Prediction of fluid responsiveness. What's new?

Xavier Monnet, Rui Shi, Jean-Louis Teboul, Xavier Monnet, Rui Shi, Jean-Louis Teboul

Abstract

Although the administration of fluid is the first treatment considered in almost all cases of circulatory failure, this therapeutic option poses two essential problems: the increase in cardiac output induced by a bolus of fluid is inconstant, and the deleterious effects of fluid overload are now clearly demonstrated. This is why many tests and indices have been developed to detect preload dependence and predict fluid responsiveness. In this review, we take stock of the data published in the field over the past three years. Regarding the passive leg raising test, we detail the different stroke volume surrogates that have recently been described to measure its effects using minimally invasive and easily accessible methods. We review the limits of the test, especially in patients with intra-abdominal hypertension. Regarding the end-expiratory occlusion test, we also present recent investigations that have sought to measure its effects without an invasive measurement of cardiac output. Although the limits of interpretation of the respiratory variation of pulse pressure and of the diameter of the vena cava during mechanical ventilation are now well known, several recent studies have shown how changes in pulse pressure variation itself during other tests reflect simultaneous changes in cardiac output, allowing these tests to be carried out without its direct measurement. This is particularly the case during the tidal volume challenge, a relatively recent test whose reliability is increasingly well established. The mini-fluid challenge has the advantage of being easy to perform, but it requires direct measurement of cardiac output, like the classic fluid challenge. Initially described with echocardiography, recent studies have investigated other means of judging its effects. We highlight the problem of their precision, which is necessary to evidence small changes in cardiac output. Finally, we point out other tests that have appeared more recently, such as the Trendelenburg manoeuvre, a potentially interesting alternative for patients in the prone position.

Keywords: Cardiac output; Fluid balance; Fluid challenge; Passive leg raising; Tidal volume; Volume expansion.

Conflict of interest statement

Xavier MONNET and Jean-Louis TEBOUL are members of the medical advisory board of Pulsion Medical Systems. Xavier MONNET and Jean-Louis TEBOUL have given lectures for Baxter. Xavier MONNET has given lectures for Philips Healthcare. Rui SHI declares that she has no conflict of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Practical rules for performing passive leg raising. CO cardiac output
Fig. 2
Fig. 2
Practical rules for performing an end-expiratory occlusion test. CO cardiac output, EEO end-expiratory occlusion test, PEEP positive end-expiratory pressure
Fig. 3
Fig. 3
Practical rules for performing a mini-fluid challenge. CO cardiac output

References

    1. Malbrain M, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy. Ann Intensive Care. 2018;8:66. doi: 10.1186/s13613-018-0402-x.
    1. Malbrain M, Langer T, Annane D, Gattinoni L, Elbers P, Hahn RG, et al. Intravenous fluid therapy in the perioperative and critical care setting: executive summary of the International Fluid Academy (IFA) Ann Intensive Care. 2020;10:64. doi: 10.1186/s13613-020-00679-3.
    1. Tigabu BM, Davari M, Kebriaeezadeh A, Mojtahedzadeh M. Fluid volume, fluid balance and patient outcome in severe sepsis and septic shock: a systematic review. J Crit Care. 2018;48:153–159. doi: 10.1016/j.jcrc.2018.08.018.
    1. Messina A, Robba C, Calabro L, Zambelli D, Iannuzzi F, Molinari E, et al. Perioperative liberal versus restrictive fluid strategies and postoperative outcomes: a systematic review and metanalysis on randomised-controlled trials in major abdominal elective surgery. Crit Care. 2021;25:205. doi: 10.1186/s13054-021-03629-y.
    1. Guerin L, Teboul JL, Persichini R, Dres M, Richard C, Monnet X. Effects of passive leg raising and volume expansion on mean systemic pressure and venous return in shock in humans. Crit Care. 2015;19:411. doi: 10.1186/s13054-015-1115-2.
    1. Jabot J, Teboul JL, Richard C, Monnet X. Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Med. 2009;35:85–90. doi: 10.1007/s00134-008-1293-3.
