Namodenoson in Advanced Hepatocellular Carcinoma and Child-Pugh B Cirrhosis: Randomized Placebo-Controlled Clinical Trial

Salomon M Stemmer, Nebojsa S Manojlovic, Mihai Vasile Marinca, Petar Petrov, Nelly Cherciu, Doina Ganea, Tudor Eliade Ciuleanu, Ioana Adriana Pusca, Muhammad Shaalan Beg, William T Purcell, Adina-Emilia Croitoru, Rumyana Nedyalkova Ilieva, Sladjana Natošević, Amedeia Lavinir Nita, Dimitar Nikolaev Kalev, Zivit Harpaz, Motti Farbstein, Michael H Silverman, David Bristol, Inbal Itzhak, Pnina Fishman, Salomon M Stemmer, Nebojsa S Manojlovic, Mihai Vasile Marinca, Petar Petrov, Nelly Cherciu, Doina Ganea, Tudor Eliade Ciuleanu, Ioana Adriana Pusca, Muhammad Shaalan Beg, William T Purcell, Adina-Emilia Croitoru, Rumyana Nedyalkova Ilieva, Sladjana Natošević, Amedeia Lavinir Nita, Dimitar Nikolaev Kalev, Zivit Harpaz, Motti Farbstein, Michael H Silverman, David Bristol, Inbal Itzhak, Pnina Fishman

Abstract

Namodenoson, an A3 adenosine-receptor agonist, showed promising results in advanced hepatocellular carcinoma (HCC) and moderate hepatic dysfunction (Child-Pugh B; CPB) in a phase I/II clinical study. This phase II study investigated namodenoson as second-line therapy in such patients. Patients were randomized 2:1 to twice a day (BID) namodenoson (25 mg; n = 50) or placebo (n = 28). The primary endpoint (overall survival [OS]) was not met. Median OS was 4.1/4.3 months for namodenoson/placebo (hazard ratio [HR], 0.82; 95% confidence interval [CI] 0.49-1.38; p = 0.46). Pre-planned subgroup analysis of CPB7 patients (34 namodenoson-treated, 22 placebo-treated) showed a nonsignificant improvement in OS/progression-free survival (PFS). OS: 6.9 versus 4.3 months; HR, 0.81; 95% CI: 0.45-1.43, p = 0.46. PFS: 3.5 versus 1.9 months; HR, 0.89; 95% CI: 0.51-1.55, p = 0.67 (log-rank test). The difference in 12-month OS was significant (44% versus 18%, p = 0.028). Response rates were determined in patients for whom ≥ 1 assessment post-baseline was available (34 namodenoson-treated, 21 placebo-treated). Partial response was achieved by 3/34 (8.8%) and 0/21 (0%) patients, respectively. Namodenoson was well-tolerated, with a safety profile comparable to that of the placebo group. No treatment-related deaths were reported; no patients withdrew due to toxicity. In conclusion, namodenoson demonstrated a favorable safety profile and a preliminary efficacy signal in HCC CPB.

Keywords: Child–Pugh B; hepatocellular carcinoma; namodenoson; overall survival; randomized clinical trial.

Conflict of interest statement

Salomon M. Stemmer and Michael H. Silverman are consultants and stakeholders at Can-Fite BioPharma; Zivit Harpaz, Motti Farbstein, Inbal Itzhak and Pnina Fishman are employed by and stakeholders at Can-Fite BioPharma; David Bristol is a consultant at Can-Fite BioPharma; The remaining authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Flow chart of patient recruitment, treatment, and follow-up. F/U, follow-up; ICF, informed consent form; ITT, intention to treat; Pt, patient.
Figure 2
Figure 2
Kaplan–Meier curves by treatment group (namodenoson 25 mg/kg twice a day (BID) and placebo) for all patients and Child–Pugh B7 (CPB7) patients. (a) overall survival (OS) in all patients; (b) progression-free survival (PFS) in all patients; (c) OS in CPB7 patients; (d) PFS in CPB7 patients.
Figure 3
Figure 3
Forest plot summarizing exploratory overall survival (OS) subgroup analysis comparing patients assigned to receive namodenoson 25 mg/kg twice a day (BID) versus placebo. AFP, Alpha-fetoprotein; CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group performance status; EHS, extrahepatic spread; H, hazard ratio; PVT, portal vein thrombosis.

