Nonalcoholic Fatty liver disease: pathogenesis and therapeutics from a mitochondria-centric perspective

Aaron M Gusdon, Ke-Xiu Song, Shen Qu, Aaron M Gusdon, Ke-Xiu Song, Shen Qu

Abstract

Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of disorders characterized by the accumulation of triglycerides within the liver. The global prevalence of NAFLD has been increasing as the obesity epidemic shows no sign of relenting. Mitochondria play a central role in hepatic lipid metabolism and also are affected by upstream signaling pathways involved in hepatic metabolism. This review will focus on the role of mitochondria in the pathophysiology of NAFLD and touch on some of the therapeutic approaches targeting mitochondria as well as metabolically important signaling pathways. Mitochondria are able to adapt to lipid accumulation in hepatocytes by increasing rates of beta-oxidation; however increased substrate delivery to the mitochondrial electron transport chain (ETC) leads to increased reactive oxygen species (ROS) production and eventually ETC dysfunction. Decreased ETC function combined with increased rates of fatty acid beta-oxidation leads to the accumulation of incomplete products of beta-oxidation, which combined with increased levels of ROS contribute to insulin resistance. Several related signaling pathways, nuclear receptors, and transcription factors also regulate hepatic lipid metabolism, many of which are redox sensitive and regulated by ROS.

Figures

Figure 1
Figure 1
Pathways involved in the development of NAFLD. The role of mitochondria is highlighted as increased reactive oxygen species (ROS) production leads to inactivation of the ETC resulting in decreased ATP levels and impaired energy supply. Mitochondrial damage by ROS also leads to impaired fatty acid oxidation (FAO). Incomplete FAO may also occur as a result of ROS production and contribute to insulin resistance and further hepatic fatty acid accumulation. ROS production also leads to the activation of a number of cytokines known to play a role in the pathogenesis of NAFLD. Insulin signaling plays a key role in NAFLD. Insulin signals through SREP-1c, which activates lipogenesis. In states of insulin resistance, this ability to stimulate lipogenesis is maintained while the ability to stimulate glucose uptake is reduced. Glucose stimulates lipogenesis as well but does so by activating ChREBP. LXR/FXR and RXR also play key roles in increasing lipogenesis. Signaling through AMPK decreases lipogenesis by inhibiting ACC. However, AMPK also has very broad effects on the cellular energy state leading to decreased levels of ATP and subsequent activation of pyruvate kinase, phosphofructokinase, and pyruvate dehydrogenase. The PPAR family of transcription factors plays an important role in lipid metabolism with PPARα stimulating fatty acid oxidation and PPARγ increasing peripheral update of lipid by adipocytes. PGC-1α is a transcription factor which can lead to activation of gluconeogenesis when activated by CREB or ROS production. However PGC-1α also leads to increased mitochondrial biogenesis when activated by AMPK or metformin which may ameliorate NAFLD.

References

    1. Lazo M., Hernaez R., Eberhardt M. S., Bonekamp S., Kamel I., Guallar E., Koteish A., Brancati F. L., Clark J. M. Prevalence of nonalcoholic fatty liver disease in the United States: the third national health and nutrition examination survey, 1988–1994. The American Journal of Epidemiology. 2013;178(1):38–45. doi: 10.1093/aje/kws448.
    1. Donnelly K. L., Smith C. I., Schwarzenberg S. J., Jessurun J., Boldt M. D., Parks E. J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. Journal of Clinical Investigation. 2005;115(5):1343–1351. doi: 10.1172/JCI200523621.
    1. Szczepaniak L. S., Nurenberg P., Leonard D., Browning J. D., Reingold J. S., Grundy S., Hobbs H. H., Dobbins R. L. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. The American Journal of Physiology—Endocrinology and Metabolism. 2005;288(2):E462–E468. doi: 10.1152/ajpendo.00064.2004.
    1. Argo C. K., Caldwell S. H. Epidemiology and natural history of non-alcoholic steatohepatitis. Clinics in Liver Disease. 2009;13(4):511–531. doi: 10.1016/j.cld.2009.07.005.
    1. Horton J. D., Goldstein J. L., Brown M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Journal of Clinical Investigation. 2002;109(9):1125–1131. doi: 10.1172/JCI200215593.
    1. Uyeda K., Repa J. J. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metabolism. 2006;4(2):107–110. doi: 10.1016/j.cmet.2006.06.008.
    1. Day C. P., James O. F. W. Hepatic steatosis: Innocent bystander or guilty party? Hepatology. 1998;27(6):1463–1466. doi: 10.1002/hep.510270601.
    1. Day C. P., James O. F. W. Steatohepatitis: a tale of two “Hits”? Gastroenterology. 1998;114(4):842–845. doi: 10.1016/S0016-5085(98)70599-2.
    1. Cortez-Pinto H., de Moura M. C., Day C. P. Non-alcoholic steatohepatitis: from cell biology to clinical practice. Journal of Hepatology. 2006;44(1):197–208. doi: 10.1016/j.jhep.2005.09.002.
    1. Schuppan D., Schattenberg J. M. Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. Journal of Gastroenterology and Hepatology. 2013;28(1):68–76. doi: 10.1111/jgh.12212.
    1. Lazarin M. D. O., Ishii-Iwamoto E. L., Yamamoto N. S., Constantin R. P., Garcia R. F., da Costa C. E. M., Vitoriano A. D. S., de Oliveira M. C., Salgueiro-Pagadigorria C. L. Liver mitochondrial function and redox status in an experimental model of non-alcoholic fatty liver disease induced by monosodium l-glutamate in rats. Experimental and Molecular Pathology. 2011;91(3):687–694. doi: 10.1016/j.yexmp.2011.07.003.
    1. Hodson L., McQuaid S. E., Humphreys S. M., Milne R., Fielding B. A., Frayn K. N., Karpe F. Greater dietary fat oxidation in obese compared with lean men: an adaptive mechanism to prevent liver fat accumulation? The American Journal of Physiology—Endocrinology and Metabolism. 2010;299(4):E584–E592. doi: 10.1152/ajpendo.00272.2010.
    1. Iozzo P., Bucci M., Roivainen A., Någren K., Järvisalo M. J., Kiss J., Guiducci L., Fielding B., Naum A. G., Borra R., Virtanen K., Savunen T., Salvadori P. A., Ferrannini E., Knuuti J., Nuutila P. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology. 2010;139(3):e841–e846. doi: 10.1053/j.gastro.2010.05.039.
    1. Ciapaite J., van den Broek N. M., Te Brinke H., Nicolay K., Jeneson J. A., Houten S. M., Prompers J. J. Differential effects of short- and long-term high-fat diet feeding on hepatic fatty acid metabolism in rats. Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids. 2011;1811(7-8):441–451. doi: 10.1016/j.bbalip.2011.05.005.
    1. Iossa S., Lionetti L., Mollica M. P., Crescenzo R., Botta M., Barletta A., Liverini G. Effect of high-fat feeding on metabolic efficiency and mitochondrial oxidative capacity in adult rats. British Journal of Nutrition. 2003;90(5):953–960. doi: 10.1079/BJN2003000968.
    1. Sunny N. E., Satapati S., Fu X., He T., Mehdibeigi R., Spring-Robinson C., Duarte J., Potthoff M. J., Browning J. D., Burgess S. C. Progressive adaptation of hepatic ketogenesis in mice fed a high-fat diet. American Journal of Physiology: Endocrinology and Metabolism. 2010;298(6):E1226–E1235. doi: 10.1152/ajpendo.00033.2010.