    1. Mesquida J, Gruartmoner G, Ferrer R. Passive leg raising for assessment of volume responsiveness: a review. Curr Opin Crit Care. 2017;23:237–243. doi: 10.1097/MCC.0000000000000404.
    1. Pickett JD, Bridges E, Kritek PA, Whitney JD. Passive leg-raising and prediction of fluid responsiveness: systematic review. Crit Care Nurse. 2017;37:32–47. doi: 10.4037/ccn2017205.
    1. Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1935–1947. doi: 10.1007/s00134-015-4134-1.
    1. Cherpanath TG, Hirsch A, Geerts BF, Lagrand WK, Leeflang MM, Schultz MJ, et al. predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit Care Med. 2016;44:981–991. doi: 10.1097/CCM.0000000000001556.
    1. Monnet X, Dres M, Ferre A, Le Teuff G, Jozwiak M, Bleibtreu A, et al. Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices. Br J Anaesth. 2012;109:330–338. doi: 10.1093/bja/aes182.
    1. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Executive summary: surviving sepsis campaign: international guidelines for the management of sepsis and septic shock 2021. Crit Care Med. 2021;49:1974–1982. doi: 10.1097/CCM.0000000000005357.
    1. Pickett JD, Bridges E, Kritek PA, Whitney JD. Noninvasive blood pressure monitoring and prediction of fluid responsiveness to passive leg raising. Am J Crit Care. 2018;27:228–237. doi: 10.4037/ajcc2018867.
    1. Monnet X, Letierce A, Hamzaoui O, Chemla D, Anguel N, Osman D, et al. Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine*. Crit Care Med. 2011;39:1394–1399. doi: 10.1097/CCM.0b013e31820edcf0.
    1. Jozwiak M, Monnet X, Teboul JL. Pressure waveform analysis. Anesth Analg. 2018;126:1930–1933. doi: 10.1213/ANE.0000000000002527.
    1. Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42:1350–1359. doi: 10.1007/s00134-016-4375-7.
    1. Ameloot K, Palmers PJ, Malbrain ML. The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Curr Opin Crit Care. 2015;21:232–239. doi: 10.1097/MCC.0000000000000198.
    1. Monnet X, Bataille A, Magalhaes E, Barrois J, Le Corre M, Gosset C, et al. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Med. 2013;39:93–100. doi: 10.1007/s00134-012-2693-y.
    1. Monge Garcia MI, Gil Cano A, Gracia Romero M, Monterroso Pintado R, Perez Madueno V, Diaz Monrove JC. Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Ann Intensive Care. 2012;2:9. doi: 10.1186/2110-5820-2-9.
    1. Toupin F, Clairoux A, Deschamps A, Lebon JS, Lamarche Y, Lambert J, et al. Assessment of fluid responsiveness with end-tidal carbon dioxide using a simplified passive leg raising maneuver: a prospective observational study. Can J Anaesth. 2016;63:1033–1041. doi: 10.1007/s12630-016-0677-z.
    1. Galarza L, Mercado P, Teboul JL, Girotto V, Beurton A, Richard C, et al. Estimating the rapid haemodynamic effects of passive leg raising in critically ill patients using bioreactance. Br J Anaesth. 2018;121:567–573. doi: 10.1016/j.bja.2018.03.013.
    1. Chopra S, Thompson J, Shahangian S, Thapamagar S, Moretta D, Gasho C, et al. Precision and consistency of the passive leg raising maneuver for determining fluid responsiveness with bioreactance non-invasive cardiac output monitoring in critically ill patients and healthy volunteers. PLoS ONE. 2019;14:e0222956. doi: 10.1371/journal.pone.0222956.
    1. Li L, Ai Y, Huang L, Ai M, Peng Q, Zhang L. Can bioimpedance cardiography assess hemodynamic response to passive leg raising in critically ill patients: a STROBE-compliant study. Medicine (Baltimore) 2020;99:e23764. doi: 10.1097/MD.0000000000023764.
