Shigella Diversity and Changing Landscape: Insights for the Twenty-First Century

Mark Anderson, Philippe J Sansonetti, Benoit S Marteyn, Mark Anderson, Philippe J Sansonetti, Benoit S Marteyn

Abstract

Shigella is a pathovar of Escherichia coli comprising four groups, Shigella flexneri, Shigella sonnei, Shigella dysenteriae, and Shigella boydii, each of them, with the exception of S.sonnei, comprising several serotypes. Shigella accounts for the majority of dysentery causing infections occurring world-wide each year. Recent advancements in the Shigella field have led to a better understanding of the molecular mechanisms underlying host epithelial cell invasion and immune cell function manipulation, mainly using S. flexneri as a model. Host-cell invasion is the final step of the infection process, as Shigella's virulence strategy relies also on its ability to survive hostile conditions during its journey through the gastro-intestinal tract, to compete with the host microbiota and to cross the intestinal mucus layer. Hence, the diversity of the virulence strategies among the different Shigella species has not yet been deeply investigated, which might be an important step to understand the epidemiological spreading of Shigella species worldwide and a key aspect for the validation of novel vaccine candidates. The recent development of high-throughput screening and sequencing methods will facilitate these complex comparison studies. In this review we discuss several of the major avenues that the Shigella research field has taken over the past few years and hopefully gain some insights into the questions that remain surrounding this important human pathogen.

Keywords: Shigella; diversity; microbiota; mucus; virulence.

Figures

Figure 1
Figure 1
Comparison of selected Shigella O-antigen side chains. Schematic of repeated O-antigen side chains from serotypes S. sonnei (Gamian and Romanowska, 1982), S. flexneri 5a (Perepelov et al., 2010), S. dysenteriae 1 (Dmitriev et al., 1976), and S. boydii 6 (Senchenkova et al., 2005). Figure legend abreviations are as follows 2-Acetamido-2-deoxy-D-glucose (D-GlcNAc), 2-Acetamido-2-deoxy-L-altruronic acid (L-AltNAc), 2-Acetamido-4-amino-2, 4-dideoxy-D-fucose (D-FucNAc), 2-Acetamido-2-deoxy-D-galacturonic acid (D-GalNAc), D-Galactopyranose (D-Gal), D-Mannose (D-Man), L-Rhamnose (L-Rha), D-Glucose (D-Glc), O-acetyl (Ac).
Figure 2
Figure 2
Prevelance of Shigella species across China 2003–2013. Comparison of reported Shigella species between 2003–2004 and 2011–2013 showing the increase in S. sonnei isolations. For years 2003–2004 n = 235 cases, for 2011–2013 n = 1049 cases. Prevelance data reported in Qiu et al. (2015).
Figure 3
Figure 3
During Shigella infection, the colonic microbiota and mucus layers stand as the first barriers protecting the epithelium lineage. (A) The microbiota colonizes the colonic lumenal compartment, and the outer mucus layer. The inner mucus sterile remains sterile probaly due to its mechanical properties and accumulation of secreted antimicrobial peptides (AMPs). (B) Shigella secrete proteins belonging to the SPATE family, including Pic characterized in S. flexneri 2a (Henderson et al., ; Gutiérrez-Jiménez et al., ; Navarro-Garcia et al., ; Ruiz-Perez et al., 2011) and SepA identified in S. flexneri 5a (Benjelloun-Touimi et al., 1995). Shigella SPATE proteins cleave mucins to allow the bacteria to reach the epithelial layer. Shigella Type III secretion apparatus (T3SA) is required for epithelium invasion.

