Effects of Acid-Reducing Agents on the Pharmacokinetics of Lazertinib in Patients with EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer

Bomin Kim, Jungwook Lee, Hyunwoo Jang, Nami Lee, Jaydeep Mehta, Seong Bok Jang, Bomin Kim, Jungwook Lee, Hyunwoo Jang, Nami Lee, Jaydeep Mehta, Seong Bok Jang

Abstract

Introduction: Lazertinib is an irreversible, mutant-selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI). Co-administration of TKIs with acid-reducing agents (ARAs) can lead to potential drug-drug interactions, which decreases solubility and absorption of TKIs and is ultimately associated with reduced efficacy of TKIs. This retrospective analysis evaluated the effect of ARAs on the pharmacokinetics of lazertinib using data obtained from patients with advanced EGFR mutation-positive non-small-cell lung cancer.

Methods: In a total of 234 patients with lazertinib pharmacokinetics observed at steady state, dose-normalized (DN) area under the concentration-time curve (AUCss), maximum concentration (Cmax,ss), and/or trough concentration on day 15 (CD15) were compared between a group receiving ARA concomitantly for at least 4 days (ARA group) and another group not receiving ARA (non-ARA group) in a dose-proportional range. Additionally, a comparison of pharmacokinetic parameters at a therapeutic dose of 240 mg once daily was evaluated.

Results: Geometric mean ratios (GMRs) with 90% confidence intervals (CIs) of ARA group to non-ARA group for DNAUCss, DNCmax,ss, and DNCD15 at 40 mg to 320 mg once daily showing the dose proportionality were 0.8743 (0.7285-1.0493), 0.9035 (0.7482-1.0910), and 0.9126 (0.7364-1.1311), respectively. GMRs with 90% CIs for AUCss, Cmax,ss, and CD15 at 240 mg were 0.9136 (0.6637-1.2576), 0.9012 (0.6703-1.2116), and 0.8850 (0.6463-1.2118), respectively.

Conclusion: All pharmacokinetic parameters were not significantly different between the two groups (p values > 0.05), indicating that co-administered ARAs did not significantly affect the steady state pharmacokinetics of lazertinib. Therefore, no dose adjustment of lazertinib is required in patients receiving concomitant ARAs.

Gov identifiers: NCT03046992, NCT04075396.

Keywords: Acid-reducing agent; Drug–drug interactions; Lazertinib; Pharmacokinetics; Tyrosine kinase inhibitor.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Dose proportionality of lazertinib in the dose range of 40 to 320 mg. The circles represent the observed values, the black straight line represents the linear regression line, and the red and blue dashed lines represent the 90% confidence limits and 90% prediction limits, respectively: a ln(AUCss) versus ln(dose); b ln(Cmax,ss) versus ln(dose); c ln(CD15) versus ln(dose)
Fig. 2
Fig. 2
Comparison of the dose-normalized pharmacokinetic parameters of lazertinib between the ARA and non-ARA groups in the dose range of 40 to 320 mg. The dashed and solid lines across each box represent the median and arithmetic mean of the dose-normalized pharmacokinetic parameters, respectively. The upper and lower whiskers represent the maximum and minimum values within 1.5-fold interquartile range: a dose-normalized AUCss; b dose-normalized Cmax,ss; c dose-normalized CD15
Fig. 3
Fig. 3
Comparison of the pharmacokinetic parameters of lazertinib between the ARA and non-ARA groups at 240 mg. The dashed and solid lines across each box represent the median and arithmetic mean of the pharmacokinetic parameters, respectively. The upper and lower whiskers represent the maximum and minimum values within 1.5-fold interquartile range: a AUCss; bCmax,ss; cCD15
Fig. 4
Fig. 4
Geometric mean ratios of ARA group to non-ARA group with 90% confidence intervals of pharmacokinetic parameters of lazertinib: empty circle, square, and triangle represent the geometric mean ratio of the dose-normalized AUCss, Cmax,ss, and CD15 of ARA group to non-ARA group, respectively, in the dose range of 40 to 320 mg. Filled circle, square, and triangle represent the geometric mean ratio of the dose-normalized AUCss, Cmax,ss, and CD15 of ARA group to non-ARA group, respectively, at 240 mg. The line extending from the point represents the 90% confidence interval for each geometric mean ratio