    1. Elshal MM, Hasanin AM, Mostafa M, Gamal RM. Plethysmographic peripheral perfusion index: could it be a new vital sign? Front Med (Lausanne) 2021;8:651909. doi: 10.3389/fmed.2021.651909.
    1. Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;101:200–206. doi: 10.1093/bja/aen133.
    1. Monnet X, Guerin L, Jozwiak M, Bataille A, Julien F, Richard C, et al. Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Br J Anaesth. 2013;110:207–213. doi: 10.1093/bja/aes373.
    1. Beurton A, Gavelli F, Teboul JL, De Vita N, Monnet X. Changes in the plethysmographic perfusion index during an end-expiratory occlusion detect a positive passive leg raising test. Crit Care Med. 2021;49:e151–e160. doi: 10.1097/CCM.0000000000004768.
    1. Beurton A, Teboul JL, Gavelli F, Gonzalez FA, Girotto V, Galarza L, et al. The effects of passive leg raising may be detected by the plethysmographic oxygen saturation signal in critically ill patients. Crit Care. 2019;23:19. doi: 10.1186/s13054-019-2306-z.
    1. Taccheri T, Gavelli F, Teboul JL, Shi R, Monnet X. Do changes in pulse pressure variation and inferior vena cava distensibility during passive leg raising and tidal volume challenge detect preload responsiveness in case of low tidal volume ventilation? Crit Care. 2021;25:110. doi: 10.1186/s13054-021-03515-7.
    1. Hamzaoui O, Shi R, Carelli S, Sztrymf B, Prat D, Jacobs F, et al. Changes in pulse pressure variation to assess preload responsiveness in mechanically ventilated patients with spontaneous breathing activity: an observational study. Br J Anaesth. 2021;127:532–538. doi: 10.1016/j.bja.2021.05.034.
    1. Ma GG, Tu GW, Zheng JL, Zhu DM, Hao GW, Hou JY, et al. Changes in stroke volume variation induced by passive leg raising to predict fluid responsiveness in cardiac surgical patients with protective ventilation. J Cardiothorac Vasc Anesth. 2020;34:1526–1533. doi: 10.1053/j.jvca.2019.10.002.
    1. Jacquet-Lagreze M, Bouhamri N, Portran P, Schweizer R, Baudin F, Lilot M, et al. Capillary refill time variation induced by passive leg raising predicts capillary refill time response to volume expansion. Crit Care. 2019;23:281. doi: 10.1186/s13054-019-2560-0.
    1. Barjaktarevic I, Toppen WE, Hu S, Aquije ME, Ong S, Buhr R, et al. Ultrasound assessment of the change in carotid corrected flow time in fluid responsiveness in undifferentiated shock. Crit Care Med. 2018;46:e1040–e1046. doi: 10.1097/CCM.0000000000003356.
    1. Girotto V, Teboul JL, Beurton A, Galarza L, Guedj T, Richard C, et al. Carotid and femoral Doppler do not allow the assessment of passive leg raising effects. Ann Intensive Care. 2018;8:67. doi: 10.1186/s13613-018-0413-7.
    1. Chowhan G, Kundu R, Maitra S, Arora MK, Batra RK, Subramaniam R, et al. Efficacy of left ventricular outflow tract and carotid artery velocity time integral as predictors of fluid responsiveness in patients with sepsis and septic shock. Indian J Crit Care Med. 2021;25:310–316. doi: 10.5005/jp-journals-10071-23764.
    1. van Houte J, Mooi FJ, Montenij LJ, Meijs LPB, Suriani I, Conjaerts BCM, et al. Correlation of carotid Doppler blood flow with invasive cardiac output measurements in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2021;36(4):1081–1091. doi: 10.1053/j.jvca.2021.09.043.
    1. Roehrig C, Govier M, Robinson J, Aneman A. Carotid Doppler flowmetry correlates poorly with thermodilution cardiac output following cardiac surgery. Acta Anaesthesiol Scand. 2017;61:31–38. doi: 10.1111/aas.12822.
    1. Monnet X, Teboul JL. Prediction of fluid responsiveness in spontaneously breathing patients. Ann Transl Med. 2020;8:790. doi: 10.21037/atm-2020-hdm-18.
