Music reduces pain and increases functional mobility in fibromyalgia

Eduardo A Garza-Villarreal, Andrew D Wilson, Lene Vase, Elvira Brattico, Fernando A Barrios, Troels S Jensen, Juan I Romero-Romo, Peter Vuust, Eduardo A Garza-Villarreal, Andrew D Wilson, Lene Vase, Elvira Brattico, Fernando A Barrios, Troels S Jensen, Juan I Romero-Romo, Peter Vuust

Abstract

The pain in Fibromyalgia (FM) is difficult to treat and functional mobility seems to be an important comorbidity in these patients that could evolve into a disability. In this study we wanted to investigate the analgesic effects of music in FM pain. Twenty-two FM patients were passively exposed to (1) self-chosen, relaxing, pleasant music, and to (2) a control auditory condition (pink noise). They rated pain and performed the "timed-up & go task (TUG)" to measure functional mobility after each auditory condition. Listening to relaxing, pleasant, self-chosen music reduced pain and increased functional mobility significantly in our FM patients. The music-induced analgesia was significantly correlated with the TUG scores; thereby suggesting that the reduction in pain unpleasantness increased functional mobility. Notably, this mobility improvement was obtained with music played prior to the motor task (not during), therefore the effect cannot be explained merely by motor entrainment to a fast rhythm. Cognitive and emotional mechanisms seem to be central to music-induced analgesia. Our findings encourage the use of music as a treatment adjuvant to reduce chronic pain in FM and increase functional mobility thereby reducing the risk of disability.

Keywords: analgesia; fibromyalgia; functional mobility; music; pain.

Figures

Figure 1
Figure 1
Paradigm to study music-induced analgesia. The participants listened to both conditions in between a washout period, with 2 min rests. r, Rest condition.
Figure 2
Figure 2
Results of the verbal rating scale (VRS) before and after the control/music conditions. The bars represent the mean of each measure (A = Pain intensity, B = Pain unpleasantness), whereas the error bars represent the standard deviation. Above the error bars we show the Mean (SD) for each measure. *p < 0.05, ***p < 0.006.
Figure 3
Figure 3
Results of the timed up and go task (TUG) before and after the control/music conditions. The bars represent the mean of each measure, whereas the error bars represent the standard deviation. Above the error bars we show the Mean (SD) for each measure. ***p < 0.006.
Figure 4
Figure 4
Scatter plot of the relationship between pain unpleasantness and functional mobility difference scores in the music condition. Δ, pre-post auditory stimulus; TUG, Timed up and go task.