    1. Garcia-Ruiz I., Rodriguez-Juan C., Diaz-Sanjuan T., Del Hoyo P., Colina F., Munoz-Yagüe T., Solis-Herruzo J. A. Uric acid and anti-TNF antibody improve mitochondrial dysfunction in ob/ob mice. Hepatology. 2006;44(3):581–591. doi: 10.1002/hep.21313.
    1. Li Z., Yang S., Lin H., Huang J., Watkins P. A., Moser A. B., DeSimone C., Song X.-Y., Diehl A. M. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37(2):343–350. doi: 10.1053/jhep.2003.50048.
    1. García-Ruiz I., Rodríguez-Juan C., Díaz-Sanjuán T., Martínez M. Á., Muñoz-Yagüe T., Solís-Herruzo J. A. Effects of rosiglitazone on the liver histology and mitochondrial function in ob/ob mice. Hepatology. 2007;46(2):414–423. doi: 10.1002/hep.21687.
    1. Chalasani N., Gorski J. C., Asghar M. S., Asghar A., Foresman B., Hall S. D., Crabb D. W. Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis. Hepatology. 2003;37(3):544–550. doi: 10.1053/jhep.2003.50095.
    1. Sanyal A. J., Campbell-Sargent C., Mirshahi F., Rizzo W. B., Contos M. J., Sterling R. K., Luketic V. A., Shiffman M. L., Clore J. N. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120(5):1183–1192. doi: 10.1053/gast.2001.23256.
    1. Miele L., Grieco A., Armuzzi A., Candelli M., Forgione A., Gasbarrini A., Gasbarrini G. Hepatic mitochondrial beta-oxidation in patients with nonalcoholic steatohepatitis assessed by 13C-octanoate breath test. The American Journal of Gastroenterology. 2003;98(10):2335–2336. doi: 10.1111/j.1572-0241.2003.07725.x.
    1. Dasarathy S., Yang Y., McCullough A. J., Marczewski S., Bennett C., Kalhan S. C. Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis. European Journal of Gastroenterology and Hepatology. 2011;23(5):382–388. doi: 10.1097/MEG.0b013e328345c8c7.
    1. Romestaing C., Piquet M.-A., Letexier D., Rey B., Mourier A., Servais S., Belouze M., Rouleau V., Dautresme M., Ollivier I., Favier R., Rigoulet M., Duchamp C., Sibille B. Mitochondrial adaptations to steatohepatitis induced by a methionine- and choline-deficient diet. American Journal of Physiology: Endocrinology and Metabolism. 2008;294(1):E110–E119. doi: 10.1152/ajpendo.00407.2007.
    1. Vicentino C., Constantin J., Bracht A., Yamamoto N. S. Long-chain fatty acid uptake and oxidation in the perfused liver of Walker-256 tumour-bearing rats. Liver. 2002;22(4):341–349. doi: 10.1034/j.1600-0676.2002.01656.x.
    1. Dasarathy S., Kasumov T., Edmison J. M., Gruca L. L., Bennett C., Duenas C., Marczewski S., McCullough A. J., Hanson R. W., Kalhan S. C. Glycine and urea kinetics in nonalcoholic steatohepatitis in human: effect of intralipid infusion. The American Journal of Physiology—Gastrointestinal and Liver Physiology. 2009;297(3):G567–G575. doi: 10.1152/ajpgi.00042.2009.
    1. Carmiel-Haggai M., Cederbaum A. I., Nieto N. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. The FASEB Journal. 2005;19(1):136–138. doi: 10.1096/fj.04-2291fje.
    1. Jiang Y., Zhao M., An W. Increased hepatic apoptosis in high-fat diet-induced NASH in rats may be associated with downregulation of hepatic stimulator substance. Journal of Molecular Medicine. 2011;89(12):1207–1217. doi: 10.1007/s00109-011-0790-y.
    1. Serviddio G., Bellanti F., Tamborra R., Rollo T., Romano A. D., Giudetti A. M., Capitanio N., Petrella A., Vendemiale G., Altomare E. Alterations of hepatic ATP homeostasis and respiratory chain during development of non-alcoholic steatohepatitis in a rodent model. European Journal of Clinical Investigation. 2008;38(4):245–252. doi: 10.1111/j.1365-2362.2008.01936.x.
    1. Cortez-Pinto H., Chatham J., Chacko V. P., Arnold C., Rashid A., Diehl A. M. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. Journal of the American Medical Association. 1999;282(17):1659–1664. doi: 10.1001/jama.282.17.1659.
    1. Jia X., Naito H., Yetti H., Tamada H., Kitamori K., Hayashi Y., Yamagishi N., Wang D., Yanagiba Y., Ito Y., Wang J., Tanaka N., Ikeda K., Yamori Y., Nakajima T. The modulation of hepatic adenosine triphosphate and inflammation by eicosapentaenoic acid during severe fibrotic progression in the SHRSP5/Dmcr rat model. Life Sciences. 2012;90(23-24):934–943. doi: 10.1016/j.lfs.2012.04.029.
    1. Serviddio G., Bellanti F., Tamborra R., Rollo T., Capitanio N., Romano A. D., Sastre J., Vendemiale G., Altomare E. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia-reperfusion injury. Gut. 2008;57(7):957–965. doi: 10.1136/gut.2007.147496.
    1. Jiang Y., Zhang H., Dong L.-Y., Wang D., An W. Increased hepatic UCP2 expression in rats with nonalcoholic steatohepatitis is associated with upregulation of Sp1 binding to its motif within the proximal promoter region. Journal of Cellular Biochemistry. 2008;105(1):277–289. doi: 10.1002/jcb.21827.
    1. García-Ruiz I., Fernández-Moreira D., Solís-Muñoz P., Rodríguez-Juan C., Díaz-Sanjuán T., Muñoz-Yagüe T., Solís-Herruzo J. A. Mitochondrial complex i subunits are decreased in murine nonalcoholic fatty liver disease: implication of peroxynitrite. Journal of Proteome Research. 2010;9(5):2450–2459. doi: 10.1021/pr9011427.
    1. Wang Y., Lam K. S. L., Lam J. B. B., Lam M. C., Leung P. T. Y., Zhou M., Xu A. Overexpression of angiopoietin-like protein 4 alters mitochondria activities and modulates methionine metabolic cycle in the liver tissues of db/db diabetic mice. Molecular Endocrinology. 2007;21(4):972–986. doi: 10.1210/me.2006-0249.
    1. Pérez-Carreras M., Del Hoyo P., Martín M. A., Rubio J. C., Martín A., Castellano G., Colina F., Arenas J., Solis-Herruzo J. A. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology. 2003;38(4):999–1007. doi: 10.1053/jhep.2003.50398.
    1. Bruce K. D., Cagampang F. R., Argenton M., Zhang J., Ethirajan P. L., Burdge G. C., Bateman A. C., Clough G. F., Poston L., Hanson M. A., McConnell J. M., Byrne C. D. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology. 2009;50(6):1796–1808. doi: 10.1002/hep.23205.
    1. Nadal-Casellas A., Amengual-Cladera E., Proenza A. M., Lladó I., Gianotti M. Long-term high-fat-diet feeding impairs mitochondrial biogenesis in liver of male and female rats. Cellular Physiology and Biochemistry. 2010;26(3):291–302. doi: 10.1159/000320552.
    1. Teodoro J., Rolo A. P., Oliveira P. J., Palmeira C. M. Decreased ANT content in Zucker fatty rats: relevance for altered hepatic mitochondrial bioenergetics in steatosis. FEBS Letters. 2006;580(8):2153–2157. doi: 10.1016/j.febslet.2006.02.078.