    1. Beurton A, Teboul JL, Girotto V, Galarza L, Anguel N, Richard C, et al. Intra-abdominal hypertension is responsible for false negatives to the passive leg raising test. Crit Care Med. 2019;47:e639–e647. doi: 10.1097/CCM.0000000000003808.
    1. Minini A, Abraham P, Malbrain M. Predicting fluid responsiveness with the passive leg raising test: don't be fooled by intra-abdominal hypertension! Ann Transl Med. 2020;8:799. doi: 10.21037/atm.2019.12.14.
    1. Jozwiak M, Monnet X, Teboul JL. Prediction of fluid responsiveness in ventilated patients. Ann Transl Med. 2018;6:352. doi: 10.21037/atm.2018.05.03.
    1. Gavelli F, Teboul JL, Monnet X. The end-expiratory occlusion test: please, let me hold your breath! Crit Care. 2019;23:274. doi: 10.1186/s13054-019-2554-y.
    1. Gavelli F, Shi R, Teboul JL, Azzolina D, Monnet X. The end-expiratory occlusion test for detecting preload responsiveness: a systematic review and meta-analysis. Ann Intensive Care. 2020;10:65. doi: 10.1186/s13613-020-00682-8.
    1. Si X, Song X, Lin Q, Nie Y, Zhang G, Xu H, et al. does end-expiratory occlusion test predict fluid responsiveness in mechanically ventilated patients? A systematic review and meta-analysis. Shock. 2020;54:751–760. doi: 10.1097/SHK.0000000000001545.
    1. Messina A, Dell'Anna A, Baggiani M, Torrini F, Maresca GM, Bennett V, et al. Functional hemodynamic tests: a systematic review and a metanalysis on the reliability of the end-expiratory occlusion test and of the mini-fluid challenge in predicting fluid responsiveness. Crit Care. 2019;23:264. doi: 10.1186/s13054-019-2545-z.
    1. Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37:951–956. doi: 10.1097/CCM.0b013e3181968fe1.
    1. de Courson H, Ferrer L, Cane G, Verchere E, Sesay M, Nouette-Gaulain K, et al. Evaluation of least significant changes of pulse contour analysis-derived parameters. Ann Intensive Care. 2019;9:116. doi: 10.1186/s13613-019-0590-z.
    1. Jozwiak M, Mercado P, Teboul JL, Benmalek A, Gimenez J, Depret F, et al. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care. 2019 doi: 10.1186/s13054-019-2413-x.
    1. Jozwiak M, Depret F, Teboul JL, Alphonsine JE, Lai C, Richard C, et al. Predicting fluid responsiveness in critically ill patients by using combined end-expiratory and end-inspiratory occlusions with echocardiography. Crit Care Med. 2017;45:e1131–e1138. doi: 10.1097/CCM.0000000000002704.
    1. Depret F, Jozwiak M, Teboul JL, Alphonsine JE, Richard C, Monnet X. Esophageal Doppler can predict fluid responsiveness through end-expiratory and end-inspiratory occlusion tests. Crit Care Med. 2019;47:e96–e102. doi: 10.1097/CCM.0000000000003522.
    1. Kenny JS, Barjaktarevic I, Eibl AM, Parrotta M, Long BF, Eibl JK. A wearable carotid Doppler tracks changes in the descending aorta and stroke volume induced by end-inspiratory and end-expiratory occlusion: a pilot study. Health Sci Rep. 2020;3:e190. doi: 10.1002/hsr2.190.
    1. Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL. The changes in pulse pressure variation or stroke volume variation after a "tidal volume challenge" reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med. 2017;45:415–421. doi: 10.1097/CCM.0000000000002183.
    1. Biais M, Larghi M, Henriot J, de Courson H, Sesay M, Nouette-Gaulain K. End-expiratory occlusion test predicts fluid responsiveness in patients with protective ventilation in the operating room. Anesth Analg. 2017;125:1889–1895. doi: 10.1213/ANE.0000000000002322.