References

    1. Global Burden of Disease Cancer Collaboration. Fitzmaurice C., Akinyemiju T.F., Al Lami F.H., Alam T., Alizadeh-Navaei R., Allen C., Alsharif U., Alvis-Guzman N., Amini E., et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the global burden of disease study. JAMA Oncol. 2018;4:1553–1568.
    1. Granito A., Bolondi L. Non-transplant therapies for patients with hepatocellular carcinoma and child-pugh-turcotte class b cirrhosis. Lancet Oncol. 2017;18:e101–e112. doi: 10.1016/S1470-2045(16)30569-1.
    1. FDA Website Sorafenib Package Insert. [(accessed on 4 January 2020)]; Available online:
    1. Llovet J.M., Di Bisceglie A.M., Bruix J., Kramer B.S., Lencioni R., Zhu A.X., Sherman M., Schwartz M., Lotze M., Talwalkar J., et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J. Natl. Cancer Inst. 2008;100:698–711. doi: 10.1093/jnci/djn134.
    1. NIH U.S. National Library of Medicine, Clinical Trials Data Base. [(accessed on 12 July 2020)]; Available online: .
    1. Bar-Yehuda S., Stemmer S.M., Madi L., Castel D., Ochaion A., Cohen S., Barer F., Zabutti A., Perez-Liz G., Del Valle L., et al. The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int. J. Oncol. 2008;33:287–295.
    1. Madi L., Ochaion A., Rath-Wolfson L., Bar-Yehuda S., Erlanger A., Ohana G., Harish A., Merimski O., Barer F., Fishman P. The A3 adenosine receptor is highly expressed in tumor versus normal cells: Potential target for tumor growth inhibition. Clin. Cancer Res. 2004;10:4472–4479. doi: 10.1158/1078-0432.CCR-03-0651.
    1. Cohen S., Stemmer S.M., Zozulya G., Ochaion A., Patoka R., Barer F., Bar-Yehuda S., Rath-Wolfson L., Jacobson K.A., Fishman P. CF102 an A3 adenosine receptor agonist mediates anti-tumor and anti-inflammatory effects in the liver. J. Cell Physiol. 2011;226:2438–2447. doi: 10.1002/jcp.22593.
    1. Fishman P., Bar-Yehuda S., Synowitz M., Powell J., Klotz K., Gessi S., Borea P. Adenosine receptors and cancer. In: Wilson C.N., Mustafa S.J., editors. Health and Disease, Handbook of Experimental Pharmacology. Springer; Berlin/Heidelberg, Germany: 2009.
    1. Fishman P., Bar-Yehuda S., Barer F., Madi L., Multani A.S., Pathak S. The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp. Cell Res. 2001;269:230–236. doi: 10.1006/excr.2001.5327.
    1. Stemmer S.M., Benjaminov O., Medalia G., Ciuraru N.B., Silverman M.H., Bar-Yehuda S., Fishman S., Harpaz Z., Farbstein M., Cohen S., et al. CF102 for the treatment of hepatocellular carcinoma: A phase I/II, open-label, dose-escalation study. Oncologist. 2013;18:25–26. doi: 10.1634/theoncologist.2012-0211.
    1. FDA Website Cabozantinib Package Insert. [(accessed on 4 January 2020)]; Available online: .
    1. FDA Website Regorafenib Package Insert. [(accessed on 4 January 2020)]; Available online: .
    1. El-Khoueiry A.B., Sangro B., Yau T., Crocenzi T.S., Kudo M., Hsu C., Kim T.Y., Choo S.P., Trojan J., Welling T.H.R., et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–2502. doi: 10.1016/S0140-6736(17)31046-2.
    1. Finn R.S., Ryoo B.Y., Merle P., Kudo M., Bouattour M., Lim H.Y., Breder V., Edeline J., Chao Y., Ogasawara S., et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in Keynote-240: A randomized, double-blind, phase III trial. J. Clin. Oncol. 2020;38:193–202. doi: 10.1200/JCO.19.01307.
    1. FDA Website Ramucirumab Package Insert. [(accessed on 4 January 2020)]; Available online: .
    1. Finn R.S., Qin S., Ikeda M., Galle P.R., Ducreux M., Kim T.Y., Kudo M., Breder V., Merle P., Kaseb A.O., et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020;382:1894–1905. doi: 10.1056/NEJMoa1915745.