    1. Raffaella C., Francesca B., Italia F., Marina P., Giovanna L., Susanna I. Alterations in hepatic mitochondrial compartment in a model of obesity and insulin resistance. Obesity. 2008;16(5):958–964. doi: 10.1038/oby.2008.10.
    1. Mantena S. K., King A. L., Andringa K. K., Eccleston H. B., Bailey S. M. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radical Biology and Medicine. 2008;44(7):1259–1272. doi: 10.1016/j.freeradbiomed.2007.12.029.
    1. Vial G., Dubouchaud H., Couturier K., Cottet-Rousselle C., Taleux N., Athias A., Galinier A., Casteilla L., Leverve X. M. Effects of a high-fat diet on energy metabolism and ROS production in rat liver. Journal of Hepatology. 2011;54(2):348–356. doi: 10.1016/j.jhep.2010.06.044.
    1. Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K. J. A. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. Journal of Biological Chemistry. 1990;265(27):16330–16336.
    1. Sadek H. A., Szweda P. A., Szweda L. I. Modulation of mitochondrial complex I activity by reversible Ca2+ and NADH mediated superoxide anion dependent inhibition. Biochemistry. 2004;43(26):8494–8502. doi: 10.1021/bi049803f.
    1. Kujoth C. C., Hiona A., Pugh T. D., Someya S., Panzer K., Wohlgemuth S. E., Hofer T., Seo A. Y., Sullivan R., Jobling W. A., Morrow J. D., Van Remmen H., Sedivy J. M., Yamasoba T., Tanokura M., Weindruch R., Leeuwenburgh C., Prolla T. A. Medicine: mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309(5733):481–484. doi: 10.1126/science.1112125.
    1. Carreras M. C., Franco M. C., Peralta J. G., Poderoso J. J. Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease. Molecular Aspects of Medicine. 2004;25(1-2):125–139. doi: 10.1016/j.mam.2004.02.014.
    1. Moon K. H., Hood B. L., Kim B. J., Hardwick J. P., Conrads T. P., Veenstra T. D., Song B. J. Inactivation of oxidized and S-nitrosylated mitochondrial proteins in alcoholic fatty liver of rats. Hepatology. 2006;44(5):1218–1230. doi: 10.1002/hep.21372.
    1. Aguirre E., Rodríguez-Juárez F., Bellelli A., Gnaiger E., Cadenas S. Kinetic model of the inhibition of respiration by endogenous nitric oxide in intact cells. Biochimica et Biophysica Acta. 2010;1797(5):557–565. doi: 10.1016/j.bbabio.2010.01.033.
    1. Bahcecioglu I. H., Yalniz M., Ataseven H., Ilhan N., Ozercan I. H., Seckin D., Sahin K. Levels of serum hyaluronic acid, TNF-α and IL-8 in patients with nonalcoholic steatohepatitis. Hepato-Gastroenterology. 2005;52(65):1549–1553.
    1. Torer N., Ozenirler S., Yucel A., Bukan N., Erdem O. Importance of cytokines, oxidative stress and expression of BCL-2 in the pathogenesis of non-alcoholic steatohepatitis. Scandinavian Journal of Gastroenterology. 2007;42(9):1095–1101. doi: 10.1080/00365520701286680.
    1. Kwon D. Y., Jung Y. S., Kim S. J., Park H. K., Park J. H., Kim Y. C. Impaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats1,2. The Journal of Nutrition. 2009;139(1):63–68. doi: 10.3945/jn.108.094771.
    1. Nagakawa Y., Williams G. M., Zheng Q., Tsuchida A., Aoki T., Montgomery R. A., Klein A. S., Sun Z. Oxidative mitochondrial DNA damage and deletion in hepatocytes of rejecting liver allografts in rats: role of TNF-α. Hepatology. 2005;42(1):208–215. doi: 10.1002/hep.20755.
    1. Gastaldelli A., Harrison S., Belfort-Aguiar R., Hardies J., Balas B., Schenker S., Cusi K. Pioglitazone in the treatment of NASH: the role of adiponectin. Alimentary Pharmacology and Therapeutics. 2010;32(6):769–775. doi: 10.1111/j.1365-2036.2010.04405.x.
    1. Arsov T., Larter C. Z., Nolan C. J., Petrovsky N., Goodnow C. C., Teoh N. C., Yeh M. M., Farrell G. C. Adaptive failure to high-fat diet characterizes steatohepatitis in Alms1 mutant mice. Biochemical and Biophysical Research Communications. 2006;342(4):1152–1159. doi: 10.1016/j.bbrc.2006.02.032.
    1. Nannipieri M., Cecchetti F., Anselmino M., Mancini E., Marchetti G., Bonotti A., Baldi S., Solito B., Giannetti M., Pinchera A., Santini F., Ferrannini E. Pattern of expression of adiponectin receptors in human liver and its relation to nonalcoholic steatohepatitis. Obesity Surgery. 2009;19(4):467–474. doi: 10.1007/s11695-008-9701-x.
    1. Zhou M., Xu A., Tam P. K. H., Lam K. S. L., Chan L., Hoo R. L. C., Liu J., Chow K. H. M., Wang Y. Mitochondrial dysfunction contributes to the increased vulnerabilities of adiponectin knockout mice to liver injury. Hepatology. 2008;48(4):1087–1096. doi: 10.1002/hep.22444.
    1. Garcia-Ruiz C., Colell A., Morales A., Kaplowitz N., Fernandez-Checa J. C. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-κB: studies with isolated mitochondria and rat hepatocytes. Molecular Pharmacology. 1995;48(5):825–834.
    1. Hensley K., Kotake Y., Sang H., Pye Q. N., Wallis G. L., Kolker L. M., Tabatabaie T., Stewart C. A., Konishi Y., Nakae D., Floyd R. A. Dietary choline restriction causes complex I dysfunction and increased H2O2 generation in liver mitochondria. Carcinogenesis. 2000;21(5):983–989. doi: 10.1093/carcin/21.5.983.
    1. Murphy M. P. How mitochondria produce reactive oxygen species. The Biochemical Journal. 2009;417(1):1–13. doi: 10.1042/BJ20081386.
    1. Pryde K. R., Hirst J. Superoxide is produced by the reduced flavin in mitochondrial complex I: A single, unified mechanism that applies during both forward and reverse electron transfer. Journal of Biological Chemistry. 2011;286(20):18056–18065. doi: 10.1074/jbc.M110.186841.
    1. Quinlan C. L., Gerencser A. A., Treberg J. R., Brand M. D. The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. The Journal of Biological Chemistry. 2011;286(36):31361–31372. doi: 10.1074/jbc.M111.267898.
    1. Noguchi Y., Young J. D., Aleman J. O., Hansen M. E., Kelleher J. K., Stephanopoulos G. Effect of anaplerotic fluxes and amino acid availability on hepatic lipoapoptosis. Journal of Biological Chemistry. 2009;284(48):33425–33436. doi: 10.1074/jbc.M109.049478.
    1. Valenzuela R., Espinosa A., Gonzalez-Manan D., et al N-3 long-chain polyunsaturated fatty acid supplementation significantly reduces liver oxidative stress in high fat induced steatosis. PLoS ONE. 2012;7(10) doi: 10.1371/journal.pone.0046400.e46400
    1. Puri P., Baillie R. A., Wiest M. M., Mirshahi F., Choudhury J., Cheung O., Sargeant C., Contos M. J., Sanyal A. J. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46(4):1081–1090. doi: 10.1002/hep.21763.