References

    1. Ambort D., Johansson M. E. V., Gustafsson J. K., Ermund A., Hansson G. C. (2012). Perspectives on mucus properties and formation–lessons from the biochemical world. Cold Spring Harb. Perspect. Med. 2:a014159. 10.1101/cshperspect.a014159
    1. Andersson A. F., Lindberg M., Jakobsson H., Bäckhed F., Nyrén P., Engstrand L. (2008). Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3:e2836. 10.1371/journal.pone.0002836
    1. Arena E. T., Campbell-Valois F.-X., Tinevez J.-Y., Nigro G., Sachse M., Moya-Nilges M., et al. . (2015). Bioimage analysis of Shigella infection reveals targeting of colonic crypts. Proc. Natl. Acad. Sci. U.S.A. 112, E3282–E3290. 10.1073/pnas.1509091112
    1. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D. R., et al. . (2011). Enterotypes of the human gut microbiome. Nature 473, 174–180. 10.1038/nature09944
    1. Bäckhed F., Ley R. E., Sonnenburg J. L., Peterson D. A., Gordon J. I. (2005). Host-bacterial mutualism in the human intestine. Science 307, 1915–1920. 10.1126/science.1104816
    1. Benjelloun-Touimi Z., Sansonetti P. J., Parsot C. (1995). SepA, the major extracellular protein of Shigella flexneri: autonomous secretion and involvement in tissue invasion. Mol. Microbiol. 17, 123–135. 10.1111/j.1365-2958.1995.mmi_17010123.x
    1. Benjelloun-Touimi Z., Si Tahar M., Montecucco C., Sansonetti P. J., Parsot C. (1998). SepA, the 110 kDa protein secreted by Shigella flexneri: two-domain structure and proteolytic activity. Microbiology 144(Pt 7), 1815–1822. 10.1099/00221287-144-7-1815
    1. Birchenough G. M. H., Johansson M. E., Gustafsson J. K., Bergström J. H., Hansson G. C. (2015). New developments in goblet cell mucus secretion and function. Mucosal Immunol. 8, 712–719. 10.1038/mi.2015.32
    1. Bowen A., Hurd J., Hoover C., Khachadourian Y., Traphagen E., Harvey E., Libby T., et al. . (2015). Importation and domestic transmission of Shigella sonnei resistant to ciprofloxacin - United States, May 2014-February 2015. Morb. Mortal. Wkly. Rep. 64, 318–320.
    1. Calcuttawala F., Hariharan C., Pazhani G. P., Ghosh S., Ramamurthy T. (2015). Activity spectrum of colicins produced by Shigella sonnei and genetic mechanism of colicin resistance in conspecific S. sonnei strains and Escherichia coli. Antimicrob. Agents Chemother. 59, 152–158. 10.1128/AAC.04122-14
    1. Cascales E., Buchanan S. K., Duche D., Kleanthous C., Lloubes R., Postle K., et al. . (2007). Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229. 10.1128/MMBR.00036-06
    1. Connor T. R., Barker C. R., Baker K. S., Weill F. X., Talukder K. A., Smith A. M., et al. . (2015). Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. Elife 4:e07335. 10.7554/eLife.07335
    1. Corfield A. P., Wagner S. A., Clamp J. R., Kriaris M. S., Hoskins L. C. (1992). Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect. Immun. 60, 3971–3978.
    1. Corfield A. P. (2015). Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim. Biophys. Acta 1850, 236–252. 10.1016/j.bbagen.2014.05.003
    1. Coster T. S., Hoge C. W., VanDeVerg L. L., Hartman A. B., Oaks E. V., Venkatesan M. M., et al. . (1999). Vaccination against shigellosis with attenuated Shigella flexneri 2a strain SC602. Infect Immun 67, 3437–3443.
    1. Cui X., Wang J., Yang C., Liang B., Ma Q., Yi S., et al. . (2015). Prevalence and antimicrobial resistance of Shigella flexneri serotype 2 variant in China. Front Microbiol 6:435. 10.3389/fmicb.2015.00435
    1. Das S. K., Ahmed S., Ferdous F., Farzana F. D., Chisti M. J., Latham J. R., et al. . (2013). Etiological diversity of diarrhoeal disease in Bangladesh. J. Infect. Dev. Ctries 7, 900–909. 10.3855/jidc.3003
    1. De Lappe N., O'Connor J., Garvey P., McKeown P. J., Cormican M. (2015). Ciprofloxacin-resistant Shigella sonnei associated with travel to India. Emerg. Infect. Dis. 21, 894–896. 10.3201/eid2105.141184
    1. Deplancke B., Vidal O., Ganessunker D., Donovan S. M., Mackie R. I., Gaskins H. R. (2002). Selective growth of mucolytic bacteria including Clostridium perfringens in a neonatal piglet model of total parenteral nutrition. Am. J. Clin. Nutr. 76, 1117–1125.