    1. Zhu A.X., Baron A.D., Malfertheiner P., Kudo M., Kawazoe S., Pezet D., Weissinger F., Brandi G., Barone C.A., Okusaka T., et al. Ramucirumab as second-line treatment in patients with advanced hepatocellular carcinoma: Analysis of REACH trial results by Child-Pugh score. JAMA Oncol. 2017;3:235–243. doi: 10.1001/jamaoncol.2016.4115.
    1. Choi W.M., Lee D., Shim J.H., Kim K.M., Lim Y.S., Lee H.C., Yoo C., Park S.R., Ryu M.H., Ryoo B.Y., et al. Effectiveness and safety of nivolumab in child-pugh b patients with hepatocellular carcinoma: A real-world cohort study. Cancers. 2020;12:1968. doi: 10.3390/cancers12071968.
    1. Kambhampati S., Bauer K.E., Bracci P.M., Keenan B.P., Behr S.C., Gordan J.D., Kelley R.K. Nivolumab in patients with advanced hepatocellular carcinoma and child-pugh class b cirrhosis: Safety and clinical outcomes in a retrospective case series. Cancer. 2019;125:3234–3241. doi: 10.1002/cncr.32206.
    1. De Lorenzo S., Tovoli F., Barbera M.A., Garuti F., Palloni A., Frega G., Garajova I., Rizzo A., Trevisani F., Brandi G. Metronomic capecitabine vs. best supportive care in child-pugh b hepatocellular carcinoma: A proof of concept. Sci. Rep. 2018;8:9997. doi: 10.1038/s41598-018-28337-6.
    1. Granito A., Marinelli S., Terzi E., Piscaglia F., Renzulli M., Venerandi L., Benevento F., Bolondi L. Metronomic capecitabine as second-line treatment in hepatocellular carcinoma after sorafenib failure. Dig. Liver Dis. 2015;47:518–522. doi: 10.1016/j.dld.2015.03.010.
    1. Safadi R., Braun M., Milgrom Y., Masarowa M., Hakimian D., Hazou W., Issacchar A., Harpaz Z., Farbstein M., Itzhak I., et al. A phase 2, randomized, double-blind, placebo-controlled dose-finding study of the efficacy and safety of namodenoson (CF102), an A3 Adenosine Receptor (A3AR) agonist, in treating non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH); Proceedings of the The Liver Meeting Digital Experience™, Digital Conference; 15 November 2020; [(accessed on 4 January 2020)]. Available online: .
    1. Bunemann M., Lee K.B., Pals-Rylaarsdam R., Roseberry A.G., Hosey M.M. Desensitization of G-protein-coupled receptors in the cardiovascular system. Annu. Rev. Physiol. 1999;61:169–192. doi: 10.1146/annurev.physiol.61.1.169.
    1. Marrero J.A., Kulik L.M., Sirlin C.B., Zhu A.X., Finn R.S., Abecassis M.M., Roberts L.R., Heimbach J.K. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018;68:723–750. doi: 10.1002/hep.29913.
    1. Llovet J.M., Montal R., Villanueva A. Randomized trials and endpoints in advanced HCC: Role of PFS as a surrogate of survival. J. Hepatol. 2019;70:1262–1277. doi: 10.1016/j.jhep.2019.01.028.
    1. Eisenhauer E.A., Therasse P., Bogaerts J., Schwartz L.H., Sargent D., Ford R., Dancey J., Arbuck S., Gwyther S., Mooney M., et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) Eur. J. Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Johnson P.J., Berhane S., Kagebayashi C., Satomura S., Teng M., Reeves H.L., O’Beirne J., Fox R., Skowronska A., Palmer D., et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015;33:550–558. doi: 10.1200/JCO.2014.57.9151.
    1. Gessi S., Cattabriga E., Avitabile A., Gafa R., Lanza G., Cavazzini L., Bianchi N., Gambari R., Feo C., Liboni A., et al. Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin. Cancer Res. 2004;10:5895–5901. doi: 10.1158/1078-0432.CCR-1134-03.
    1. Fishman P., Bar-Yehuda S., Ardon E., Rath-Wolfson L., Barrer F., Ochaion A., Madi L. Targeting the A3 adenosine receptor for cancer therapy: Inhibition of prostate carcinoma cell growth by A3AR agonist. Anticancer Res. 2003;23:2077–2083.

Source: PubMed

3
Subskrybuj