    1. Alvarado Sanchez JI, Caicedo Ruiz JD, Diaztagle Fernandez JJ, Amaya Zuniga WF, Ospina-Tascon GA, Cruz Martinez LE. Predictors of fluid responsiveness in critically ill patients mechanically ventilated at low tidal volumes: systematic review and meta-analysis. Ann Intensive Care. 2021;11:28. doi: 10.1186/s13613-021-00817-5.
    1. Silva S, Jozwiak M, Teboul JL, Persichini R, Richard C, Monnet X. End-expiratory occlusion test predicts preload responsiveness independently of positive end-expiratory pressure during acute respiratory distress syndrome. Crit Care Med. 2013;41:1692–1701. doi: 10.1097/CCM.0b013e31828a2323.
    1. Yonis H, Bitker L, Aublanc M, Perinel RS, Riad Z, Lissonde F, et al. Change in cardiac output during Trendelenburg maneuver is a reliable predictor of fluid responsiveness in patients with acute respiratory distress syndrome in the prone position under protective ventilation. Crit Care. 2017;21:295. doi: 10.1186/s13054-017-1881-0.
    1. Messina A, Montagnini C, Cammarota G, Giuliani F, Muratore L, Baggiani M, et al. Assessment of fluid responsiveness in prone neurosurgical patients undergoing protective ventilation: role of dynamic indices, tidal volume challenge, and end-expiratory occlusion test. Anesth Analg. 2020;130:752–761. doi: 10.1213/ANE.0000000000004494.
    1. Weil G, Motamed C, Monnet X, Eghiaian A, Le Maho AL. End-expiratory occlusion test to predict fluid responsiveness is not suitable for laparotomic surgery. Anesth Analg. 2020;130:151–158. doi: 10.1213/ANE.0000000000004205.
    1. Teboul JL, Monnet X, Chemla D, Michard F. Arterial pulse pressure variation with mechanical ventilation. Am J Respir Crit Care Med. 2019;199:22–31. doi: 10.1164/rccm.201801-0088CI.
    1. Michard F, Chemla D, Teboul JL. Applicability of pulse pressure variation: how many shades of grey? Crit Care. 2015;19:144. doi: 10.1186/s13054-015-0869-x.
    1. Mahjoub Y, Pila C, Friggeri A, Zogheib E, Lobjoie E, Tinturier F, et al. Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med. 2009;37:2570–2575. doi: 10.1097/CCM.0b013e3181a380a3.
    1. Valenti E, Moller PW, Takala J, Berger D. Collapsibility of caval vessels and right ventricular afterload: decoupling of stroke volume variation from preload during mechanical ventilation. J Appl Physiol. 1985;2021(130):1562–1572.
    1. Fot EV, Izotova NN, Smetkin AA, Kuzkov VV, Kirov MY. Dynamic tests to predict fluid responsiveness after off-pump coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 2020;34:926–931. doi: 10.1053/j.jvca.2019.09.013.
    1. Mallat J, Meddour M, Durville E, Lemyze M, Pepy F, Temime J, et al. Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsiveness. Br J Anaesth. 2015;115:449–456. doi: 10.1093/bja/aev222.
    1. Elsayed AI, Selim KA, Zaghla HE, Mowafy HE, Fakher MA. Comparison of changes in PPV using a tidal volume challenge with a passive leg raising test to predict fluid responsiveness in patients ventilated using low tidal volume. Indian J Crit Care Med. 2021;25:685–690. doi: 10.5005/jp-journals-10071-23875.
    1. Messina A, Montagnini C, Cammarota G, De Rosa S, Giuliani F, Muratore L, et al. Tidal volume challenge to predict fluid responsiveness in the operating room: a prospective trial on neurosurgical patients undergoing protective ventilation. Eur J Anaesthesiol. 2019;36(8):581–593. doi: 10.1097/EJA.0000000000000998.
    1. Messina A, Montagnini C, Cammarota G, De Rosa S, Giuliani F, Muratore L, et al. Tidal volume challenge to predict fluid responsiveness in the operating room: an observational study. Eur J Anaesthesiol. 2019;36:583–591. doi: 10.1097/EJA.0000000000000998.
