doi: 10.1136/gutjnl-2016-312288
    1. Martin-Nunez G. M., Cornejo-Pareja I., Coin-Araguez L., Roca-Rodriguez M., Munoz-Garach A., Clemente-Postigo M., et al. . (2019). H. Pylori Eradication With Antibiotic Treatment Causes Changes in Glucose Homeostasis Related to Modifications in the Gut Microbiota. PLoS One 14 (3), e0213548. doi: 10.1371/journal.pone.0213548
    1. Martinucci I., Blandizzi C., Bodini G., Marabotto E., Savarino V., Marchi S., et al. . (2017). Vonoprazan Fumarate for the Management of Acid-Related Diseases. Expert Opin. Pharmacother. 18 (11), 1145–1152. doi: 10.1080/14656566.2017.1346087
    1. Morrison D. J., Preston T. (2016). Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes 7 (3), 189–200. doi: 10.1080/19490976.2015.1134082
    1. Parks D. H., Tyson G. W., Hugenholtz P., Beiko R. G. (2014). STAMP: Statistical Analysis of Taxonomic and Functional Profiles. Bioinformatics 30 (21), 3123–3124. doi: 10.1093/bioinformatics/btu494
    1. Peng C., Xu X., He Z., Li N., Ouyang Y., Zhu Y., et al. . (2021). Helicobacter Pylori Infection Worsens Impaired Glucose Regulation in High-Fat Diet Mice in Association With an Altered Gut Microbiome and Metabolome. Appl. Microbiol. Biotechnol. 105 (5), 2081–2095. doi: 10.1007/s00253-021-11165-6
    1. Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., et al. . (2011). Metagenomic Biomarker Discovery and Explanation. Genome Biol. 12 (6), R60. doi: 10.1186/gb-2011-12-6-r60
    1. Sugimoto M., Yamaoka Y. (2018). Role of Vonoprazan in Helicobacter Pylori Eradication Therapy in Japan. Front. Pharmacol. 9, 1560. doi: 10.3389/fphar.2018.01560
    1. Suzuki S., Gotoda T., Kusano C., Ikehara H., Ichijima R., Ohyauchi M., et al. . (2020). Seven-Day Vonoprazan and Low-Dose Amoxicillin Dual Therapy as First-Line Helicobacter Pylori Treatment: A Multicentre Randomised Trial in Japan. Gut 69 (6), 1019–1026. doi: 10.1136/gutjnl-2019-319954
    1. Suzuki S., Gotoda T., Takano C., Horii T., Sugita T., Ogura K., et al. . (2021). Long Term Impact of Vonoprazan-Based Helicobacter Pylori Treatment on Gut Microbiota and its Relation to Post-Treatment Body Weight Changes. Helicobacter 26 (6), e12851. doi: 10.1111/hel.12851
    1. Wang D., Li Y., Zhong H., Ding Q., Lin Y., Tang S., et al. . (2019). Alterations in the Human Gut Microbiome Associated With Helicobacter Pylori Infection. FEBS Open Bio 9 (9), 1552–1560. doi: 10.1002/2211-5463.12694
    1. Yang Q., Ouyang J., Sun F., Yang J. (2020). Short-Chain Fatty Acids: A Soldier Fighting Against Inflammation and Protecting From Tumorigenesis in People With Diabetes. Front. Immunol. 11, 590685. doi: 10.3389/fimmu.2020.590685
    1. Ye Q., Shao X., Shen R., Chen D., Shen J. (2020). Changes in the Human Gut Microbiota Composition Caused by Helicobacter Pylori Eradication Therapy: A Systematic Review and Meta-Analysis. Helicobacter 25 (4), e12713. doi: 10.1111/hel.12713

Source: PubMed

3
Subskrybuj