Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms

Andrea Antal, Christoph S Herrmann, Andrea Antal, Christoph S Herrmann

Abstract

Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS) that is a special form of tACS can modulate cortical functions. Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations.

Figures

Figure 1
Figure 1
Assumed neural mechanism of tDCS. (a) Without tDCS, the resting potential of the cell is at −70 mV and an incoming excitatory postsynaptic potential (EPSP) arriving 100 ms after onset of the experiment does not reach the threshold for firing at −50 mV (dashed line). (b) If the neuron is close to an anode, the positive voltage from the anode will raise the resting potential towards a more positive voltage and the same EPSP will exceed the threshold and result in a neural spike. (c) If the neuron is close to a cathode, the negative voltage from the cathode will lower the resting potential towards a more negative voltage and the same EPSP will not exceed the threshold.
Figure 2
Figure 2
(a) Anisotropic finite element model for simulations of intracranial current flow. Stimulation electrodes are at the EEG electrode positions Cz and Oz of the international 10–20 system for electrode placement (red and blue, resp.). (b) Current density simulations reveal strongest current flow is in the posterior part of the brain underneath and between the stimulation electrodes. Reprinted with permission of the authors from [25].
Figure 3
Figure 3
Different montages result in different patterns of current densities. (a) tACS with two 4 × 1 electrode montages (high density, HD) was used in order to achieve a more focal current density. (b) Trying to achieve a similar pattern of current flow with conventional large electrodes results in a more widespread distribution of currents. Reprinted with permission of the authors from [27].
Figure 4
Figure 4
Translation of tACS intensity to intracranial voltage gradients allows a comparison to thresholds for eliciting spikes in animal research. The left axis represents tACS intensity. Neuling et al. [35] applied 1 mA intensity (peak-to-peak value: translates to a sine wave of 0.5 mA amplitude). In their FEM, they could show that this intensity results in a number of current densities in different parts of the brain with a maximum of 0.1 A/m2 (axis: current density). The third axis represents the tissue resistivity of gray matter (tissue conductivity given on the left of the axis in brackets). Values in the range from 2.84 to 3.03 Ωm result in voltage gradients from 0.284 to 0.303 V/m being in the range of thresholds for neural firing or phase-locking (axis: voltage gradient). Note that for voltage gradients 1 mV/mm is equal to 1 V/m.
Figure 5
Figure 5
Theory of entrainment. If the brain is stimulated near its “Eigenfrequency,” that is, the individual alpha activity around 10 Hz, the EEG will synchronize to the frequency of the driving force (e.g., tACS). This is considered synchronization or entrainment of an oscillator by an external driving force and depicted in gray (1 : 1 region). If, however, the stimulation frequency is far from the “Eigenfrequency,” the EEG will be dominated by its “Eigenfrequency” (white regions of diagram). If the strength of the external driving force (tACS) increases, the synchronization regions will become wider in frequency. Due to this triangular shape the synchronization region is referred to as an Arnold tongue [51]. Synchronization can also happen at harmonics (N   Eigenfrequency) and subharmonics (Eigenfrequency/N) where N is an integer (1 : 2 and 2 : 1 show here). They do not need to have the same shape and width.

