A balanced view of balanced solutions

Bertrand Guidet, Neil Soni, Giorgio Della Rocca, Sibylle Kozek, Benoît Vallet, Djillali Annane, Mike James, Bertrand Guidet, Neil Soni, Giorgio Della Rocca, Sibylle Kozek, Benoît Vallet, Djillali Annane, Mike James

Abstract

The present review of fluid therapy studies using balanced solutions versus isotonic saline fluids (both crystalloids and colloids) aims to address recent controversy in this topic. The change to the acid-base equilibrium based on fluid selection is described. Key terms such as dilutional-hyperchloraemic acidosis (correctly used instead of dilutional acidosis or hyperchloraemic metabolic acidosis to account for both the Henderson-Hasselbalch and Stewart equations), isotonic saline and balanced solutions are defined. The review concludes that dilutional-hyperchloraemic acidosis is a side effect, mainly observed after the administration of large volumes of isotonic saline as a crystalloid. Its effect is moderate and relatively transient, and is minimised by limiting crystalloid administration through the use of colloids (in any carrier). Convincing evidence for clinically relevant adverse effects of dilutional-hyperchloraemic acidosis on renal function, coagulation, blood loss, the need for transfusion, gastrointestinal function or mortality cannot be found. In view of the long-term use of isotonic saline either as a crystalloid or as a colloid carrier, the paucity of data documenting detrimental effects of dilutional-hyperchloraemic acidosis and the limited published information on the effects of balanced solutions on outcome, we cannot currently recommend changing fluid therapy to the use of a balanced colloid preparation.

Figures

Figure 1
Figure 1
Representation of the Stewart model. Charge balance in blood plasma. Any difference between apparent strong ion difference (SIDa) and effective strong ion difference (SIDe) is the strong ion gap (SIG) and presents unmeasured anions. The SIG should not be confused with the anion gap (AG). A corrected AG can be calculated to account for variations in albumin concentration. Adapted from Stewart [6].
Figure 2
Figure 2
Plasma bicarbonate concentration versus relative haemoglobin after acute haemodilution in different patient groups. Plasma bicarbonate (HCO3-) concentration (mmol/l) versus relative haemoglobin (Hb) (%) after acute normovolaemic haemodilution in different patient groups. Comparison is shown for predicted (open squares) and reported (filled circles) values [18] of the actual HCO3- concentration (top curve), composed of the calculated HCO3- values (filled triangles) from plasma dilution, plus the increments from the plasma proteins (Pr), the erythrocytes (E), and the interstitial fluid (ISF) with corresponding buffers. Adapted from Lang and Zander [12].
Figure 3
Figure 3
Chloride load and base excess in elderly patients undergoing abdominal surgery. Chloride load in the three groups of patients - Ringer's lactate group (filled circles), isotonic saline group (filled squares), and HES 130/0.4 plus Ringer's lactate (open triangles) - was calculated. The variations in base excess for the three groups are shown graphically. It is remarkable that there is no difference between the Ringer's lactate group and the HES 130/0.4 plus Ringer's lactate group. *P < 0.05. POD, postoperative day. Adapted from Boldt and colleagues [24].
Figure 4
Figure 4
Hospital mortality associated with type of metabolic acidosis. Mortality associated with the major ion contributing to the metabolic acidosis. Hospital mortality associated with the various causes of metabolic acidosis (standard base excess (SBE) <-2). Mortality percentage is mortality within each subgroup, not a percentage of overall mortality. Lactate indicates that lactate contributes to at least 50% of the SBE; SIG, strong ion gap contributes to at least 50% of SBE (and not lactate); hyperchloraemic, absence of lactate or SIG acidosis and SBE <-2; none, no metabolic acidosis (SBE ≥-2 mEq/l). P < 0.001 for the four-group comparison. Adapted from Gunnerson and colleagues [47].