References

    1. Alcock L., Vanicek N., O'Brien T. D. (2013). Alterations in gait speed and age do not fully explain the changes in gait mechanics associated with healthy older women. Gait Posture 37, 586–592 10.1016/j.gaitpost.2012.09.023
    1. Archie P., Bruera E., Cohen L. (2013). Music-based interventions in palliative cancer care: a review of quantitative studies and neurobiological literature. Support. Care Cancer 21, 2609–2624 10.1007/s00520-013-1841-4
    1. Baumgartner T., Lutz K., Schmidt C. F., Jäncke L. (2006). The emotional power of music: how music enhances the feeling of affective pictures. Brain Res. 1075, 151–164 10.1016/j.brainres.2005.12.065
    1. Benjamini Y., Hochberg Y. (1995). Controling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57, 289–300
    1. Bernatzky G., Presch M., Anderson M., Panksepp J. (2011). Emotional foundations of music as a non-pharmacological pain management tool in modern medicine. Neurosci. Biobehav. Rev. 35, 1989–1999 10.1016/j.neubiorev.2011.06.005
    1. Bingel U., Tracey I. (2008). Imaging CNS modulation of pain in humans. Physiology 23, 371–380 10.1152/physiol.00024.2008
    1. Björnsdóttir S. V., Jónsson S. H., Valdimarsdóttir U. A. (2013). Functional limitations and physical symptoms of individuals with chronic pain. Scand. J. Rheumatol. 42, 59–70 10.3109/03009742.2012.697916
    1. Brattico E., Alluri V., Jacobsen T., Vartiainen N., Nieminen S., Tervaniemi M. (2011). A functional MRI study of happy and sad emotions in music with and without lyrics. Front. Psychol. 2:308 10.3389/fpsyg.2011.00308
    1. Brederson J. D., Jarvis M. F., Honore P., Surowy C. S. (2011). Fibromyalgia: mechanisms, current treatment, and animal models. Curr. Pharm. Biotechnol. 12, 1613–1626 10.2174/138920111798357258
    1. Coghill R. C., Sang C. N., Maisog J. M., Iadarola M. J. (1999). Pain intensity processing within the human brain: a bilateral, distributed mechanism. J. Neurophysiol. 82, 1934–1943
    1. Cork R., Isaac I., Elsharydah A., Saleemi S., Zavisca F., Alexander L. (2004). A comparison of the verbal rating scale and the visual analog scale for pain assessment. Internet J. Anesthesiol. 8 10.5580/1a73
    1. de Souza J. B., Potvin S., Goffaux P., Charest J., Marchand S. (2009). The deficit of pain inhibition in fibromyalgia is more pronounced in patients with comorbid depressive symptoms. Clin. J. Pain 25, 123–127 10.1097/AJP.0b013e318183cfa4
    1. de Tommaso M., Sardaro M., Livrea P. (2008). Aesthetic value of paintings affects pain thresholds. Conscious. Cogn. 17, 1152–1162 10.1016/j.concog.2008.07.002
    1. Erkkila J., Punkanen M., Fachner J., Ala-Ruona E., Pontio I., Tervaniemi M., et al. (2011). Individual music therapy for depression: randomised controlled trial. Br. J. Psychiatry 199, 132–139 10.1192/bjp.bp.110.085431
    1. Evans A. J., Jensen M. E., Kip K. E., DeNardo A. J., Lawler G. J., Negin G. A., et al. (2003). Vertebral compression fractures: pain reduction and improvement in functional mobility after percutaneous polymethylmethacrylate vertebroplasty—retrospective report of 245 cases. Radiology 226, 366–372 10.1148/radiol.2262010906
    1. Fritz T., Jentschke S., Gosselin N., Sammler D., Peretz I., Turner R., et al. (2009). Universal recognition of three basic emotions in music. Curr. Biol. 19, 573–576 10.1016/j.cub.2009.02.058
    1. García Campayo J., Rodero B., Alda M., Sobradiel N., Montero J., Moreno S. (2008). Validación de la versión española de la escala de la catastrofización ante el dolor (Pain Catastrophizing Scale) en la fibromialgia. Med. Clín. 131, 487–492 10.1157/13127277
    1. Garza Villarreal E. A., Brattico E., Vase L., Ostergaard L., Vuust P. (2012). Superior analgesic effect of an active distraction versus pleasant unfamiliar sounds and music: the influence of emotion and cognitive style. PLoS ONE 7:e29397 10.1371/journal.pone.0029397
    1. Gracely R. H., Geisser M. E., Giesecke T., Grant M. A. B., Petzke F., Williams D. A., et al. (2004). Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 127, 835–843 10.1093/brain/awh098
    1. Guétin S., Giniès P., Siou D. K. A., Picot M.-C., Pommié C., Guldner E., et al. (2012). The effects of music intervention in the management of chronic pain: a single-blind, randomized, controlled trial. Clin. J. Pain 28, 329–337 10.1097/AJP.0b013e31822be973