    1. Caballero F., Fernández A., De Lacy A. M., Fernández-Checa J. C., Caballería J., García-Ruiz C. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. Journal of Hepatology. 2009;50(4):789–796. doi: 10.1016/j.jhep.2008.12.016.
    1. Simonen P., Kotronen A., Hallikainen M., Sevastianova K., Makkonen J., Hakkarainen A., Lundbom N., Miettinen T. A., Gylling H., Yki-Järvinen H. Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity. Journal of Hepatology. 2011;54(1):153–159. doi: 10.1016/j.jhep.2010.05.037.
    1. Marí M., Caballero F., Colell A., Morales A., Caballeria J., Fernandez A., Enrich C., Fernandez-Checa J. C., García-Ruiz C. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metabolism. 2006;4(3):185–198. doi: 10.1016/j.cmet.2006.07.006.
    1. Mannaerts G. P., Debeer L. J., Thomas J., de Schepper P. J. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. Journal of Biological Chemistry. 1979;254(11):4585–4595.
    1. Robertson G., Leclercq I., Farrell G. C. Nonalcoholic Steatosis and Steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress. American Journal of Physiology: Gastrointestinal and Liver Physiology. 2001;281(5):G1135–G1139.
    1. Natarajan S. K., Eapen C. E., Pullimood A. B., Balasubramanian K. A. Oxidative stress in experimental liver microvesicular steatosis: role of mitochondria and peroxisomes. Journal of Gastroenterology and Hepatology. 2006;21(8):1240–1249. doi: 10.1111/j.1440-1746.2006.04313.x.
    1. Esterbauer H., Schaur R. J., Zollner H. Chemistry and Biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology and Medicine. 1991;11(1):81–128. doi: 10.1016/0891-5849(91)90192-6.
    1. Serviddio G., Bellanti F., Vendemiale G., Altomare E. Mitochondrial dysfunction in nonalcoholic steatohepatitis. Expert Review of Gastroenterology and Hepatology. 2011;5(2):233–244. doi: 10.1586/egh.11.11.
    1. Seki S., Kitada T., Yamada T., Sakaguchi H., Nakatani K., Wakasa K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. Journal of Hepatology. 2002;37(1):56–62. doi: 10.1016/S0168-8278(02)00073-9.
    1. Infante J. P., Huszagh V. A. Secondary carnitine deficiency and impaired docosahexaenoic (22:6n-3) acid synthesis: a common denominator in the pathophysiology of diseases of oxidative phosphorylation and β-oxidation. FEBS Letters. 2000;468(1):1–5. doi: 10.1016/S0014-5793(00)01083-8.
    1. Li J., Romestaing C., Han X., Li Y., Hao X., Wu Y., Sun C., Liu X., Jefferson L. S., Xiong J., Lanoue K. F., Chang Z., Lynch C. J., Wang H., Shi Y. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metabolism. 2010;12(2):154–165. doi: 10.1016/j.cmet.2010.07.003.
    1. Pessayre D., Fromenty B. NASH: a mitochondrial disease. Journal of Hepatology. 2005;42(6):928–940. doi: 10.1016/j.jhep.2005.03.004.
    1. Feldstein A. E. Novel insights into the pathophysiology of nonalcoholic fatty liver disease. Seminars in Liver Disease. 2010;30(4):391–401. doi: 10.1055/s-0030-1267539.
    1. Tilg H. The role of cytokines in non-alcoholic fatty liver disease. Digestive Diseases. 2010;28(1):179–185. doi: 10.1159/000282083.
    1. Bonnard C., Durand A., Peyrol S., Chanseaume E., Chauvin M.-A., Morio B., Vidal H., Rieusset J. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. Journal of Clinical Investigation. 2008;118(2):789–800. doi: 10.1172/JCI32601.
    1. Pacana T., Sanyal A. J. Vitamin e and nonalcoholic fatty liver disease. Current Opinion in Clinical Nutrition and Metabolic Care. 2012;15(6):641–648. doi: 10.1097/MCO.0b013e328357f747.
    1. Kugelmas M., Hill D. B., Vivian B., Marsano L., McClain C. J. Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology. 2003;38(2):413–419. doi: 10.1053/jhep.2003.50316.
    1. Harrison S. A., Torgerson S., Hayashi P., Ward J., Schenker S. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. The American Journal of Gastroenterology. 2003;98(11):2485–2490. doi: 10.1111/j.1572-0241.2003.08699.x.
    1. Lavine J. E. Vitamin E treatment of nonalcoholic steatohepatitis in children: a pilot study. Journal of Pediatrics. 2000;136(6):734–738. doi: 10.1016/S0022-3476(00)05040-X.
    1. Sanyal A. J., Chalasani N., Kowdley K. V., McCullough A., Diehl A. M., Bass N. M., Neuschwander-Tetri B. A., Lavine J. E., Tonascia J., Unalp A., Van Natta M., Clark J., Brunt E. M., Kleiner D. E., Hoofnagle J. H., Robuck P. R. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. The New England Journal of Medicine. 2010;362(18):1675–1685. doi: 10.1056/NEJMoa0907929.
    1. Miller E. R., III, Pastor-Barriuso R., Dalal D., Riemersma R. A., Appel L. J., Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Annals of Internal Medicine. 2005;142(1):37–46.
    1. Berry D., Wathen J. K., Newell M. Bayesian model averaging in meta-analysis: vitamin E supplementation and mortality. Clinical Trials. 2009;6(1):28–41. doi: 10.1177/1740774508101279.
    1. Chalasani N., Younossi Z., Lavine J. E., Diehl A. M., Brunt E. M., Cusi K., Charlton M., Sanyal A. J. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. The American Journal of Gastroenterology. 2012;107(6):811–826. doi: 10.1038/ajg.2012.128.
    1. Kim S. K., Kim Y. C. Effects of betaine supplementation on hepatic metabolism of sulfur-containing amino acids in mice. Journal of Hepatology. 2005;42(6):907–913. doi: 10.1016/j.jhep.2005.01.017.
    1. Abdelmalek M. F., Sanderson S. O., Angulo P., Soldevila-Pico C., Liu C., Peter J., Keach J., Cave M., Chen T., McClain C. J., Lindor K. D. Betaine for nonalcoholic fatty liver disease: results of a randomized placebo-controlled trial. Hepatology. 2009;50(6):1818–1826. doi: 10.1002/hep.23239.
    1. de Oliveira C. P., de Lima V. M., Simplicio F. I., Soriano F. G., De Mello E. S., De Souza H. P., Alves V. A. F., Laurindo F. R. M., Carrilho F. J., de Oliveira M. G. Prevention and reversion of nonalcoholic steatohepatitis in OB/OB mice by S-nitroso-N-acetylcysteine treatment. Journal of the American College of Nutrition. 2008;27(2):299–305. doi: 10.1080/07315724.2008.10719703.
    1. Mazo D. F. C., de Oliveira M. G., Pereira I. V. A., Cogliati B., Stefano J. T., de Souza G. F. P., Rabelo F., Lima F. R., Ferreira Alves V. A., Carrilho F. J., de Oliveira C. P. M. S. S-nitroso-N-acetylcysteine attenuates liver fibrosis in experimental nonalcoholic steatohepatitis. Drug Design, Development and Therapy. 2013;7:553–563. doi: 10.2147/DDDT.S43930.
    1. Stefano J. T., Cogliati B., Santos F., Lima V. M. R., Mazo D. C., Matte U., Alvares-Da-Silva M. R., Silveira T. R., Carrilho F. J., Oliveira C. P. M. S. S-Nitroso-N-acetylcysteine induces de-differentiation of activated hepatic stellate cells and promotes antifibrotic effects in vitro. Nitric Oxide—Biology and Chemistry. 2011;25(3):360–365. doi: 10.1016/j.niox.2011.07.001.