    1. Shi R, Monnet X, Teboul JL. Parameters of fluid responsiveness. Curr Opin Crit Care. 2020;26:319–326. doi: 10.1097/MCC.0000000000000723.
    1. Zhang H, Zhang Q, Chen X, Wang X, Liu D, Chinese Critical Ultrasound Study G Respiratory variations of inferior vena cava fail to predict fluid responsiveness in mechanically ventilated patients with isolated left ventricular dysfunction. Ann Intensive Care. 2019;9:113. doi: 10.1186/s13613-019-0589-5.
    1. Das SK, Choupoo NS, Pradhan D, Saikia P, Monnet X. Diagnostic accuracy of inferior vena caval respiratory variation in detecting fluid unresponsiveness: a systematic review and meta-analysis. Eur J Anaesthesiol. 2018;35:831–839. doi: 10.1097/EJA.0000000000000841.
    1. Huang H, Shen Q, Liu Y, Xu H, Fang Y. Value of variation index of inferior vena cava diameter in predicting fluid responsiveness in patients with circulatory shock receiving mechanical ventilation: a systematic review and meta-analysis. Crit Care. 2018;22:204. doi: 10.1186/s13054-018-2063-4.
    1. Vignon P, Repesse X, Begot E, Leger J, Jacob C, Bouferrache K, et al. Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med. 2017;195:1022–1032. doi: 10.1164/rccm.201604-0844OC.
    1. Magder S, Georgiadis G, Cheong T. Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care. 1992;1992:76–85. doi: 10.1016/0883-9441(92)90032-3.
    1. Caplan M, Durand A, Bortolotti P, Colling D, Goutay J, Duburcq T, et al. Measurement site of inferior vena cava diameter affects the accuracy with which fluid responsiveness can be predicted in spontaneously breathing patients: a post hoc analysis of two prospective cohorts. Ann Intensive Care. 2020;10:168. doi: 10.1186/s13613-020-00786-1.
    1. Caplan M, Howsam M, Favory R, Preau S. Predicting fluid responsiveness in non-intubated COVID-19 patients: two methods are better than one. Ann Intensive Care. 2021;11:34. doi: 10.1186/s13613-021-00826-4.
    1. Michard F. Predicting fluid responsiveness in non-intubated COVID-19 patients. Ann Intensive Care. 2021;11:19. doi: 10.1186/s13613-021-00813-9.
    1. Preau S, Bortolotti P, Colling D, Dewavrin F, Colas V, Voisin B, et al. Diagnostic accuracy of the inferior vena cava collapsibility to predict fluid responsiveness in spontaneously breathing patients with sepsis and acute circulatory failure. Crit Care Med. 2017;45:e290–e297. doi: 10.1097/CCM.0000000000002090.
    1. Hofkens PJ, Verrijcken A, Merveille K, Neirynck S, Van Regenmortel N, De Laet I, et al. Common pitfalls and tips and tricks to get the most out of your transpulmonary thermodilution device: results of a survey and state-of-the-art review. Anaesthesiol Intensive Ther. 2015;47:89–116. doi: 10.5603/AIT.a2014.0068.
    1. Vincent JL, Cecconi M, De Backer D. The fluid challenge. Crit Care. 2020;24:703. doi: 10.1186/s13054-020-03443-y.
    1. Muller L, Toumi M, Bousquet PJ, Riu-Poulenc B, Louart G, Candela D, et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011;115:541–547. doi: 10.1097/ALN.0b013e318229a500.
    1. Messina A, Lionetti G, Foti L, Bellotti E, Marcomini N, Cammarota G, et al. Mini fluid chAllenge aNd End-expiratory occlusion test to assess flUid responsiVEness in the opeRating room (MANEUVER study): a multicentre cohort study. Eur J Anaesthesiol. 2021;38:422–431. doi: 10.1097/EJA.0000000000001406.
    1. Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent JL. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Med. 2012;38:422–428. doi: 10.1007/s00134-011-2457-0.