References

    1. Powell-Tuck J, Gosling P, Lobo DN, Allison SP, Carlson GL, Gore M, Lewington AJ, Pearse RM, Mythen MG. British Consensus Guidelines on Intravenous Fluid Therapy for Adult Surgical Patients (GIFTASUP) London: NHS National Library of Health; 2009.
    1. Liu B, Finfer S. Intravenous fluids in adults undergoing surgery. BMJ. 2009;338:b2418. doi: 10.1136/bmj.b2418.
    1. Handy JM, Soni N. Physiological effects of hyperchloraemia and acidosis. Br J Anaesth. 2008;101:141–150. doi: 10.1093/bja/aen148.
    1. Shaneyfelt TM, Centor RM. Reassessment of clinical practice guidelines: go gently into that good night. JAMA. 2009;301:868–869. doi: 10.1001/jama.2009.225.
    1. Hasselbalch KA. Die berechnung der wasserstoffzahl des blutes auf der freien und gebundenen kohlensaure desselben, und die sauerstoff bindung des blutes als funktion der wasserstoffzahl. Biochem Z. 1916;78:112–144.
    1. Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol. 1983;61:1444–1461. doi: 10.1139/y83-207.
    1. Yunos NM, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14:226. doi: 10.1186/cc9052.
    1. Constable PD. Hyperchloremic acidosis: the classic example of strong ion acidosis. Anesth Analg. 2003;96:919–922. doi: 10.1213/01.ANE.0000053256.77500.9D.
    1. Morgan TJ, Venkatesh B. Designing 'balanced' crystalloids. Crit Care Resusc. 2003;5:284–291.
    1. Doberer D, Funk G-C, Kirchner K, Schneeweiss B. A critique of Stewart's approach: the chemical mechanism of dilutional acidosis. Intensive Care Med. 2009;35:2173–2180. doi: 10.1007/s00134-009-1528-y.
    1. Kurtz I, Kraut J, Ornekian V, Nguyen MK. Acid-base analysis: a critique of the Stewart and bicarbonate-centered approaches. Am J Physiol Renal Physiol. 2008;294:F1009–F1031. doi: 10.1152/ajprenal.00475.2007.
    1. Lang W, Zander R. Prediction of dilutional acidosis based on the revised classical dilution concept for bicarbonate. J Appl Physiol. 2005;98:62–71. doi: 10.1152/japplphysiol.00292.2004.
    1. Rehm M, Finsterer U. Treating intraoperative hyperchloremic acidosis with sodium bicarbonate or tris-hydroxymethyl aminomethane: a randomized prospective study. Anesth Analg. 2003;96:1201–1208. doi: 10.1213/01.ANE.0000048824.85279.41.
    1. Scheingraber S, Rehm M, Sehmisch C, Finsterer U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynaecologic surgery. Anesthesiology. 1999;90:1265–1270. doi: 10.1097/00000542-199905000-00007.
    1. Williams EL, Hildebrand KL, McCormick SA, Bedel MJ. The effect of intravenous lactated Ringer's solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88:999–1003. doi: 10.1097/00000539-199905000-00006.
    1. Boldt J, Haisch G, Suttner S, Kumle B, Schellhase F. Are lactated Ringer's solution and normal saline solution equal with regard to coagulation? Anesth Analg. 2002;94:378–384. doi: 10.1097/00000539-200202000-00028.
    1. Base E, Standl T, Mahl C, Jungheinrich C. Comparison of 6% HES 130/0.4 in a balanced electrolyte solution versus 6% HES 130/0.4 in saline solution in cardiac surgery [abstract] Crit Care. 2006;10:176. doi: 10.1186/cc4523.
    1. Boldt J, Schöllhorn T, Münchbach J, Pabsdorf M. A total balanced volume replacement strategy using a new balanced hydroxyethyl starch preparation (6% HES 130/0.42) in patients undergoing major abdominal surgery. Eur J Anaesthesiol. 2007;24:267–275. doi: 10.1017/S0265021506001682.
    1. Boldt J, Suttner S, Brosch C, Lehmann A, Roehm K, Mengistu A. The influence of a balanced volume replacement concept on inflammation, endothelial activation, and kidney integrity in elderly cardiac surgery patients. Intensive Care Med. 2009;35:462–470. doi: 10.1007/s00134-008-1287-1.