    1. Dmitriev B. A., Knirel Y. A., Kochetkov N. K., Hofman I. L. (1976). Somatic antigens of Shigella. Eur. J. Biochem. 66, 559–566. 10.1111/j.1432-1033.1976.tb10582.x
    1. Formal S. B., Dammin G., Sprinz H., Kundel D., Schneider H., Horowitz R. E., et al. . (1961). Experimental Shigella infections. V. Studies in germ-free guinea pigs. J. Bacteriol. 82, 284–287.
    1. Gamian A., Romanowska E. (1982). The core structure of Shigella sonnei lipopolysaccharide and the linkage between O-specific polysaccharide and the core region. Eur. J. Biochem. 129, 105–109. 10.1111/j.1432-1033.1982.tb07027.x
    1. Golowczyc M. A., Mobili P., Garrote G. L., Abraham A. G., De Antoni G. L. (2007). Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. Int. J. Food Microbiol. 118, 264–273. 10.1016/j.ijfoodmicro.2007.07.042
    1. Gopal A., Iyer S. C., Gopal U., Devaraj N., Halagowder D. (2014). Shigella dysenteriae modulates BMP pathway to induce mucin gene expression in vivo and in vitro. PLoS ONE 9:e111408. 10.1371/journal.pone.0111408
    1. Gudmundsson G. H., Bergman P., Andersson J., Raqib R., Agerberth B. (2010). Battle and balance at mucosal surfaces–the story of Shigella and antimicrobial peptides. Biochem. Biophys. Res. Commun. 396, 116–119. 10.1016/j.bbrc.2010.03.081
    1. Guerin P. J., Brasher C., Baron E., Mic D., Grimont F., Ryan M., et al. . (2004). Case management of a multidrug-resistant Shigella dysenteriae serotype 1 outbreak in a crisis context in Sierra Leone, 1999-2000. Trans. R. Soc. Trop. Med. Hyg. 98, 635–643. 10.1016/j.trstmh.2004.01.005
    1. Gutiérrez-Jiménez J., Arciniega I., Navarro-Garcia F. (2008). The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate. Microb Pathog. 45, 115–123. 10.1016/j.micpath.2008.04.006
    1. Haider K., Hossain A., Wanke C., Qadri F., Ali S., Nahar S. (1993). Production of mucinase and neuraminidase and binding of Shigella to intestinal mucin. J. Diarrhoeal. Dis. Res. 11, 88–92.
    1. Henderson I. R., Czeczulin J., Eslava C., Noriega F., Nataro J. P. (1999). Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect. Immun. 67, 5587–5596.
    1. Holt K. E., Baker S., Weill F.-X., Holmes E. C., Kitchen A., Yu J., et al. . (2012). Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat. Genet. 44, 1056–1059. 10.1038/ng.2369
    1. Holt K. E., Thieu Nga T. V., Thanh D. P., Vinh H., Kim D. W., Vu Tra M. P., et al. . (2013). Tracking the establishment of local endemic populations of an emergent enteric pathogen. Proc. Natl. Acad. Sci. U.S.A. 110, 17522–17527. 10.1073/pnas.1308632110
    1. Hulland K. R. S., Leontsini E., Dreibelbis R., Unicomb L., Afroz A., Dutta N. C., et al. . (2013). Designing a handwashing station for infrastructure-restricted communities in Bangladesh using the integrated behavioural model for water, sanitation and hygiene interventions (IBM-WASH). BMC Public Health 13:877. 10.1186/1471-2458-13-877
    1. Johansson M. E. V., Gustafsson J. K., Holmén-Larsson J., Jabbar K. S., Xia L., Xu H., et al. . (2014). Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63, 281–291. 10.1136/gutjnl-2012-303207
    1. Johansson M. E. V., Larsson J. M. H., Hansson G. C. (2011). The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl. 1), 4659–4665. 10.1073/pnas.1006451107
    1. Johnson-Henry K. C., Morona R., Hagen K. E., Daniels C., Gordonpour M., Van Den Bosch L., et al. . (2007). Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell Microbiol. 9, 356–367. 10.1111/j.1462-5822.2006.00791.x
    1. Kamp H. D., Patimalla-Dipali B., Lazinski D. W., Wallace-Gadsden F., Camilli A. (2013). Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle. PLoS Pathog. 9, e1003800. 10.1371/journal.ppat.1003800
    1. Karlsson N. G., Johansson M. E., Asker N., Karlsson H., Gendler S. J., Carlstedt I., et al. . (1996). Molecular characterization of the large heavily glycosylated domain glycopeptide from the rat small intestinal Muc2 mucin. Glycoconj. J. 13, 823–831. 10.1007/BF00702346
    1. Kernéis S., Guerin P. J., Seidlein von L., Legros D., Grais R. F. (2009). A look back at an ongoing problem: Shigella dysenteriae type 1 epidemics in refugee settings in Central Africa (1993-1995). PLoS ONE 4:e4494. 10.1371/journal.pone.0004494
    1. Khaghani S., Shamsizadeh A., Nikfar R., Hesami A. (2014). Shigella flexneri: a three-year antimicrobial resistance monitoring of isolates in a Children Hospital, Ahvaz, Iran. Iran J. Microbiol. 6, 225–229.