    1. Biais M, de Courson H, Lanchon R, Pereira B, Bardonneau G, Griton M, et al. Mini-fluid challenge of 100 ml of crystalloid predicts fluid responsiveness in the operating room. Anesthesiology. 2017;127:450–456. doi: 10.1097/ALN.0000000000001753.
    1. Vistisen ST, Scheeren TWL. Challenge of the mini-fluid challenge: filling twice without creating a self-fulfilling prophecy design. Anesthesiology. 2018;128:1043–1044. doi: 10.1097/ALN.0000000000002141.
    1. Enevoldsen J, Scheeren TWL, Berg JM, Vistisen ST. Existing fluid responsiveness studies using the mini-fluid challenge may be misleading: methodological considerations and simulations. Acta Anaesthesiol Scand. 2021;66(1):17–24. doi: 10.1111/aas.13965.
    1. Biais M, Lanchon R, Sesay M, Le Gall L, Pereira B, Futier E, et al. Changes in stroke volume induced by lung recruitment maneuver predict fluid responsiveness in mechanically ventilated patients in the operating room. Anesthesiology. 2017;126:260–267. doi: 10.1097/ALN.0000000000001459.
    1. Kimura A, Suehiro K, Juri T, Fujimoto Y, Yoshida H, Tanaka K, et al. Hemodynamic changes via the lung recruitment maneuver can predict fluid responsiveness in stroke volume and arterial pressure during one-lung ventilation. Anesth Analg. 2021;133:44–52. doi: 10.1213/ANE.0000000000005375.
    1. De Broca B, Garnier J, Fischer MO, Archange T, Marc J, Abou-Arab O, et al. Stroke volume changes induced by a recruitment maneuver predict fluid responsiveness in patients with protective ventilation in the operating theater. Medicine (Baltimore) 2016;95:e4259. doi: 10.1097/MD.0000000000004259.
    1. de Courson H, Michard F, Chavignier C, Verchere E, Nouette-Gaulain K, Biais M. Do changes in perfusion index reflect changes in stroke volume during preload-modifying manoeuvres? J Clin Monit Comput. 2020;34:1193–1198. doi: 10.1007/s10877-019-00445-2.
    1. Messina A, Colombo D, Barra FL, Cammarota G, De Mattei G, Longhini F, et al. Sigh maneuver to enhance assessment of fluid responsiveness during pressure support ventilation. Crit Care. 2019;23:31. doi: 10.1186/s13054-018-2294-4.
    1. Preisman S, Kogan S, Berkenstadt H, Perel A. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth. 2005;95:746–755. doi: 10.1093/bja/aei262.
    1. Luo JC, Su Y, Dong LL, Hou JY, Li X, Zhang Y, et al. Trendelenburg maneuver predicts fluid responsiveness in patients on veno-arterial extracorporeal membrane oxygenation. Ann Intensive Care. 2021;11:16. doi: 10.1186/s13613-021-00811-x.
    1. Ma GG, Xu LY, Luo JC, Hou JY, Hao GW, Su Y, et al. Change in left ventricular velocity time integral during Trendelenburg maneuver predicts fluid responsiveness in cardiac surgical patients in the operating room. Quant Imaging Med Surg. 2021;11:3133–3145. doi: 10.21037/qims-20-700.
    1. Monnet X, Teboul JL. My patient has received fluid. How to assess its efficacy and side effects? Ann Intensive Care. 2018;8:54. doi: 10.1186/s13613-018-0400-z.
    1. Adda I, Lai C, Teboul JL, Guerin L, Gavelli F, Monnet X. Norepinephrine potentiates the efficacy of volume expansion on mean systemic pressure in septic shock. Crit Care. 2021;25:302. doi: 10.1186/s13054-021-03711-5.
    1. Persichini R, Silva S, Teboul JL, Jozwiak M, Chemla D, Richard C, et al. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock*. Crit Care Med. 2012;40:3146–3153. doi: 10.1097/CCM.0b013e318260c6c3.
    1. Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Passive leg raising performed before a spontaneous breathing trial predicts weaning-induced cardiac dysfunction. Intensive Care Med. 2015;41:487–494. doi: 10.1007/s00134-015-3653-0.