    1. Vercelino R., Crespo I., de Souza G. F. P., Cuevas M. J., De Oliveira M. G., Marroni N. P., González-Gallego J., Tuñón M. J. S-nitroso-N-acetylcysteine attenuates liver fibrosis in cirrhotic rats. Journal of Molecular Medicine. 2010;88(4):401–411. doi: 10.1007/s00109-009-0577-6.
    1. Pamuk G. E., Sonsuz A. N-acetylcysteine in the treatment of non-alcoholic steatohepatitis. Journal of Gastroenterology and Hepatology (Australia) 2003;18(10):1220–1221. doi: 10.1046/j.1440-1746.2003.03156.x.
    1. Khoshbaten M., Aliasgarzadeh A., Masnadi K., Tarzamani M. K., Farhang S., Babaei H., Kiani J., Zaare M., Najafipoor F. N-acetylcysteine improves liver function in patients with non-alcoholic fatty liver disease. Hepatitis Monthly. 2010;10(1):12–16.
    1. Catalgol B., Batirel S., Taga Y., Ozer N. K. Resveratrol: French paradox revisited. Frontiers in Pharmacology. 2012;3, article 141 doi: 10.3389/fphar.2012.00141.
    1. Jin S. H., Yang J. H., Shin B. Y., Seo K., Shin S. M., Cho I. J., Ki S. H. Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction. Toxicology and Applied Pharmacology. 2013;271(1):95–105. doi: 10.1016/j.taap.2013.04.023.
    1. Gómez-Zorita S., Fernández-Quintela A., MacArulla M. T., Aguirre L., Hijona E., Bujanda L., Milagro F., Martínez J. A., Portillo M. P. Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. British Journal of Nutrition. 2012;107(2):202–210. doi: 10.1017/S0007114511002753.
    1. Bujanda L., Hijona E., Larzabal M., Beraza M., Aldazabal P., García-Urkia N., Sarasqueta C., Cosme A., Irastorza B., González A., Arenas J. I., Jr. Resveratrol inhibits nonalcoholic fatty liver disease in rats. BMC Gastroenterology. 2008;8, article 40 doi: 10.1186/1471-230X-8-40.
    1. Wang G. L., Fu Y. C., Xu W. C., Feng Y. Q., Fang S. R., Zhou X. H. Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway. Biochemical and Biophysical Research Communications. 2009;380(3):644–649. doi: 10.1016/j.bbrc.2009.01.163.
    1. Colak Y., Ozturk O., Senates E., Tuncer I., Yorulmaz E., Adali G., Doganay L., Enc F. Y. SIRT1 as a potential therapeutic target for treatment of nonalcoholic fatty liver disease. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2011;17(5):HY5–HY9.
    1. Shang J., Chen L.-L., Xiao F.-X., Sun H., Ding H.-C., Xiao H. Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacologica Sinica. 2008;29(6):698–706. doi: 10.1111/j.1745-7254.2008.00807.x.
    1. Zheng J., Ramirez V. D. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. British Journal of Pharmacology. 2000;130(5):1115–1123. doi: 10.1038/sj.bjp.0703397.
    1. Zini R., Morin C., Bertelli A., Bertelli A. A. E., Tillement J.-P. Effects of resveratrol on the rat brain respiratory chain. Drugs under Experimental and Clinical Research. 1999;25(2-3):87–97.
    1. Batandier C., Guigas B., Detaille D., El-Mir M., Fontaine E., Rigoulet M., Leverve X. M. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. Journal of Bioenergetics and Biomembranes. 2006;38(1):33–42. doi: 10.1007/s10863-006-9003-8.
    1. Moreno-Sánchez R., Hernández-Esquivel L., Rivero-Segura N. A., Marín-Hernández A., Neuzil J., Ralph S. J., Rodríguez-Enríquez S. Reactive oxygen species are generated by the respiratory complex II—evidence for lack of contribution of the reverse electron flow in complex I. The FEBS Journal. 2013;280(3):927–938. doi: 10.1111/febs.12086.
    1. Marchesini G., Brizi M., Bianchi G., Tomassetti S., Zoli M., Melchionda N. Metformin in non-alcoholic steatohepatitis. The Lancet. 2001;358(9285):893–894. doi: 10.1016/S0140-6736(01)06042-1.
    1. Uygun A., Kadayifci A., Isik A. T., Ozgurtas T., Deveci S., Tuzun A., Yesilova Z., Gulsen M., Dagalp K. Metformin in the treatment of patients with non-alcoholic steatohepatitis. Alimentary Pharmacology and Therapeutics. 2004;19(5):537–544. doi: 10.1111/j.1365-2036.2004.01888.x.
    1. Nair S., Diehl A. M., Wiseman M., Farr G. H., Jr., Perrillo R. P. Metformin in the treatment of non-alcoholic steatohepatitis: a pilot open label trial. Alimentary Pharmacology and Therapeutics. 2004;20(1):23–28. doi: 10.1111/j.1365-2036.2004.02025.x.
    1. Haukeland J. W., Konopski Z., Eggesbø H. B., Von Volkmann H. L., Raschpichler G., Bjøro K., Haaland T., Løberg E. M., Birkeland K. Metformin in patients with non-alcoholic fatty liver disease: a randomized, controlled trial. Scandinavian Journal of Gastroenterology. 2009;44(7):853–860. doi: 10.1080/00365520902845268.
    1. Musso G., Cassader M., Rosina F., Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia. 2012;55(4):885–904. doi: 10.1007/s00125-011-2446-4.
    1. Browning J. D., Horton J. D. Molecular mediators of hepatic steatosis and liver injury. Journal of Clinical Investigation. 2004;114(2):147–152. doi: 10.1172/JCI200422422.
    1. Foufelle F., Ferré P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochemical Journal. 2002;366(2):377–391. doi: 10.1042/BJ20020430.
    1. Biddinger S. B., Hernandez-Ono A., Rask-Madsen C., Haas J. T., Alemán J. O., Suzuki R., Scapa E. F., Agarwal C., Carey M. C., Stephanopoulos G., Cohen D. E., King G. L., Ginsberg H., Kahn C. R. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metabolism. 2008;7(2):125–134. doi: 10.1016/j.cmet.2007.11.013.
    1. Shimomura I., Bashmakov Y., Horton J. D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. Journal of Biological Chemistry. 1999;274(42):30028–30032. doi: 10.1074/jbc.274.42.30028.
    1. Hebbard L., George J. Animal models of nonalcoholic fatty liver disease. Nature Reviews Gastroenterology and Hepatology. 2011;8(1):34–44. doi: 10.1038/nrgastro.2010.191.
    1. Semple R. K., Sleigh A., Murgatroyd P. R., Adams C. A., Bluck L., Jackson S., Vottero A., Kanabar D., Charlton-Menys V., Durrington P., Soos M. A., Carpenter T. A., Lomas D. J., Cochran E. K., Gorden P., O'Rahilly S., Savage D. B. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. The Journal of Clinical Investigation. 2009;119(2):315–322. doi: 10.1172/JCI37432.
    1. Kelley D. E., He J., Menshikova E. V., Ritov V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–2950. doi: 10.2337/diabetes.51.10.2944.
    1. McGarry J. D. Glucose-fatty acid interactions in health and disease. The American Journal of Clinical Nutrition. 1998;67(3):500S–504S.