    1. Hassett A. L., Cone J. D., Patella S. J., Sigal L. H. (2000). The role of catastrophizing in the pain and depression of women with fibromyalgia syndrome. Arthritis Rheum. 43, 2493–2500 10.1002/1529-0131(200011)43:11<2493::AID-ANR17>;2-W
    1. Hauck M., Metzner S., Rohlffs F., Lorenz J., Engel A. K. (2013). The influence of music and music therapy on pain-induced neuronal oscillations measured by magnetencephalography. Pain 154, 539–547 10.1016/j.pain.2012.12.016
    1. Jones C. J., Rutledge D. N., Aquino J. (2010). Predictors of physical performance and functional ability in people 50+ with and without fibromyalgia. J. Aging Phys. Act. 18, 353–368
    1. Jones K. D., Burckhardt C. S., Clark S. R., Bennett R. M., Potempa K. M. (2002). A randomized controlled trial of muscle strengthening versus flexibility training in fibromyalgia. J. Rheumatol. 29, 1041–1048
    1. Jones K. D., Sherman C. A., Mist S. D., Carson J. W., Bennett R. M., Li F. (2012). A randomized controlled trial of 8-form Tai chi improves symptoms and functional mobility in fibromyalgia patients. Clin. Rheumatol. 31, 1205–1214 10.1007/s10067-012-1996-2
    1. Juslin P. N., Västfjäll D. (2008). Emotional responses to music: the need to consider underlying mechanisms. Behav. Brain Sci. 31, 559–621 10.1017/S0140525X08005293
    1. Karageorghis C. I., Mouzourides D. A., Priest D.-L., Sasso T. A., Morrish D. J., Walley C. J. (2009). Psychophysical and ergogenic effects of synchronous music during treadmill walking. J. Sport Exerc. Psychol. 31, 18–36
    1. Kendall P. C., Finch A. J., Jr., Auerbach S. M. (1976). The state-trait anxiety inventory: a systematic evaluation. J. Consult. Clin. Psychol. 44, 406–412 10.1037/0022-006X.44.3.406
    1. Kenntnermabiala R., Gorges S., Alpers G., Lehmann A., Pauli P. (2007). Musically induced arousal affects pain perception in females but not in males: a psychophysiological examination. Biol. Psychol. 75, 19–23 10.1016/j.biopsycho.2006.10.005
    1. Korhan E. A., Uyar M., Eyigör C., Yönt G. H., Çelik S., Khorshıd L. (2013). The effects of music therapy on pain in patients with neuropathic pain. Pain Manag. Nurs. [Epub ahead of print]. 10.1016/j.pmn.2012.10.006
    1. Kringelbach M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nat. Rev. Neurosci. 6, 691–702 10.1038/nrn1747
    1. Lim I., Van Wegen E., de Goede C., Deutekom M., Nieuwboer A., Willems A., et al. (2005). Effects of external rhythmical cueing on gait in patients with Parkinson's disease: a systematic review. Clin. Rehabil. 19, 695–713 10.1191/0269215505cr906oa
    1. McKelvie P., Low J. (2010). Listening to Mozart does not improve children's spatial ability: final curtains for the Mozart effect. Br. J. Dev. Psychol. 20, 241–258 10.1348/026151002166433
    1. Mitchell L., Macdonald R., Brodie E. (2006). A comparison of the effects of preferred music, arithmetic and humour on cold pressor pain. Eur. J. Pain 10, 343–351 10.1016/j.ejpain.2005.03.005
    1. Mitchell L. A., MacDonald R. A. R. (2006). An experimental investigation of the effects of preferred and relaxing music listening on pain perception. J. Music Ther. 43, 295–316 10.1093/jmt/43.4.295
    1. Onieva-Zafra M. D., Castro-Sanches A. M., Matarán-Peñarrocha G. A., Moreno-Lorenzo C. (2010). Effect of music as nursing intervention for people diagnosed with fibromyalgia. Pain Manag. Nurs. 14, 1–8 10.1016/j.pmn.2010.09.004
    1. Pereira C. S., Teixeira J., Figueiredo P., Xavier J., Castro S. L., Brattico E. (2011). Music and emotions in the brain: familiarity matters. PLoS ONE 6:e27241 10.1371/journal.pone.0027241
    1. Petersel D. L., Dror V., Cheung R. (2010). Central amplification and fibromyalgia: disorder of pain processing. J. Neurosci. Res. 89, 29–34 10.1002/jnr.22512
    1. Petzke F., Jensen K. B., Kosek E., Choy E., Carville S., Fransson P., et al. (2013). Using fMRI to evaluate the effects of milnacipran on central pain processing in patients with fibromyalgia. Scand. J. Pain 4, 65–74 10.1016/j.sjpain.2012.10.002
    1. Podsiadlo D., Richardson S. (1991). The timed Up and Go: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39, 142–148
    1. Rainville P., Duncan G. H., Price D. D., Carrier B., Bushnell M. C. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 10.1126/science.277.5328.968
    1. Rhudy J., Williams A., McCabe K., Russell J., Maynard L. (2008). Emotional control of nociceptive reactions (ECON): do affective valence and arousal play a role? Pain 136, 250–261 10.1016/j.pain.2007.06.031