References

    1. Herrmann C. S., Munk M. H. J., Engel A. K. Cognitive functions of gamma-band activity: memory match and utilization. Trends in Cognitive Sciences. 2004;8(8):347–355. doi: 10.1016/j.tics.2004.06.006.
    1. Engel A. K., Fries P., Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nature Reviews Neuroscience. 2001;2(10):704–716. doi: 10.1038/35094565.
    1. Herrmann C. S., Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clinical Neurophysiology. 2005;116(12):2719–2733. doi: 10.1016/j.clinph.2005.07.007.
    1. Uhlhaas P. J., Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006;52(1):155–168. doi: 10.1016/j.neuron.2006.09.020.
    1. Thut G., Miniussi C. New insights into rhythmic brain activity from TMS-EEG studies. Trends in Cognitive Sciences. 2009;13(4):182–189. doi: 10.1016/j.tics.2009.01.004.
    1. Paulus W. Transcranial electrical stimulation (tES—tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation. 2011;21:602–617.
    1. Zaehle T., Sandmann P., Thorne J. D., Jäncke L., Herrmann C. S. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neuroscience. 2011;12, article 2 doi: 10.1186/1471-2202-12-2.
    1. Vossen A., Gross J., Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment. Brain Stimulation. 2015;8(3):499–508. doi: 10.1016/j.brs.2014.12.004.
    1. Strüber D., Rach S., Neuling T., Herrmann C. S. On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation. Frontiers in Cellular Neuroscience. 2015;9, article 311 doi: 10.3389/fncel.2015.00311.
    1. Fröhlich F., McCormick D. A. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67(1):129–143. doi: 10.1016/j.neuron.2010.06.005.
    1. Nitsche M. A., Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology. 2000;527(3):633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.
    1. Bindman L. J., Lippold O. C., Redfearn J. W. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. The Journal of Physiology. 1964;172:369–382.
    1. Creutzfeldt O. D., Fromm G. H., Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Experimental Neurology. 1962;5(6):436–452. doi: 10.1016/0014-4886(62)90056-0.
    1. Jefferys J. G. R. Influence of electric fields on the excitability of granule cells in guinea-pig hippocampal slices. Journal of Physiology. 1981;319:143–152. doi: 10.1113/jphysiol.1981.sp013897.
    1. Chan C. Y., Hounsgaard J., Nicholson C. Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. Journal of Physiology. 1988;402:751–771. doi: 10.1113/jphysiol.1988.sp017232.
    1. Bikson M., Inoue M., Akiyama H., et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro . The Journal of Physiology. 2004;557(1):175–190. doi: 10.1113/jphysiol.2003.055772.
    1. Rahman A., Reato D., Arlotti M., et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. The Journal of Physiology. 2013;591(10):2563–2578. doi: 10.1113/jphysiol.2012.247171.
    1. Opitz A., Paulus W., Will S., Antunes A., Thielscher A. Determinants of the electric field during transcranial direct current stimulation. NeuroImage. 2015;109:140–150. doi: 10.1016/j.neuroimage.2015.01.033.
    1. Moliadze V., Antal A., Paulus W. Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clinical Neurophysiology. 2010;121(12):2165–2171. doi: 10.1016/j.clinph.2010.04.033.
    1. Nitsche M. A., Doemkes S., Karaköse T., et al. Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology. 2007;97(4):3109–3117. doi: 10.1152/jn.01312.2006.
    1. Wagner S., Rampersad S. M., Aydin Ü., et al. Investigation of tDCS volume conduction effects in a highly realistic head model. Journal of Neural Engineering. 2014;11(1) doi: 10.1088/1741-2560/11/1/016002.016002
    1. Holdefer R. N., Sadleir R., Russell M. J. Predicted current densities in the brain during transcranial electrical stimulation. Clinical Neurophysiology. 2006;117(6):1388–1397. doi: 10.1016/j.clinph.2006.02.020.
    1. Akhtari M., Bryant H. C., Emin D., et al. A model for frequency dependence of conductivities of the live human skull. Brain Topography. 2003;16(1):39–55. doi: 10.1023/A:1025658432696.
    1. Miranda P. C., Mekonnen A., Salvador R., Ruffini G. The electric field in the cortex during transcranial current stimulation. NeuroImage. 2013;70:48–58. doi: 10.1016/j.neuroimage.2012.12.034.
    1. Neuling T., Wagner S., Wolters C. H., Zaehle T., Herrmann C. S. Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Frontiers in Psychiatry. 2012;3, article 83 doi: 10.3389/fpsyt.2012.00083.
    1. Dmochowski J. P., Datta A., Bikson M., Su Y., Parra L. C. Optimized multi-electrode stimulation increases focality and intensity at target. Journal of Neural Engineering. 2011;8(4) doi: 10.1088/1741-2560/8/4/046011.046011
    1. Helfrich R. F., Knepper H., Nolte G., et al. Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biology. 2014;12(12) doi: 10.1371/journal.pbio.1002031.e1002031