    1. Kim J. S., Kim J. J., Kim S. J., Jeon S.-E., Seo K. Y., Choi J.-K., et al. . (2015). Outbreak of Ciprofloxacin-resistant Shigella sonnei associated with travel to Vietnam, Republic of Korea. Emerg. Infect. Dis. 21, 1247–1250. 10.3201/eid2107.150363
    1. Kocsis A. K., Lakatos P. L., Somogyvári F., Fuszek P., Papp J., Fischer S., et al. . (2008). Association of beta-defensin 1 single nucleotide polymorphisms with Crohn's disease. Scand. J. Gastroenterol. 43, 299–307. 10.1080/00365520701682615
    1. Kotloff K. L., Nataro J. P., Blackwelder W. C., Nasrin D., Farag T. H., Panchalingam S., et al. . (2013). Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209–222. 10.1016/S0140-6736(13)60844-2
    1. Kumar P., Luo Q., Vickers T. J., Sheikh A., Lewis W. G., Fleckenstein J. M. (2013). EatA, an immununogenic protective antigen of Enterotoxigenic Escherichia coli degrades intestinal mucin. Infect. Immun. 82, 500–508. 10.1128/IAI.01106-13
    1. Lavelle A., Lennon G., O'sullivan O., Docherty N., Balfe A., Maguire A., et al. . (2015). Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 64, 1553–1561. 10.1136/gutjnl-2014-307873
    1. Levine M. M., Kotloff K. L., Barry E. M., Pasetti M. F., Sztein M. B. (2007). Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat. Rev. Microbiol. 5, 540–553. 10.1038/nrmicro1662
    1. Maier B. R., Hentges D. J. (1972). Experimental Shigella infections in laboratory animals. I. Antagonism by human normal flora components in gnotobiotic mice. Infect. Immun. 6, 168–173.
    1. Mao Y., Fernandez M.-I., Cui E., Regnault B., Bao C., Mulet C., et al. . (2013). Changing trends and serotype distribution of Shigella species in Beijing from 1994 to 2010. J. Immunol. 5, 21–4930. 10.1186/1757-4749-5-21
    1. Marteyn B., Gazi A., Sansonetti P. (2012). Shigella: a model of virulence regulation in vivo. Gut Microbes 3, 104–120. 10.4161/gmic.19325
    1. Martino M. C., Rossi G., Martini I., Tattoli I., Chiavolini D., Phalipon A., et al. . (2005). Mucosal lymphoid infiltrate dominates colonic pathological changes in murine experimental shigellosis. J. Infect. Dis. 192, 136–148. 10.1086/430740
    1. McGuckin M. A., Lindén S. K., Sutton P., Florin T. H. (2011). Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9, 265–278. 10.1038/nrmicro2538
    1. Meyer-Hoffert U., Hornef M. W., Henriques-Normark B., Axelsson L.-G., Midtvedt T., Putsep K., et al. . (2008). Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57, 764–771. 10.1136/gut.2007.141481
    1. Moorthy G., Murali M. R., Niranjali Devaraj S. (2010). Lactobacilli inhibit Shigella dysenteriae 1 induced pro-inflammatory response and cytotoxicity in host cells via impediment of Shigella-host interactions. Dig. Liver Dis. 42, 33–39. 10.1016/j.dld.2009.04.021
    1. Morona R., Daniels C., Van Den Bosch L. (2003). Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. Microbiology 149(Pt 4), 925–939. 10.1099/mic.0.26141-0
    1. Navarro-Garcia F., Gutierrez-Jimenez J., Garcia-Tovar C., Castro L. A., Salazar-Gonzalez H., Cordova V. (2010). Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infect. Immun. 78, 4101–4109. 10.1128/IAI.00523-10
    1. Ottemann K. M., Lowenthal A. C. (2002). Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect. Immun. 70, 1984–1990. 10.1128/IAI.70.4.1984-1990.2002
    1. Pelaseyed T., Bergström J. H., Gustafsson J. K., Ermund A., Birchenough G. M. H., Schütte A., et al. . (2014). The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev. 260, 8–20. 10.1111/imr.12182
    1. Perepelov A. V., Shevelev S. D., Liu B., Senchenkova S. N., Shashkov A. S., Feng L., et al. . (2010). Structures of the O-antigens of Escherichia coli O13, O129, and O135 related to the O-antigens of Shigella flexneri. Carbohydr. Res. 345, 1594–1599. 10.1016/j.carres.2010.04.023
    1. Phalipon A., Sansonetti P. J. (2007). Shigella's ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol. Cell Biol. 85, 119–129. 10.1038/sj.icb7100025
    1. Pongpech P., Hentges D. J., Marsh W. W., Eberle M. E. (1989). Effect of streptomycin administration on association of enteric pathogens with cecal tissue of mice. Infect. Immun. 57, 2092–2097.