    1. Robb S. L., Nichols R. J., Rutan R. L., Bishop B. L. (1995). The effects of music assisted relaxation on preoperative anxiety. J. Music Ther. 32, 2–21 10.1093/jmt/32.1.2
    1. Roy M., Lebuis A., Hugueville L., Peretz I., Rainville P. (2012). Spinal modulation of nociception by music. Eur. J. Pain 16, 870–877 10.1002/j.1532-2149.2011.00030.x
    1. Roy M., Mailhot J.-P., Gosselin N., Paquette S., Peretz I. (2009). Modulation of the startle reflex by pleasant and unpleasant music. Int. J. Psychophysiol. 71, 37–42 10.1016/j.ijpsycho.2008.07.010
    1. Roy M., Peretz I., Rainville P. (2008). Emotional valence contributes to music-induced analgesia. Pain 134, 140–147 10.1016/j.pain.2007.04.003
    1. Salimpoor V. N., Benovoy M., Larcher K., Dagher A., Zatorre R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14, 257–262 10.1038/nn.2726
    1. Salimpoor V. N., van den Bosch I., Kovacevic N., McIntosh A. R., Dagher A., Zatorre R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216–219 10.1126/science.1231059
    1. Shackman A. J., Salomons T. V., Slagter H. A., Fox A. S., Winter J. J., Davidson R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167 10.1038/nrn2994
    1. Shapiro S. S., Wilk M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 10.1093/biomet/52.3-4.591
    1. Smarr K. L., Keefer A. L. (2011). Measures of depression and depressive symptoms: beck depression inventory-II (BDI-II), center for epidemiologic studies depression scale (CES-D), geriatric depression scale (GDS), hospital anxiety and depression scale (HADS), and patient health questionnaire-9 (PHQ-9). Arthritis Care Res. 63, S454–S466 10.1002/acr.20556
    1. Smith H. S., Harris R., Clauw D. (2011). Fibromyalgia: an afferent processing disorder leading to a complex pain generalized syndrome. Pain Physician 14, E217–E245
    1. Steele K. M., Bass K. E., Crook M. D. (1999). The mystery of the mozart effect: failure to replicate. Psychol. Sci. 10, 366–369 10.1111/1467-9280.00169
    1. Sullivan M. J. L., Bishop S. R., Pivik J. (1995). The pain catastrophizing scale: development and validation. Psychol. Assess. 7, 524–532 10.1037/1040-3590.7.4.524
    1. Taimela S., Härkäpää K. (1996). Strength, mobility, their changes, and pain reduction in active functional restoration for chronic low back disorders. J. Spinal Disord. 9, 306–312 10.1097/00002517-199608000-00006
    1. Team R. D. C. (2011). R: A language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at:
    1. Thieme K., Turk D. C., Flor H. (2004). Comorbid depression and anxiety in fibromyalgia syndrome: relationship to somatic and psychosocial variables. Psychosom. Med. 66, 837–844 10.1097/01.psy.0000146329.63158.40
    1. Tracey I. (2007). Neuroimaging of pain mechanisms. Curr. Opin. Support. Palliat. Care 1, 109–116 10.1097/SPC.0b013e3282efc58b
    1. Tracey I., Ploghaus A., Gati J. S., Clare S., Smith S., Menon R. S., et al. (2002). Imaging attentional modulation of pain in the periaqueductal gray in humans. J. Neurosci. 22, 2748–2752
    1. Villemure C., Bushnell M. C. (2009). Mood influences supraspinal pain processing separately from attention. J. Neurosci. 29, 705–715 10.1523/JNEUROSCI.3822-08.2009
    1. Wickham H. (2009). ggplot2: Elegant Graphics for Data Analysis. 2nd Edn New York, NY: Springer Publishing Company, Incorporated
    1. Wiech K., Ploner M., Tracey I. (2008). Neurocognitive aspects of pain perception. Trends Cogn. Sci. 12, 306–313 10.1016/j.tics.2008.05.005
    1. Wiech K., Tracey I. (2009). The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 47, 987–994 10.1016/j.neuroimage.2009.05.059
    1. Wittwer J. E., Webster K. E., Hill K. (2013). Rhythmic auditory cueing to improve walking in patients with neurological conditions other than Parkinson's disease–what is the evidence? Disabil. Rehabil. 35, 164–176 10.3109/09638288.2012.690495
    1. Wolfe F., Smythe H. A., Yunus M. B., Bennett R. M., Bombardier C., Goldenberg D. L., et al. (1990). The american college of rheumatology 1990 criteria for the classification of fibromyalgia. Arthritis Rheum. 33, 160–172 10.1002/art.1780330203
    1. Wood P. B. (2008). Role of central dopamine in pain and analgesia. Expert Rev. Neurother. 8, 781–797 10.1586/14737175.8.5.781

Source: PubMed

3
Subskrybuj