The Leuven late life depression (L3D) study: PET-MRI biomarkers of pathological brain ageing in late-life depression: study protocol

Louise Emsell, Maarten Laroy, Margot Van Cauwenberge, Thomas Vande Casteele, Kristof Vansteelandt, Koen Van Laere, Stefan Sunaert, Jan Van den Stock, Filip Bouckaert, Mathieu Vandenbulcke, Louise Emsell, Maarten Laroy, Margot Van Cauwenberge, Thomas Vande Casteele, Kristof Vansteelandt, Koen Van Laere, Stefan Sunaert, Jan Van den Stock, Filip Bouckaert, Mathieu Vandenbulcke

Abstract

Background: Major depressive disorders rank in the top ten causes of ill health in all but four countries worldwide and are the leading cause of years lived with disability in Europe (WHO). Recent research suggests that neurodegenerative pathology may contribute to the development of late-life depression (LLD) in a sub-group of patients and represent a target for prevention and early diagnosis. In parallel, electroconvulsive therapy (ECT), which is the most effective treatment for severe LLD, has been associated with significant brain structural changes. In both LLD and ECT hippocampal volume change plays a central role; however, the neurobiological mechanism underlying it and its relevance for clinical outcomes remain unresolved.

Methods: This is a monocentric, clinical cohort study with a cross-sectional arm evaluating PET-MR imaging and behavioural measures in 64 patients with LLD compared to 64 healthy controls, and a longitudinal arm evaluating the same imaging and behavioural measures after 10 ECT sessions in 20 patients receiving ECT as part of their normal clinical management. Triple tracer PET-MRI data will be used to measure: hippocampal volume (high resolution MRI), synaptic density using [11C]UCB-J, which targets the Synaptic Vesicle Glycoprotein 2A receptor, tau pathology using [18F]MK-6240, and cerebral amyloid using [18F]-Flutemetamol, which targets beta-amyloid neuritic plaques in the brain. Additional MRI measures and ultrasound will assess cerebral vascular structure and brain connectivity. Formal clinical and neuropsychological assessments will be conducted alongside experience sampling and physiological monitoring to assess mood, stress, cognition and psychomotor function.

Discussion: The main aim of the study is to identify the origin and consequences of hippocampal volume differences in LLD by investigating how biomarkers of pathological ageing contribute to medial temporal lobe pathology. Studying how synaptic density, tau, amyloid and vascular pathology relate to neuropsychological, psychomotor function, stress and ECT, will increase our pathophysiological understanding of the in vivo molecular, structural and functional alterations occurring in depression and what effect this has on clinical outcome. It may also lead to improvements in the differential diagnosis of depression and dementia yielding earlier, more optimal, cost-effective clinical management. Finally, it will improve our understanding of the neurobiological mechanism of ECT.

Trial registration: ClinicalTrials.gov Identifier: NCT03849417 , 21/2/2019.

Keywords: Ageing; Amyloid; Brain; ECT; Late life depression; MRI; Neurodegeneration; PET; Synaptic density; Tau.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Schematic timeline for L3D data collection. Figure legend: amy: Amyloid PET, blood: blood sampling (apolipoprotein □4 genotyping, blood glucose and serum lipids), CB: Chill Band wristband monitoring, CON: control subject, ECT: electroconvulsive therapy, EMA: ecological momentary assessment, LLD: late-life depression, MRI: magnetic resonance imaging, motor: neurological and task based assessment of motor function, NP: neuropsychological testing and psychiatric intake, SV2A: synaptic density PET with synaptic vesicle 2A tracer, t:tau PET, US: doppler ultrasound (intima media thickness) *following the 10th ECT treatment