    1. Prakash R., Bharathi Raja S., Devaraj H., Devaraj S. N. (2011). Up-regulation of MUC2 and IL-1β expression in human colonic epithelial cells by Shigella and its interaction with mucins. PLoS ONE 6:e27046. 10.1371/journal.pone.0027046
    1. Qiu S., Xu X., Yang C., Wang J., Liang B., Li P., et al. . (2015). Shift in serotype distribution of Shigella species in China, 2003-2013. Clin. Microbiol. Infect. 21, 252.e5–e8. 10.1016/j.cmi.2014.10.019
    1. Qu F., Ying Z., Zhang C., Chen Z., Chen S., Cui E., et al. . (2014). Plasmid-encoding extended-spectrum beta-lactamase CTX-M-55 in a clinical Shigella sonnei strain, China. Future Microbiol. 9, 1143–1150. 10.2217/fmb.14.53
    1. Rahman K. M., Arifeen S. E., Zaman K., Rahman M., Raqib R., Yunus M., et al. . (2011). Safety, dose, immunogenicity, and transmissibility of an oral live attenuated Shigella flexneri 2a vaccine candidate (SC602) among healthy adults and school children in Matlab, Bangladesh. Vaccine 29, 1347–1354. 10.1016/j.vaccine.2010.10.035
    1. Raja S. B., Murali M. R., Devaraj H., Devaraj S. N. (2012). Differential expression of gastric MUC5AC in colonic epithelial cells: TFF3-wired IL1 β/Akt crosstalk-induced mucosal immune response against Shigella dysenteriae infection. J. Cell Sci. 125, 703–713. 10.1242/jcs.092148
    1. Rajilić-Stojanović M., de Vos W. M. (2014). The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047. 10.1111/1574-6976.12075
    1. Rashid H., Rahman M. (2015). Possible transfer of plasmid mediated third generation cephalosporin resistance between Escherichia coli and Shigella sonnei in the human gut. Infect. Genet. Evol. 30, 15–18. 10.1016/j.meegid.2014.11.023
    1. Robbe C., Capon C., Maes E., Rousset M., Zweibaum A., Zanetta J. P., et al. . (2003). Evidence of regio-specific glycosylation in human intestinal mucins: presence of an acidic gradient along the intestinal tract. J. Biol. Chem. 278, 46337–46348. 10.1074/jbc.M302529200
    1. Ruiz-Perez F., Wahid R., Faherty C. S., Kolappaswamy K., Rodriguez L., Santiago A., et al. . (2011). Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc. Natl. Acad. Sci. U.S.A. 108, 12881–12886. 10.1073/pnas.1101006108
    1. Sack D. A., Hoque A. T., Huq A., Etheridge M. (1994). Is protection against shigellosis induced by natural infection with Plesiomonas shigelloides? Lancet 343, 1413–1415. 10.1016/S0140-6736(94)92531-3
    1. Saeed A., Johansson D., Sandström G., Abd H. (2012). Temperature depended role of Shigella flexneri invasion plasmid on the interaction with Acanthamoeba castellanii. Int. J. Microbiol. 2012, 917031. 10.1155/2012/917031
    1. Sankar S. A., Lagier J.-C., Pontarotti P., Raoult D., Fournier P.-E. (2015). The human gut microbiome, a taxonomic conundrum. Syst. Appl. Microbiol. 38, 276–286. 10.1016/j.syapm.2015.03.004
    1. Senchenkova S. N., Feng L., Yang J., Shashkov A. S., Cheng J., Liu D., et al. . (2005). Structural and genetic characterization of the Shigella boydii type 10 and type 6 O antigens. J. Bacteriol. 187, 2551–2554. 10.1128/JB.187.7.2551-2554.2005
    1. Shiga K. (1898). Ueber den erreger der Dysenterie in Japan. Vorlaufige Mitteilung Zentralbal Bakteriol. Microbiol. Hyg. 23, 599–600.