    1. Radman T., Ramos R. L., Brumberg J. C., Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro . Brain Stimulation. 2009;2(4):215.e1–228.e3. doi: 10.1016/j.brs.2009.03.007.
    1. Reato D., Gasca F., Datta A., Bikson M., Marshall L., Parra L. C. Transcranial electrical stimulation accelerates human sleep homeostasis. PLoS Computational Biology. 2013;9(2) doi: 10.1371/journal.pcbi.1002898.e1002898
    1. Francis J. T., Gluckman B. J., Schiff S. J. Sensitivity of neurons to weak electric fields. The Journal of Neuroscience. 2003;23(19):7255–7261.
    1. Reato D., Rahman A., Bikson M., Parra L. C. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. Journal of Neuroscience. 2010;30(45):15067–15079. doi: 10.1523/JNEUROSCI.2059-10.2010.
    1. Ozen S., Sirota A., Belluscio M. A., et al. Transcranial electric stimulation entrains cortical neuronal populations in rats. The Journal of Neuroscience. 2010;30(34):11476–11485. doi: 10.1523/jneurosci.5252-09.2010.
    1. Geddes L. A., Baker L. E. The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Medical and Biological Engineering. 1967;5(3):271–293. doi: 10.1007/bf02474537.
    1. Haueisen J., Ramon C., Czapski P., Eiselt M. On the influence of volume currents and extended sources on neuromagnetic fields: a simulation study. Annals of Biomedical Engineering. 1995;23(6):728–739. doi: 10.1007/bf00000003.
    1. Neuling T., Rach S., Herrmann C. S. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Frontiers in Human Neuroscience. 2013;7, article 161 doi: 10.3389/fnhum.2013.00161.
    1. Deans J. K., Powell A. D., Jefferys J. G. R. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. The Journal of Physiology. 2007;583(2):555–565. doi: 10.1113/jphysiol.2007.137711.
    1. Radman T., Su Y., Je H. A., Parra L. C., Bikson M. Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. Journal of Neuroscience. 2007;27(11):3030–3036. doi: 10.1523/jneurosci.0095-07.2007.
    1. Schürmann M., Başar E. Functional aspects of alpha oscillations in the EEG. International Journal of Psychophysiology. 2001;39(2-3):151–158. doi: 10.1016/S0167-8760(00)00138-0.
    1. Hanslmayr S., Aslan A., Staudigl T., Klimesch W., Herrmann C. S., Bäuml K.-H. Prestimulus oscillations predict visual perception performance between and within subjects. NeuroImage. 2007;37(4):1465–1473. doi: 10.1016/j.neuroimage.2007.07.011.
    1. Lisman J. E., Idiart M. A. P. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science. 1995;267(5203):1512–1515. doi: 10.1126/science.7878473.
    1. Henry M. J., Obleser J. Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(49):20095–20100. doi: 10.1073/pnas.1213390109.
    1. Rose M., Büchel C. Neural coupling binds visual tokens to moving stimuli. Journal of Neuroscience. 2005;25(44):10101–10104. doi: 10.1523/JNEUROSCI.2998-05.2005.
    1. Jensen O., Colgin L. L. Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Sciences. 2007;11(7):267–269. doi: 10.1016/j.tics.2007.05.003.
    1. Herrmann C. S., Rach S., Neuling T., Strüber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience. 2013;7, article 279 doi: 10.3389/fnhum.2013.00279.
    1. Helfrich R. F., Schneider T. R., Rach S., Trautmann-Lengsfeld S. A., Engel A. K., Herrmann C. S. Entrainment of brain oscillations by transcranial alternating current stimulation. Current Biology. 2014;24(3):333–339. doi: 10.1016/j.cub.2013.12.041.
    1. Marshall L., Helgadóttir H., Mölle M., Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444(7119):610–613. doi: 10.1038/nature05278.
    1. Voss U., Holzmann R., Hobson A., et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nature Neuroscience. 2014;17(6):810–812. doi: 10.1038/nn.3719.
    1. Pikovsky A., Rosenblum M. Partially integrable dynamics of hierarchical populations of coupled oscillators. Physical Review Letters. 2008;101(26) doi: 10.1103/PhysRevLett.101.264103.264103
    1. Rosenblum M., Cimponeriu L., Pikovsky A. Coupled oscillators approach in analysis of physiological data. Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06); September 2006; New York, NY, USA. pp. 441–444.
    1. Rosenblum M. G., Pikovsky A. S. Controlling synchronization in an ensemble of globally coupled oscillators. Physical Review Letters. 2004;92 doi: 10.1103/physrevlett.92.114102.114102
    1. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press; 2003.
    1. Lisman J., Spruston N. Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nature Neuroscience. 2005;8(7):839–841. doi: 10.1038/nn0705-839.
    1. Vosskuhl J., Huster R. J., Herrmann C. S. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Frontiers in Human Neuroscience. 2015;9, article 257 doi: 10.3389/fnhum.2015.00257.