References

    1. Hong MH, Lee IY, Koh JS, et al. P3.02b–119 YH25448, a highly selective 3rd generation EGFR TKI, exhibits superior survival over osimertinib in animal model with brain metastases from NSCLC: Topic: EGFR RES. J Thorac Oncol. 2017;12(1):S1265–S1266. doi: 10.1016/j.jtho.2016.11.1787.
    1. Ministry of Food and Drug Safety Republic of Korea, LECLAZA (lazertinib): prescribing information. 2022.
    1. Westover D, Zugazagoitia J, Cho BC, Lovly CM, Paz-Ares L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol. 2018;1(29):i10–i19. doi: 10.1093/annonc/mdx703.
    1. Gao J, Li HR, Jin C, Jiang JH, Ding JY. Strategies to overcome acquired resistance to EGFR TKI in the treatment of non-small cell lung cancer. Clin Transl Oncol. 2019;21(10):1287–1301. doi: 10.1007/s12094-019-02075-1.
    1. Karachaliou N, Fernandez-Bruno M, Paulina Bracht JW, Rosell R. EGFR first- and second-generation TKIs—there is still place for them in EGFR-mutant NSCLC patients. Transl Cancer Res. 2018;2:S23–S47. doi: 10.21037/tcr.2018.10.06.
    1. Yun J, Hong MH, Kim SY, et al. YH25448, an irreversible EGFR-TKI with potent intracranial activity in EGFR mutant non-small cell lung cancer. Clin Cancer Res. 2019;25(8):2575–2587. doi: 10.1158/1078-0432.CCR-18-2906.
    1. Kim S-W, Ahn M-J, Han J-Y, et al. Intracranial anti-tumor activity of lazertinib in patients with advanced NSCLC who progressed after prior EGFR TKI therapy: data from a phase I/II study. J Clin Oncol. 2020;38:9571. doi: 10.1200/JCO.2020.38.15_suppl.9571.
    1. Ahn M-J, Han J-Y, Lee KH, et al. Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1–2 study. Lancet Oncol. 2019;20(12):1681–1690. doi: 10.1016/S1470-2045(19)30504-2.
    1. Zhang Y-S, Li Q, He B-S, Liu R, Li Z-J. Proton pump inhibitors therapy vs H2 receptor antagonists therapy for upper gastrointestinal bleeding after endoscopy: a meta-analysis. World J Gastroenterol. 2015;21(20):6341–6351. doi: 10.3748/wjg.v21.i20.6341.
    1. Smelick GS, Heffron TP, Chu L, et al. Prevalence of acid-reducing agents (ARA) in cancer populations and ARA drug-drug interaction potential for molecular targeted agents in clinical development. Mol Pharm. 2013;10(11):4055–4062. doi: 10.1021/mp400403s.
    1. van Leeuwen RWF, Jansman FGA, Hunfeld NG, et al. Tyrosine kinase inhibitors and proton pump inhibitors: an evaluation of treatment options. Clin Pharmacokinet. 2017;56(7):683–688. doi: 10.1007/s40262-016-0503-3.
    1. Sharma M, Holmes HM, Mehta HB, et al. The concomitant use of tyrosine kinase inhibitors and proton pump inhibitors: prevalence, predictors, and impact on survival and discontinuation of therapy in older adults with cancer. Cancer. 2019;125(7):1155–1162. doi: 10.1002/cncr.31917.
    1. Budha NR, Frymoyer A, Smelick GS, et al. Drug absorption interactions between oral targeted anticancer agents and PPIs: is pH-dependent solubility the Achilles heel of targeted therapy? Clin Pharmacol Ther. 2012;92(2):203–213. doi: 10.1038/clpt.2012.73.
    1. Food and Drug Administration, IRESSA (gefitinib): prescribing information; 2018.
    1. Tang W, Tomkinson H, Masson E. Effect of sustained elevated gastric pH levels on gefitinib exposure. Clin Pharmacol Drug Dev. 2017;6(5):517–523. doi: 10.1002/cpdd.337.
    1. Food and Drug Administration, TARCEVA (erloitinib): prescribing information; 2010.
    1. Chu MP, Ghosh S, Chambers CR, et al. Gastric acid suppression is associated with decreased erlotinib efficacy in non-small-cell lung cancer. Clin Lung Cancer. 2015;16(1):33–39. doi: 10.1016/j.cllc.2014.07.005.
    1. Kim SK, LEE DK, Kim SW, et al. Pharmaceutical composition for oral administration comprising aminopyrimidine derivative or its salt. WIPO. 2020. International Publication Number: WO2020079637A1.
    1. Cho BC, Han JY, Kim SW, et al. A phase 1/2 study of lazertinib 240 mg in patients with advanced EGFR T790M-positive NSCLC after previous EGFR tyrosine kinase inhibitors. J Thorac Oncol. 2022;17(4):558–567. doi: 10.1016/j.jtho.2021.11.025.
    1. Shin KH, Jeon JY, Jang K, Kim TE, Kim MG. Dose-proportional pharmacokinetic properties of GLA5PR GLARS-NF1 controlled-release pregabalin in healthy Korean volunteers: a randomized, open, single-dose, parallel study. Drug Des Devel Ther. 2018;12:3449–3457. doi: 10.2147/DDDT.S167668.