    1. Boldt J, Suttner S, Brosch C, Lehmann A, Roehm K, Mengistu A. Cardiopulmonary bypass priming using a high dose of a balanced hydroxyethyl starch versus an albumin-based priming strategy. Anesth Analg. 2009;109:1752–1762. doi: 10.1213/ANE.0b013e3181b5a24b.
    1. Kulla M, Weidhase R, Lampl L. Hydroxyethyl starch 6% 130/0.42 in acetate-buffered Ringer's solution as a part of a balanced-volume resuscitation in abdominal surgery. Anasth Intensivmed. 2008;49:7–18.
    1. Boldt J, Mayer J, Brosch C, Lehmann A, Mengistu A. Volume replacement with a balanced hydroxyethyl starch (HES) preparation in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2010;24:399–407. doi: 10.1053/j.jvca.2010.03.001.
    1. O'Dell E, Tibby SM, Durward A, Murdoch IA. Hyperchloremia is the dominant cause of metabolic acidosis in the postresuscitation phase of pediatric meningococcal sepsis. Crit Care Med. 2007;35:2390–2394. doi: 10.1097/01.CCM.0000284588.17760.99.
    1. Boldt J, Ducke M, Kumle B, Papsdorf M, Surmeyer EL. Influence of different volume replacement strategies on inflammation and endothelial activation in the elderly undergoing major abdominal surgery. Intensive Care Med. 2004;30:416–422. doi: 10.1007/s00134-003-2110-7.
    1. Kotchen TA, Luke RG, Ott CE, Galla JH, Whitescarver W. Effect of chloride on renin and blood pressure responses to sodium chloride. Ann Intern Med. 1983;98:817–822.
    1. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71:726–735. doi: 10.1172/JCI110820.
    1. Wilcox CS, Peart WS. Release of renin and angiotensin II into plasma and lymph during hyperchloremia. Am J Physiol. 1987;253:F734–F741.
    1. Quilley CP, Lin Y-S, McGiff JC. Chloride anion concentration as a determinant of renal vascular responsiveness to vasoconstrictor agents. Br J Pharmacol. 1993;108:106–110.
    1. Hansen PB, Jensen BL, Skott O. Chloride regulates afferent arteriolar contraction in response to depolarization. Hypertension. 1998;32:1066–1070.
    1. Reid F, Lobo DN, Williams RN, Rowlands BJ, Allison SP. (Ab)normal saline and physiological Hartmann's solution: a randomized double-blind crossover study. Clin Sci. 2003;104:17–24. doi: 10.1042/CS20020202.
    1. O'Malley CM, Frumento RJ, Hardy MA, Benvenisty AI, Brentjens TE, Mercer JS, Bennett-Guerrero E. A randomized, double-blind comparison of lactated Ringer's solution and 0.9% NaCl during renal transplantation. Anesth Analg. 2005;100:1518–1524. doi: 10.1213/01.ANE.0000150939.28904.81.
    1. Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R, Ali S, Barasch J, Devarajan P. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol. 2008;3:665–673. doi: 10.2215/CJN.04010907.
    1. Wagener G, Gubitosa G, Wang S, Borregaard N, Kim M, Lee HT. Urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery. Am J Kidney Dis. 2008;52:425–433. doi: 10.1053/j.ajkd.2008.05.018.
    1. Boldt J, Wolf M, Mengistu A. A new plasma-adapted hydroxyethylstarch preparation: in vitro coagulation studies using thrombelastography and whole blood aggregometry. Anesth Analg. 2007;104:425–430. doi: 10.1213/01.ane.0000253484.19070.87.
    1. Boldt J, Mengistu A, Seyfert U, Vogt A, Hellstern P. The impact of a medium molecular weight, low molar substitution hydroxyethyl starch dissolved in a physiologically balanced electrolyte solution on blood coagulation and platelet function in vitro. Vox Sang. 2007;93:139–144. doi: 10.1111/j.1423-0410.2007.00946.x.