    1. Cecere R., Rees G., Romei V. Individual differences in alpha frequency drive crossmodal illusory perception. Current Biology. 2015;25(2):231–235. doi: 10.1016/j.cub.2014.11.034.
    1. Neuling T., Rach S., Wagner S., Wolters C. H., Herrmann C. S. Good vibrations: oscillatory phase shapes perception. NeuroImage. 2012;63(2):771–778. doi: 10.1016/j.neuroimage.2012.07.024.
    1. Strüber D., Rach S., Trautmann-Lengsfeld S. A., Engel A. K., Herrmann C. S. Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topography. 2014;27(1):158–171. doi: 10.1007/s10548-013-0294-x.
    1. Reato D., Rahman A., Bikson M., Parra L. C. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Frontiers in Human Neuroscience. 2013;7, article 687 doi: 10.3389/fnhum.2013.00687.
    1. Fertonani A., Pirulli C., Miniussi C. Random noise stimulation improves neuroplasticity in perceptual learning. The Journal of Neuroscience. 2011;31(43):15416–15423. doi: 10.1523/jneurosci.2002-11.2011.
    1. Terney D., Chaieb L., Moliadze V., Antal A., Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. The Journal of Neuroscience. 2008;28(52):14147–14155. doi: 10.1523/jneurosci.4248-08.2008.
    1. Chaieb L., Paulus W., Antal A. Evaluating aftereffects of short-duration transcranial random noise stimulation on cortical excitability. Neural Plasticity. 2011;2011:5. doi: 10.1155/2011/105927.105927
    1. Moliadze V., Atalay D., Antal A., Paulus W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimulation. 2012;5(4):505–511. doi: 10.1016/j.brs.2011.11.004.
    1. Moliadze V., Fritzsche G., Antal A. Comparing the efficacy of excitatory transcranial stimulation methods measuring motor evoked potentials. Neural Plasticity. 2014;2014:6. doi: 10.1155/2014/837141.837141
    1. Prichard G., Weiller C., Fritsch B., Reis J. Effects of different electrical brain stimulation protocols on subcomponents of motor skill learning. Brain Stimulation. 2014;7(4):532–540. doi: 10.1016/j.brs.2014.04.005.
    1. Pirulli C., Fertonani A., Miniussi C. The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation. Brain Stimulation. 2013;6(4):683–689. doi: 10.1016/j.brs.2012.12.005.
    1. Romanska A., Rezlescu C., Susilo T., Duchaine B., Banissy M. J. High-frequency transcranial random noise stimulation enhances perception of facial identity. Cerebral Cortex. 2015;25(11):4334–4340. doi: 10.1093/cercor/bhv016.
    1. Ambrus G. G., Zimmer M., Kincses Z. T., et al. The enhancement of cortical excitability over the DLPFC before and during training impairs categorization in the prototype distortion task. Neuropsychologia. 2011;49(7):1974–1980. doi: 10.1016/j.neuropsychologia.2011.03.026.
    1. Mulquiney P. G., Hoy K. E., Daskalakis Z. J., Fitzgerald P. B. Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clinical Neurophysiology. 2011;122(12):2384–2389. doi: 10.1016/j.clinph.2011.05.009.
    1. Schoen I., Fromherz P. Extracellular stimulation of mammalian neurons through repetitive activation of Na+ channels by weak capacitive currents on a silicon chip. Journal of Neurophysiology. 2008;100(1):346–357. doi: 10.1152/jn.90287.2008.
    1. Chaieb L., Antal A., Paulus W. Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive. Frontiers in Neuroscience. 2015;9, article 125 doi: 10.3389/fnins.2015.00125.
    1. Stacey W. C., Durand D. M. Stochastic resonance improves signal detection in hippocampal CA1 neurons. Journal of Neurophysiology. 2000;83(3):1394–1402.
    1. Miniussi C., Harris J. A., Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neuroscience and Biobehavioral Reviews. 2013;37(8):1702–1712. doi: 10.1016/j.neubiorev.2013.06.014.
    1. Miniussi C., Ruzzoli M. Transcranial stimulation and cognition. Handbook of Clinical Neurology. 2013;116:739–750. doi: 10.1016/B978-0-444-53497-2.00056-5.
    1. Moss F., Ward L. M., Sannita W. G. Stochastic resonance and sensory information processing: a tutorial and review of application. Clinical Neurophysiology. 2004;115(2):267–281. doi: 10.1016/j.clinph.2003.09.014.
    1. Snowball A., Tachtsidis I., Popescu T., et al. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Current Biology. 2013;23(11):987–992. doi: 10.1016/j.cub.2013.04.045.
    1. Cappelletti M., Gessaroli E., Hithersay R., et al. Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. The Journal of Neuroscience. 2013;33(37):14899–14907. doi: 10.1523/jneurosci.1692-13.2013.
    1. Vanneste S., Fregni F., De Ridder D. Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus. Frontiers in Psychiatry. 2013;4, article 158 doi: 10.3389/fpsyt.2013.00158.
    1. Ambrus G. G., Antal A., Paulus W. Comparing cutaneous perception induced by electrical stimulation using rectangular and round shaped electrodes. Clinical Neurophysiology. 2011;122(4):803–807. doi: 10.1016/j.clinph.2010.08.023.

Source: PubMed

3
Subskrybuj