    1. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41:1412–1420. doi: 10.1097/CCM.0b013e318275cece.
    1. Bednarczyk JM, Fridfinnson JA, Kumar A, Blanchard L, Rabbani R, Bell D, et al. Incorporating dynamic assessment of fluid responsiveness into goal-directed therapy: a systematic review and meta-analysis. Crit Care Med. 2017;45:1538–1545. doi: 10.1097/CCM.0000000000002554.
    1. Benes J, Giglio M, Brienza N, Michard F. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care. 2014;18:584. doi: 10.1186/s13054-014-0584-z.
    1. Dave C, Shen J, Chaudhuri D, Herritt B, Fernando SM, Reardon PM, et al. Dynamic assessment of fluid responsiveness in surgical ICU patients through stroke volume variation is associated with decreased length of stay and costs: a systematic review and meta-analysis. J Intensive Care Med. 2020;35:14–23. doi: 10.1177/0885066618805410.
    1. Fellahi JL, Futier E, Vaisse C, Collange O, Huet O, Loriau J, et al. Perioperative hemodynamic optimization: from guidelines to implementation-an experts' opinion paper. Ann Intensive Care. 2021;11:58. doi: 10.1186/s13613-021-00845-1.
    1. Messina A, Robba C, Calabro L, Zambelli D, Iannuzzi F, Molinari E, et al. Association between perioperative fluid administration and postoperative outcomes: a 20-year systematic review and a meta-analysis of randomized goal-directed trials in major visceral/noncardiac surgery. Crit Care. 2021;25:43. doi: 10.1186/s13054-021-03464-1.
    1. Douglas IS, Alapat PM, Corl KA, Exline MC, Forni LG, Holder AL, et al. Fluid response evaluation in sepsis hypotension and shock: a randomized clinical trial. Chest. 2020;158:1431–1445. doi: 10.1016/j.chest.2020.04.025.
    1. Chen C, Kollef MH. Targeted fluid minimization following initial resuscitation in septic shock: a pilot study. Chest. 2015;148:1462–1469. doi: 10.1378/chest.15-1525.
    1. Richard JC, Bayle F, Bourdin G, Leray V, Debord S, Delannoy B, et al. Preload dependence indices to titrate volume expansion during septic shock: a randomized controlled trial. Crit Care. 2015;19:5. doi: 10.1186/s13054-014-0734-3.
    1. Ehrman RR, Gallien JZ, Smith RK, Akers KG, Malik AN, Harrison NE, et al. Resuscitation guided by volume responsiveness does not reduce mortality in sepsis: a meta-analysis. Crit Care Explor. 2019;1:e0015. doi: 10.1097/CCE.0000000000000015.
    1. Azadian M, Win S, Abdipour A, Kim CK, Nguyen HB. Mortality benefit from the passive leg raise maneuver in guiding resuscitation of septic shock patients: a systematic review and meta-analysis of randomized trials. J Intensive Care Med. 2021 doi: 10.1177/08850666211019713.
    1. Dubin A, Loudet C, Kanoore EV, Osatnik J, Rios F, Vasquez D, et al. Characteristics of resuscitation, and association between use of dynamic tests of fluid responsiveness and outcomes in septic patients: results of a multicenter prospective cohort study in Argentina. Ann Intensive Care. 2020;10:40. doi: 10.1186/s13613-020-00659-7.
    1. Vincent JL, Sakr Y. Clinical trial design for unmet clinical needs: a spotlight on sepsis. Expert Rev Clin Pharmacol. 2019;12:893–900. doi: 10.1080/17512433.2019.1643235.
    1. Cecconi M, Arulkumaran N, Kilic J, Ebm C, Rhodes A. Update on hemodynamic monitoring and management in septic patients. Minerva Anestesiol. 2014;80:701–711.
    1. Vincent JL, Singer M, Einav S, Moreno R, Wendon J, Teboul JL, et al. Equilibrating SSC guidelines with individualized care. Crit Care. 2021;25:397. doi: 10.1186/s13054-021-03813-0.

Source: PubMed

3
Subskrybuj