    1. Waters JH, Gottlieb A, Schoenwald P, Popovich MJ, Sprung J, Nelson DR. Normal saline versus lactated Ringer's solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg. 2001;93:817–822. doi: 10.1097/00000539-200110000-00004.
    1. Wilkes NJ, Woolf R, Mutch M, Mallett SV, Peachey T, Stephens R, Mythen MG. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93:811–816. doi: 10.1097/00000539-200110000-00003.
    1. Moretti EW, Robertson KM, el-Moalem H, Gan TJ. Intraoperative colloid administration reduces postoperative nausea and vomiting and improves postoperative outcomes compared with crystalloid administration. Anesth Analg. 2003;96:611–617. doi: 10.1097/00000539-200302000-00056.
    1. Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet. 2002;359:1812–1818. doi: 10.1016/S0140-6736(02)08711-1.
    1. Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einay S, Matot I. Effect of intraoperative fluid management on outcome after intra-abdominal surgery. Anesthesiology. 2005;103:25–32. doi: 10.1097/00000542-200507000-00008.
    1. Brandstrup B, Tonnesen E, Beier-Holgersen R, Hjortso E, Ording H, Lindorff - Larsen K, Rasmussen MS, Lanng C, Wallin L, Iversen LH, Gramkow CS, Okholm M, Blemmer T, Svendsen PE, Rottensten HH, Thage B, Rils J, Jeppesen IS, Teilum D, Christensen AM, Graungaard B, Pott F. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238:641–648. doi: 10.1097/01.sla.0000094387.50865.23.
    1. Siegel JH, Rivkind AI, Dalal S, Goodarzi S. Early physiologic predictors of injury severity and death in blunt multiple trauma. Arch Surg. 1990;125:498–508.
    1. Rixen D, Raum M, Bouillon B, Lefering R, Neugebauer E. Base deficit development and its prognostic significance in posttrauma critical illness: an analysis by the trauma registry of the Deutsche Gesellschaft fur Unfallchirurgie. Shock. 2001;15:83–89. doi: 10.1097/00024382-200115020-00001.
    1. Rutherford EJ, Morris JA, Reed GW, Hall KS. Base deficit stratifies mortality and determines therapy. J Trauma. 1992;33:417–423. doi: 10.1097/00005373-199209000-00014.
    1. Davis JW, Parks SN, Kaups KL, Gladen HE, O'Donnel-Nicol S. Admission base deficit predicts transfusion requirements and risk of complications. J Trauma. 1996;41:769–774. doi: 10.1097/00005373-199611000-00001.
    1. Kellum JA. Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: improved short-term survival and acid-base balance with Hextend compared with saline. Crit Care Med. 2002;30:300–305. doi: 10.1097/00003246-200202000-00006.
    1. Gunnerson KJ, Saul M, He S, Kellum JA. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care. 2006;10:R22. doi: 10.1186/cc3987.
    1. Noritomi DT, Soriano FG, Kellum JA, Cappi SB, Biselli PJC, Liborio AB, Park M. Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study. Crit Care Med. 2009;37:1–7. doi: 10.1097/CCM.0b013e3181a59165.
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Hatherill M, Salie S, Waggie Z, Lawrenson J, Hewitson J, Reynolds L, Argent A. Hyperchloraemic metabolic acidosis following open cardiac surgery. Arch Dis Child. 2005;90:1288–1292. doi: 10.1136/adc.2005.078006.
    1. Brill SA, Stewart TW, Brundage SI, Schreiber MA. Base deficit does not predict mortality when secondary to hyperchloremic acidosis. Shock. 2002;17:459–462. doi: 10.1097/00024382-200206000-00003.
    1. Maciel AT, Park M. Differences in acid-base behavior between intensive care unit survivors and nonsurvivors using both a physicochemical and a standard base excess approach: a prospective, observational study. J Crit Care. 2009;24:477–483. doi: 10.1016/j.jcrc.2009.01.005.

Source: PubMed

3
Subskrybuj