    1. Morino K., Petersen K. F., Shulman G. I. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006;55(supplement 2):S9–S15. doi: 10.2337/db06-S002.
    1. Savage D. B., Petersen K. F., Shulman G. I. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiological Reviews. 2007;87(2):507–520. doi: 10.1152/physrev.00024.2006.
    1. Harmancey R., Wilson C. R., Taegtmeyer H. Adaptation and maladaptation of the heart in obesity. Hypertension. 2008;52(2):181–187. doi: 10.1161/HYPERTENSIONAHA.108.110031.
    1. Holland W. L., Brozinick J. T., Wang L. P., Hawkins E. D., Sargent K. M., Liu Y., Narra K., Hoehn K. L., Knotts T. A., Siesky A., Nelson D. H., Karathanasis S. K., Fontenot G., Birnbaum M. J., Summers S. A. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metabolism. 2007;5(3):167–179. doi: 10.1016/j.cmet.2007.01.002.
    1. Yu C., Chen Y., Cline G. W., Zhang D., Zong H., Wang Y., Bergeron R., Kim J. K., Cushman S. W., Cooney G. J., Atcheson B., White M. F., Kraegen E. W., Shulman G. I. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. The Journal of Biological Chemistry. 2002;277(52):50230–50236. doi: 10.1074/jbc.M200958200.
    1. Nagle C. A., Klett E. L., Coleman R. A. Hepatic triacylglycerol accumulation and insulin resistance. Journal of Lipid Research. 2009;50:S74–S79. doi: 10.1194/jlr.R800053-JLR200.
    1. Brown J. M., Betters J. L., Lord C., Ma Y., Han X., Yang K., Alger H. M., Melchior J., Sawyer J., Shah R., Wilson M. D., Liu X., Graham M. J., Lee R., Crooke R., Shulman G. I., Xue B., Shi H., Yu L. CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance. Journal of Lipid Research. 2010;51(11):3306–3315. doi: 10.1194/jlr.M010256.
    1. Monetti M., Levin M. C., Watt M. J., Sajan M. P., Marmor S., Hubbard B. K., Stevens R., Bain J. R., Newgard C. B., Farese R. V., Sr., Hevener A. L., Farese R. V., Jr. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metabolism. 2007;6(1):69–78. doi: 10.1016/j.cmet.2007.05.005.
    1. Debard C., Cozzone D., Ricard N., Vouillarmet J., Disse E., Husson B., Laville M., Vidal H. Short-term activation of peroxysome proliferator-activated receptor β/δ increases fatty acid oxidation but does not restore insulin action in muscle cells from type 2 diabetic patients. Journal of Molecular Medicine. 2006;84(9):747–752. doi: 10.1007/s00109-006-0077-x.
    1. Cresser J., Bonen A., Chabowski A., Stefanyk L. E., Gulli R., Ritchie I., Dyck D. J. Oral administration of a PPAR-δ agonist to rodents worsens, not improves, maximal insulin-stimulated glucose transport in skeletal muscle of different fibers. The American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 2010;299(2):R470–R479. doi: 10.1152/ajpregu.00431.2009.
    1. Ye J.-M., Tid-Ang J., Turner N., Zeng X.-Y., Li H.-Y., Cooney G. J., Wulff E. M., Sauerberg P., Kraegen E. W. PPARδ agonists have opposing effects on insulin resistance in high fat-fed rats and mice due to different metabolic responses in muscle. British Journal of Pharmacology. 2011;163(3):556–566. doi: 10.1111/j.1476-5381.2011.01240.x.
    1. Koves T. R., Ussher J. R., Noland R. C., Slentz D., Mosedale M., Ilkayeva O., Bain J., Stevens R., Dyck J. R. B., Newgard C. B., Lopaschuk G. D., Muoio D. M. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metabolism. 2008;7(1):45–56. doi: 10.1016/j.cmet.2007.10.013.
    1. Muoio D. M., Noland R. C., Kovalik J.-P., Seiler S. E., Davies M. N., Debalsi K. L., Ilkayeva O. R., Stevens R. D., Kheterpal I., Zhang J., Covington J. D., Bajpeyi S., Ravussin E., Kraus W., Koves T. R., Mynatt R. L. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metabolism. 2012;15(5):764–777. doi: 10.1016/j.cmet.2012.04.005.
    1. Randle P. J., Garland P. B., Hales C. N., Newsholme E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. The Lancet. 1963;281(7285):785–789. doi: 10.1016/S0140-6736(63)91500-9.
    1. Hue L., Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. The American Journal of Physiology—Endocrinology and Metabolism. 2009;297(3):E578–E591. doi: 10.1152/ajpendo.00093.2009.
    1. Bowker-Kinley M. M., Davis W. I., Wu P., Harris R. A., Popov K. M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. The Biochemical Journal. 1998;329(part 1):191–196.
    1. Garland P. B., Randle P. J., Newsholme E. A. Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation. Nature. 1963;200(4902):169–170. doi: 10.1038/200169a0.
    1. Garland P. B., Newsholme E. A., Randle P. J. Effect of fatty acids, ketone bodies, diabetes and starvation on pyruvate metabolism in rat heart and diaphragm muscle. Nature. 1962;195(4839):381–383. doi: 10.1038/195381a0.
    1. Nakamura S., Takamura T., Matsuzawa-Nagata N., Takayama H., Misu H., Noda H., Nabemoto S., Kurita S., Ota T., Ando H., Miyamoto K.-I., Kaneko S. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. Journal of Biological Chemistry. 2009;284(22):14809–14818. doi: 10.1074/jbc.M901488200.
    1. Ruddock M. W., Stein A., Landaker E., Park J., Cooksey R. C., McClain D., Patti M.-E. Saturated fatty acids inhibit hepatic insulin action by modulating insulin receptor expression and post-receptor signalling. Journal of Biochemistry. 2008;144(5):599–607. doi: 10.1093/jb/mvn105.
    1. Loh K., Deng H., Fukushima A., Cai X., Boivin B., Galic S., Bruce C., Shields B. J., Skiba B., Ooms L. M., Stepto N., Wu B., Mitchell C. A., Tonks N. K., Watt M. J., Febbraio M. A., Crack P. J., Andrikopoulos S., Tiganis T. Reactive oxygen species enhance insulin sensitivity. Cell Metabolism. 2009;10(4):260–272. doi: 10.1016/j.cmet.2009.08.009.
    1. Hoehn K. L., Salmon A. B., Hohnen-Behrens C., Turner N., Hoy A. J., Maghzal G. J., Stocker R., Van Remmen H., Kraegen E. W., Cooney G. J., Richardson A. R., James D. E. Insulin resistance is a cellular antioxidant defense mechanism. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(42):17787–17792. doi: 10.1073/pnas.0902380106.
    1. Elchebly M., Payette P., Michaliszyn E., Cromlish W., Collins S., Loy A. L., Normandin D., Cheng A., Himms-Hagen J., Chan C.-C., Ramachandran C., Gresser M. J., Tremblay M. L., Kennedy B. P. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999;283(5407):1544–1548. doi: 10.1126/science.283.5407.1544.
    1. Yfanti C., Nielsen A. R., Åkerström T., Nielsen S., Rose A. J., Richter E. A., Lykkesfeldt J., Fischer C. P., Pedersen B. K. Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training. The American Journal of Physiology—Endocrinology and Metabolism. 2011;300(5):E761–E770. doi: 10.1152/ajpendo.00207.2010.
    1. Praet S. F., van Loon L. J. Exercise therapy in Type 2 diabetes. Acta Diabetologica. 2009;46(4):263–278. doi: 10.1007/s00592-009-0129-0.