    1. Sonne C. (1915). Ueber die Bakteriologie der giftarmen Dysenteriebacillen (Para-dysenteriebacillen). Zentr. Bakt. Parsitenk. Orig. 76, 408–456.
    1. Sonnenburg J. L., Xu J., Leip D. D., Chen C.-H., Westover B. P., Weatherford J., et al. . (2005). Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959. 10.1126/science.1109051
    1. Sperandio B., Fischer N., Joncquel Chevalier-Curt M., Rossez Y., Roux P., Robbe Masselot C., et al. . (2013). Virulent Shigella flexneri affects secretion, expression, and glycosylation of gel-forming mucins in mucus-producing cells. Infect. Immun. 81, 3632–3643. 10.1128/IAI.00551-13
    1. Sperandio B., Regnault B., Guo J., Zhang Z., Stanley S. L., Jr., Sansonetti P. J., et al. . (2008). Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. J. Exp. Med. 205, 1121–1132. 10.1084/jem.20071698
    1. Sudha P. S., Devaraj H., Devaraj N. (2001). Adherence of Shigella dysenteriae 1 to human colonic mucin. Curr. Microbiol. 42, 381–387. 10.1007/s002840010234
    1. Thompson C. N., Duy P. T., Baker S. (2015). The rising dominance of Shigella sonnei: an intercontinental shift in the etiology of bacillary dysentery. PLoS Negl. Trop. Dis. 9:e0003708. 10.1371/journal.pntd.0003708
    1. Tien M.-T., Girardin S. E., Regnault B., Le Bourhis L., Dillies M. A., Coppée J. Y., et al. . (2006). Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J. Immunol. 176, 1228–1237. 10.4049/jimmunol.176.2.1228
    1. Tran E. N. H., Papadopoulos M., Morona R. (2014). Relationship between O-antigen chain length and resistance to colicin E2 in Shigella flexneri. Microbiology 160, 589–601. 10.1099/mic.0.074955-0
    1. Tran Van Nhieu G., Bourdet-Sicard R., Duménil G., Blocker A., Sansonetti P. J. (2000). Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell Microbiol. 2, 187–193. 10.1046/j.1462-5822.2000.00046.x
    1. Valentino M. D., Foulston L., Sadaka A., Kos V. N., Villet R. A., Santa Maria J., Jr., et al. . (2014). Genes contributing to Staphylococcus aureus fitness in abscess- and infection-related ecologies. MBio 5, e01729–e01714. 10.1128/mBio.01729-14
    1. Varum F. J. O., Veiga F., Sousa J. S., Basit A. W. (2012). Mucus thickness in the gastrointestinal tract of laboratory animals. J. Pharm. Pharmacol. 64, 218–227. 10.1111/j.2042-7158.2011.01399.x
    1. Vighi G., Marcucci F., Sensi L., Di Cara G., Frati F. (2008). Allergy and the gastrointestinal system. Clin. Exp. Immunol. 153(Suppl. 1), 3–6. 10.1111/j.1365-2249.2008.03713.x
    1. Zhang J., Qian L., Wu Y., Cai X., Li X., Cheng X., et al. . (2013). Deletion of pic results in decreased virulence for a clinical isolate of Shigella flexneri 2a from China. BMC Microbiol. 13:31. 10.1186/1471-2180-13-31
    1. Zhang Y.-C., Zhang L.-W., Ma W., Yi H. X., Yang X., Du M., et al. . (2012). Screening of probiotic lactobacilli for inhibition of Shigella sonnei and the macromolecules involved in inhibition. Anaerobe 18, 498–503. 10.1016/j.anaerobe.2012.08.007

Source: PubMed

3
Subskrybuj