References

    1. Alexopoulos GS. Mechanisms and treatment of late-life depression. Transl Psychiatry. 2019;9(1):188. doi: 10.1038/s41398-019-0514-6.
    1. Byers AL, Yaffe K. Depression and risk of developing dementia. Nat Rev Neurol. 2011;7(6):323–331. doi: 10.1038/nrneurol.2011.60.
    1. Belleau EL, Treadway MT, Pizzagalli DA. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry. 2019;85(6):443–453. doi: 10.1016/j.biopsych.2018.09.031.
    1. Sotiropoulos I, Silva JM, Gomes P, Sousa N, Almeida OFX. Stress and the Etiopathogenesis of Alzheimer's disease and depression. Adv Exp Med Biol. 2019;1184:241–257. doi: 10.1007/978-981-32-9358-8_20.
    1. Speck CE, Kukull WA, Brenner DE, Bowen JD, McCormick WC, Teri L, et al. History of depression as a risk factor for Alzheimer's disease. Epidemiology. 1995;6(4):366–369. doi: 10.1097/00001648-199507000-00006.
    1. Donovan NJ, Locascio JJ, Marshall GA, Gatchel J, Hanseeuw BJ, Rentz DM, et al. Longitudinal Association of Amyloid Beta and Anxious-Depressive Symptoms in cognitively Normal older adults. Am J Psychiatry. 2018;175(6):530–537. doi: 10.1176/appi.ajp.2017.17040442.
    1. De Winter FL, Emsell L, Bouckaert F, Claes L, Jain S, Farrar G, et al. No Association of Lower Hippocampal Volume with Alzheimer's disease pathology in late-life depression. Am J Psychiatry. 2017;174(3):237–245. doi: 10.1176/appi.ajp.2016.16030319.
    1. Mackin RS, Insel PS, Landau S, Bickford D, Morin R, Rhodes E, Tosun D, Rosen HJ, Butters M, Aisen P, Raman R, Saykin A, Toga A, Jack C Jr, Koeppe R, Weiner MW, Nelson C. Alzheimer’s Disease Neuroimaging Initiative and the ADNI Depression Project. Late-Life Depression Is Associated With Reduced Cortical Amyloid Burden: Findings From the Alzheimer's Disease Neuroimaging Initiative Depression Project. Biol Psychiatry. 2020;S0006-3223(20)31706–6. 10.1016/j.biopsych.2020.06.017. Epub ahead of print. PMID: 32980132.
    1. Jack CR, Knopman DS, Chételat G, Dickson D, Fagan AM, Frisoni GB, et al. Suspected non-Alzheimer disease pathophysiology--concept and controversy. Nat Rev Neurol. 2016;12(2):117–124. doi: 10.1038/nrneurol.2015.251.
    1. Gatchel JR, Donovan NJ, Locascio JJ, Schultz AP, Becker JA, Chhatwal J, et al. Depressive symptoms and tau accumulation in the inferior temporal lobe and Entorhinal cortex in cognitively Normal older adults: a pilot study. J Alzheimers Dis. 2017;59(3):975–985. doi: 10.3233/JAD-170001.
    1. Sotiropoulos I, Sousa N. Tau as the converging protein between chronic stress and Alzheimer's disease synaptic pathology. Neurodegener Dis. 2016;16(1–2):22–25. doi: 10.1159/000440844.
    1. Hostetler ED, Walji AM, Zeng Z, Miller P, Bennacef I, Salinas C, et al. Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med. 2016;57(10):1599–1606. doi: 10.2967/jnumed.115.171678.
    1. Nabulsi NB, Mercier J, Holden D, Carré S, Najafzadeh S, Vandergeten MC, et al. Synthesis and preclinical evaluation of 11C-UCB-J as a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the brain. J Nucl Med. 2016;57(5):777–784. doi: 10.2967/jnumed.115.168179.
    1. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128(6):755–766. doi: 10.1007/s00401-014-1349-0.
    1. Bouckaert F, Dols A, Emsell L, De Winter FL, Vansteelandt K, Claes L, et al. Relationship between hippocampal volume, serum BDNF, and depression severity following electroconvulsive therapy in late-life depression. Neuropsychopharmacology. 2016;41(11):2741–2748. doi: 10.1038/npp.2016.86.