    1. Radak Z., Zhao Z., Koltai E., Ohno H., Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxidants and Redox Signaling. 2013;18(10):1208–1246. doi: 10.1089/ars.2011.4498.
    1. Lira V. A., Benton C. R., Yan Z., Bonen A. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. The American Journal of Physiology—Endocrinology and Metabolism. 2010;299(2):E145–E161. doi: 10.1152/ajpendo.00755.2009.
    1. Peternelj T. T., Coombes J. S. Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Medicine. 2011;41(12):1043–1069. doi: 10.2165/11594400-000000000-00000.
    1. Montfort C. V., Matias N., Fernandez A., Fucho R., De La Rosa L. C., Martinez-Chantar M. L., Mato J. M., MacHida K., Tsukamoto H., Murphy M. P., Mansouri A., Kaplowitz N., Garcia-Ruiz C., Fernandez-Checa J. C. Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scavenging in steatohepatitis. Journal of Hepatology. 2012;57(4):852–859. doi: 10.1016/j.jhep.2012.05.024.
    1. Mollica M. P., Lionetti L., Moreno M., Lombardi A., De Lange P., Antonelli A., Lanni A., Cavaliere G., Barletta A., Goglia F. 3,5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet. Journal of Hepatology. 2009;51(2):363–370. doi: 10.1016/j.jhep.2009.03.023.
    1. Stefanovic-Racic M., Perdomo G., Mantell B. S., Sipula I. J., Brown N. F., O'Doherty R. M. A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels. The American Journal of Physiology—Endocrinology and Metabolism. 2008;294(5):E969–E977. doi: 10.1152/ajpendo.00497.2007.
    1. Timmers S., Nabben M., Bosma M., Van Bree B., Lenaers E., Van Beurden D., Schaart G., Westerterp-Plantenga M. S., Langhans W., Hesselink M. K. C., Schrauwen-Hinderling V. B., Schrauwen P. Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(29):11711–11716. doi: 10.1073/pnas.1206868109.
    1. Keung W., Ussher J. R., Jaswal J. S., Raubenheimer M., Lam V. H. M., Wagg C. S., Lopaschuk G. D. Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice. Diabetes. 2013;62(3):711–720. doi: 10.2337/db12-0259.
    1. Conti R., Mannucci E., Pessotto P., Tassoni E., Carminati P., Giannessi F., Arduini A. Selective reversible inhibition of liver carnitine palmitoyl-transferase 1 by teglicar reduces gluconeogenesis and improves glucose homeostasis. Diabetes. 2011;60(2):644–651. doi: 10.2337/db10-0346.
    1. Ruderman N. B., Carling D., Prentki M., Cacicedo J. M. AMPK, insulin resistance, and the metabolic syndrome. The Journal of Clinical Investigation. 2013;123(7):2764–2772. doi: 10.1172/JCI67227.
    1. Xiao B., Sanders M. J., Underwood E., Heath R., Mayer F. V., Carmena D., Jing C., Walker P. A., Eccleston J. F., Haire L. F., Saiu P., Howell S. A., Aasland R., Martin S. R., Carling D., Gamblin S. J. Structure of mammalian AMPK and its regulation by ADP. Nature. 2011;472:230–233. doi: 10.1038/nature09932.
    1. Oakhill J. S., Steel R., Chen Z.-P., Scott J. W., Ling N., Tam S., Kemp B. E. AMPK is a direct adenylate charge-regulated protein kinase. Science. 2011;332(6036):1433–1435. doi: 10.1126/science.1200094.
    1. Sanders M. J., Ali Z. S., Hegarty B. D., Heath R., Snowden M. A., Carling D. Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. The Journal of Biological Chemistry. 2007;282(45):32539–32548. doi: 10.1074/jbc.M706543200.
    1. Stahmann N., Woods A., Carling D., Heller R. Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase β . Molecular and Cellular Biology. 2006;26(16):5933–5945. doi: 10.1128/MCB.00383-06.
    1. Racioppi L., Means A. R. Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. Journal of Biological Chemistry. 2012;287(38):31658–31665. doi: 10.1074/jbc.R112.356485.
    1. Hardie D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology. 2007;8(10):774–785. doi: 10.1038/nrm2249.
    1. Hue L., Rider M. H. The AMP-activated protein kinase: more than an energy sensor. Essays in Biochemistry. 2007;43:121–137. doi: 10.1042/BSE0430121.
    1. Savage D. B., Cheol S. C., Samuel V. T., Liu Z.-X., Zhang D., Wang A., Zhang X.-M., Cline G. W., Xing X. Y., Geisler J. G., Bhanot S., Monia B. P., Shulman G. I. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. The Journal of Clinical Investigation. 2006;116(3):817–824. doi: 10.1172/JCI27300.
    1. Carling D., Zammit V. A., Hardie D. G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. The FEBS Letters. 1987;223(2):217–222. doi: 10.1016/0014-5793(87)80292-2.
    1. Carlson C. A., Kim K. H. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. The Journal of Biological Chemistry. 1973;248(1):378–380.
    1. Fullerton M. D., Galic S., Marcinko K., Sikkema S., Pulinilkunnil T., Chen Z.-P., O'Neill H. M., Ford R. J., Palanivel R., O'Brien M., Hardie D. G., MacAulay S. L., Schertzer J. D., Dyck J. R. B., Van Denderen B. J., Kemp B. E., Steinberg G. R. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nature Medicine. 2013;19(12):1649–1654. doi: 10.1038/nm.3372.
    1. Goodwin G. W., Taylor C. S., Taegtmeyer H. Regulation of energy metabolism of the heart during acute increase in heart work. The Journal of Biological Chemistry. 1998;273(45):29530–29539. doi: 10.1074/jbc.273.45.29530.
    1. Goodwin G. W., Taegtmeyer H. Improved energy homeostasis of the heart in the metabolic state of exercise. The American Journal of Physiology—Heart and Circulatory Physiology. 2000;279(4):H1490–H1501.
    1. Dyck J. R. B., Kudo N., Barr A. J., Davies S. P., Hardie D. G., Lopaschuk G. D. Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5'-AMP activated protein kinase. European Journal of Biochemistry. 1999;262(1):184–190. doi: 10.1046/j.1432-1327.1999.00371.x.
    1. Marsin A.-S., Bertrand L., Rider M. H., Deprez J., Beauloye C., Vincent M. F., Van den Berghe G., Carling D., Hue L. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current Biology. 2000;10(20):1247–1255. doi: 10.1016/S0960-9822(00)00742-9.
    1. Treebak J. T., Glund S., Deshmukh A., Klein D. K., Long Y. C., Jensen T. E., Jørgensen S. B., Viollet B., Andersson L., Neumann D., Wallimann T., Richter E. A., Chibalin A. V., Zierath J. R., Wojtaszewski J. F. P. AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes. 2006;55(7):2051–2058. doi: 10.2337/db06-0175.
    1. Merrill G. F., Kurth E. J., Hardie D. G., Winder W. W. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. The American Journal of Physiology: Endocrinology and Metabolism. 1997;273(6):E1107–E1112.
    1. Russell R. R., III, Bergeron R., Shulman G. I., Young L. H. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. The American Journal of Physiology—Heart and Circulatory Physiology. 1999;277(2):H643–H649.
    1. Tanaka T., Sue F., Morimura H. Feed-forward activation and feed-back inhibition of pyruvate kinase type L of rat liver. Biochemical and Biophysical Research Communications. 1967;29(3):444–449. doi: 10.1016/0006-291X(67)90477-9.