    1. GLOBOCAN. Age-standardized (World) incidence and mortality rates, top 10 cancers. 2020. . Accessed Mar 2021.
    1. Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health. 2019;85(1):8. doi: 10.5334/aogh.2419.
    1. Numico G, Fusco V, Franco P, Roila F. Proton pump inhibitors in cancer patients: how useful they are? A review of the most common indications for their use. Crit Rev Oncol Hematol. 2017;111:144–151. doi: 10.1016/j.critrevonc.2017.01.014.
    1. Hussaarts K, Veerman GDM, Jansman FGA, et al. Clinically relevant drug interactions with multikinase inhibitors: a review. Ther Adv Med Oncol. 2019;11:1758835918818347. doi: 10.1177/1758835918818347.
    1. Mori H, Suzuki H. Role of acid suppression in acid-related diseases: proton pump inhibitor and potassium-competitive acid blocker. J Neurogastroenterol Motil. 2019;25(1):6–14. doi: 10.5056/jnm18139.
    1. Patel D, Bertz R, Ren S, Boulton DW, Någård M. A systematic review of gastric acid-reducing agent-mediated drug–drug interactions with orally administered medications. Clin Pharmacokinet. 2020;59(4):447–462. doi: 10.1007/s40262-019-00844-3.
    1. Shin JM, Sachs G. Pharmacology of proton pump inhibitors. Curr Gastroenterol Rep. 2008;10(6):528–534. doi: 10.1007/s11894-008-0098-4.
    1. Netzer P, Brabetz-Höfliger A, Bründler R, et al. Comparison of the effect of the antacid Rennie versus low-dose H2-receptor antagonists (ranitidine, famotidine) on intragastric acidity. Aliment Pharmacol Ther. 1998;12(4):337–342. doi: 10.1046/j.1365-2036.1998.00316.x.
    1. Hedenström H, Alm C, Kraft M, Grahnén A. Intragastric pH after oral administration of single doses of ranitidine effervescent tablets, omeprazole capsules and famotidine fast-dissolving tablets to fasting healthy volunteers. Aliment Pharmacol Ther. 1997;11(6):1137–1141. doi: 10.1046/j.1365-2036.1997.00264.x.
    1. McRorie JW, Kirby JA, Miner PB. Histamine2-receptor antagonists: rapid development of tachyphylaxis with repeat dosing. World J Gastrointest Pharmacol Ther. 2014;5(2):57–62. doi: 10.4292/wjgpt.v5.i2.57.
    1. Hsu TC, Su CF, Leu SC, et al. Omeprazole is more effective than a histamine H2-receptor blocker for maintaining a persistent elevation of gastric pH after colon resection for cancer. Am J Surg. 2004;187(1):20–23. doi: 10.1016/j.amjsurg.2002.10.002.
    1. Simonian HP, Vo L, Doma S, Fisher RS, Parkman HP. Regional postprandial differences in pH within the stomach and gastroesophageal junction. Dig Dis Sci. 2005;50(12):2276–2285. doi: 10.1007/s10620-005-3048-0.
    1. Huh KY, Yu KS, Lee SH, et al. Effects of food and race on pharmacokinetics of lazertinib in healthy volunteers and patients with EGFR mutation positive advanced non-small cell lung cancer. Poster presentation at annual meeting of American Association of Pharmaceutical Scientists (AAPS) 2021 PharmSci 360. W1130–02–08. . Accessed Oct 20, 2021.
    1. Gay C, Toulet D, Le Corre P. Pharmacokinetic drug-drug interactions of tyrosine kinase inhibitors: a focus on cytochrome P450, transporters, and acid suppression therapy. Hematol Oncol. 2017;35(3):259–280. doi: 10.1002/hon.2335.
    1. Hussaarts KGAM, Veerman GDM, Jansman FGA, van Gelder T, Mathijssen RHJ, van Leeuwen RWF. Clinically relevant drug interactions with multikinase inhibitors: a review. Ther Adv Med Oncol. 2019;4(11):1–34.
    1. Xu H, O'Gorman M, Matschke K, et al. Evaluation of proton pump inhibitor esomeprazole on crizotinib pharmacokinetics in healthy participants. Clin Pharmacol Drug Dev. 2022;11(1):34–42. doi: 10.1002/cpdd.1032.
    1. Food and Drug Administration, OFEV (nintedanib): Clinical pharmacology and biopharmaceutics reviews; 2014.
    1. Narasimhan NI, Dorer DJ, Davis J, Turner CD, Sonnichsen D. Evaluation of the effect of multiple doses of lansoprazole on the pharmacokinetics and safety of ponatinib in healthy subjects. Clin Drug Investig. 2014;34(10):723–729. doi: 10.1007/s40261-014-0225-y.
    1. Food and Drug Administration, COTELLIC (cobimetinib): Clinical pharmacology and biopharmaceutics reviews; 2015.
    1. Food and Drug Administration, COTELLIC (cobimetinib): prescribing information; 2018.

Source: PubMed

3
Subskrybuj