    1. Nordanskog P, Larsson MR, Larsson EM, Johanson A. Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression. Acta Psychiatr Scand. 2014;129(4):303–311. doi: 10.1111/acps.12150.
    1. Bouckaert F, Sienaert P, Obbels J, Dols A, Vandenbulcke M, Stek M, et al. ECT: its brain enabling effects: a review of electroconvulsive therapy-induced structural brain plasticity. J ECT. 2014;30(2):143–151. doi: 10.1097/YCT.0000000000000129.
    1. Chen F, Madsen TM, Wegener G, Nyengaard JR. Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus. Eur Neuropsychopharmacol. 2009;19(5):329–338. doi: 10.1016/j.euroneuro.2008.12.007.
    1. Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry. 2009;14(8):764–773. doi: 10.1038/mp.2008.119.
    1. van den Broek WW, Birkenhäger TK, de Boer D, Burggraaf JP, van Gemert B. N GTH, et al. Richtlijn electroconvulsie therapie. 2nd ed. Utrecht: Nederlands Vereniging voor psychiatrie; 2010.
    1. Chen MK, Mecca AP, Naganawa M, Finnema SJ, Toyonaga T, Lin SF, et al. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol. 2018;75(10):1215–1224. doi: 10.1001/jamaneurol.2018.1836.
    1. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822–838. doi: 10.1016/S1474-4422(13)70124-8.
    1. Berg D, Godau J, Walter U. Transcranial sonography in movement disorders. Lancet Neurol. 2008;7(11):1044–1055. doi: 10.1016/S1474-4422(08)70239-4.
    1. Yilmaz R, Granert O, Schäffer E, Jensen-Kondering U, Schulze S, Bartsch T, Berg D. Transcranial sonography findings in Alzheimer's disease: a new imaging biomarker. Ultraschall Med. 2020. English. 10.1055/a-1146-3036. Epub ahead of print. PMID: 32492728.
    1. Hickie I, Mason C, Parker G, Brodaty H. Prediction of ECT response: validation of a refined sign-based (CORE) system for defining melancholia. Br J Psychiatry. 1996;169(1):68–74. doi: 10.1192/bjp.169.1.68.
    1. Cain AE, Depp CA, Jeste DV. Ecological momentary assessment in aging research: a critical review. J Psychiatr Res. 2009;43(11):987–996. doi: 10.1016/j.jpsychires.2009.01.014.
    1. Peeters F, Nicolson NA, Berkhof J, Delespaul P. deVries M. effects of daily events on mood states in major depressive disorder. J Abnorm Psychol. 2003;112(2):203–211. doi: 10.1037/0021-843X.112.2.203.
    1. Vaessen T, van Nierop M, Decoster J, Delespaul P, Derom C, de Hert M, et al. Is sensitivity to daily stress predictive of onset or persistence of psychopathology? Eur Psychiatry. 2017;45:167–173. doi: 10.1016/j.eurpsy.2017.07.002.
    1. Myin-Germeys I, Kasanova Z, Vaessen T, Vachon H, Kirtley O, Viechtbauer W, et al. Experience sampling methodology in mental health research: new insights and technical developments. World Psychiatry. 2018;17(2):123–132. doi: 10.1002/wps.20513.
    1. Vieira S, Pinaya WH, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci Biobehav Rev. 2017;74(Pt A):58–75. doi: 10.1016/j.neubiorev.2017.01.002.
    1. Molenberghs G, Kenward MG. Multiple Imputation. In: Molenberghs G, Kenward MG, editors. Missing Data in Clinical Studies. Chichester: John Wiley & Sons, Ltd; 2007. pp. 105–117.
    1. Molenberghs G, Kenward MG. The Direct Likelihood Method. In: Molenberghs G, Kenward MG, editors. Missing Data in Clinical Studies. Chichester: John Wiley & Sons, Ltd; 2007. pp. 75–92.

Source: PubMed

3
Subskrybuj