    1. Taylor S. I., Mukherjee C., Jungas R. L. Regulation of pyruvate dehydrogenase in isolated rat liver mitochondria. Effects of octanoate, oxidation reduction state, and adenosine triphosphate to adenosine diphosphate ratio. Journal of Biological Chemistry. 1975;250(6):2028–2035.
    1. Van Schaftingen E., Hers H. G. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate. Proceedings of the National Academy of Sciences of the United States of America. 1981;78(5):2861–2863. doi: 10.1073/pnas.78.5.2861.
    1. Bailey C. J., Mynett K. J. Insulin requirement for the antihyperglycaemic effect of metformin. British Journal of Pharmacology. 1994;111(3):793–796. doi: 10.1111/j.1476-5381.1994.tb14807.x.
    1. Bailey C. J., Turner R. C. Metformin. The New England Journal of Medicine. 1996;334(9):574–579. doi: 10.1056/NEJM199602293340906.
    1. Gomez-Samano M. A., Gulias-Herrero A., Cuevas-Ramos D., et al Metformin and improvement of the hepatic insulin resistance index independent of anthropometric changes. Endocrine Practice. 2012;18(1):8–16. doi: 10.4158/EP11072.OR.
    1. Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., Wu M., Ventre J., Doebber T., Fujii N., Musi N., Hirshman M. F., Goodyear L. J., Moller D. E. Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of Clinical Investigation. 2001;108(8):1167–1174. doi: 10.1172/JCI200113505.
    1. Foretz M., Hébrard S., Leclerc J., Zarrinpashneh E., Soty M., Mithieux G., Sakamoto K., Andreelli F., Viollet B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. The Journal of Clinical Investigation. 2010;120(7):2355–2369. doi: 10.1172/JCI40671.
    1. El-Mir M.-Y., Nogueira V., Fontaine E., Avéret N., Rigoulet M., Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. The Journal of Biological Chemistry. 2000;275(1):223–228. doi: 10.1074/jbc.275.1.223.
    1. Owen M. R., Doran E., Halestrap A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochemical Journal. 2000;348(3):607–614. doi: 10.1042/0264-6021:3480607.
    1. Drahota Z., Palenickova E., Endlicher R., Milerova M., Brejchova J., Vosahlikova M., Svoboda P., Kazdova L., Kalous M., Cervinkova Z., Cahova M. Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties. Physiological Research. 2014;63(1):1–11.
    1. Schaefer G. Some new aspects on the interaction of hypoglycemia producing biguanides with biological membranes. Biochemical Pharmacology. 1976;25(18):2015–2024. doi: 10.1016/0006-2952(76)90424-X.
    1. Miller R. A., Chu Q., Xie J., Foretz M., Viollet B., Birnbaum M. J. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 2013;494(7436):256–260. doi: 10.1038/nature11808.
    1. Miller R. A., Birnbaum M. J. An energetic tale of AMPK-independent effects of metformin. Journal of Clinical Investigation. 2010;120(7):2267–2270. doi: 10.1172/JCI43661.
    1. Cool B., Zinker B., Chiou W., Kifle L., Cao N., Perham M., Dickinson R., Adler A., Gagne G., Iyengar R., Zhao G., Marsh K., Kym P., Jung P., Camp H. S., Frevert E. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metabolism. 2006;3(6):403–416. doi: 10.1016/j.cmet.2006.05.005.
    1. Castaño D., Larequi E., Belza I., Astudillo A. M., Martínez-Ansó E., Balsinde J., Argemi J., Aragon T., Moreno-Aliaga M. J., Muntane J., Prieto J., Bustos M. Cardiotrophin-1 eliminates hepatic steatosis in obese mice by mechanisms involving AMPK activation. Journal of Hepatology. 2014;60(5):1017–1025. doi: 10.1016/j.jhep.2013.12.012.
    1. Bergeron R., Previs S. F., Cline G. W., Perret P., Russell R. R., III, Young L. H., Shulman G. I. Effect of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese zucker rats. Diabetes. 2001;50(5):1076–1082. doi: 10.2337/diabetes.50.5.1076.
    1. Cuthbertson D. J., Babraj J. A., Mustard K. J. W., Towler M. C., Green K. A., Wackerhage H., Leese G. P., Baar K., Thomason-Hughes M., Sutherland C., Hardie D. G., Rennie M. J. 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside acutely stimulates skeletal muscle 2-deoxyglucose uptake in healthy men. Diabetes. 2007;56(8):2078–2084. doi: 10.2337/db06-1716.
    1. Park K.-G., Min A.-K., Koh E. H., Kim H. S., Kim M.-O., Park H.-S., Kim Y.-D., Yoo T.-S., Jang B. K., Hwang J. S., Kim J. B., Choi H.-S., Park J.-Y., Lee I.-K., Lee K.-U. Alpha-lipoic acid decreases hepatic lipogenesis through adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways. Hepatology. 2008;48(5):1477–1486. doi: 10.1002/hep.22496.
    1. Green S., Wahli W. Peroxisome proliferator-activated receptors: finding the orphan a home. Molecular and Cellular Endocrinology. 1994;100(1-2):149–153. doi: 10.1016/0303-7207(94)90294-1.
    1. Desvergne B., Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Reviews. 1999;20(5):649–688.
    1. Hashimoto T., Cook W. S., Qi C., Yeldandi A. V., Reddy J. K., Rao M. S. Defect in peroxisome proliferator-activated receptor α-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. The Journal of Biological Chemistry. 2000;275(37):28918–28928. doi: 10.1074/jbc.M910350199.
    1. Issemann I., Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347(6294):645–650. doi: 10.1038/347645a0.
    1. Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell. 1995;83(6):841–850. doi: 10.1016/0092-8674(95)90200-7.
    1. Nakamura M. T., Yudell B. E., Loor J. J. Regulation of energy metabolism by long-chain fatty acids. Progress in Lipid Research. 2014;53(1):124–144. doi: 10.1016/j.plipres.2013.12.001.
    1. Jong E. Y., Kyung M. C., Sei H. B., Kyoung O. K., Hyoung J. L., Ki H. P., Jin Y. K., Park J.-J., Jae S. K., Bak Y.-T., Kwan S. B., Chang H. L. Reduced expression of peroxisome proliferator-activated receptor-β may have an important role in the development of non-alcoholic fatty liver disease. Journal of Gastroenterology and Hepatology. 2004;19(7):799–804. doi: 10.1111/j.1440-1746.2004.03349.x.
    1. Harano Y., Yasui K., Toyama T., Nakajima T., Mitsuyoshi H., Mimani M., Hirasawa T., Itoh Y., Okanoue T. Fenofibrate, a peroxisome proliferator-activated receptor α agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver. Liver International. 2006;26(5):613–620. doi: 10.1111/j.1478-3231.2006.01265.x.
    1. Cong W.-N., Tao R.-Y., Tian J.-Y., Liu G.-T., Ye F. The establishment of a novel non-alcoholic steatohepatitis model accompanied with obesity and insulin resistance in mice. Life Sciences. 2008;82(19-20):983–990. doi: 10.1016/j.lfs.2008.01.022.
    1. Athyros V. G., Mikhailidis D. P., Didangelos T. P., Giouleme O. I., Liberopoulos E. N., Karagiannis A., Kakafika A. I., Tziomalos K., Burroughs A. K., Elisaf M. S. Effect of multifactorial treatment on non-alcoholic fatty liver disease in metabolic syndrome: a randomised study. Current Medical Research and Opinion. 2006;22(5):873–883. doi: 10.1185/030079906X104696.
    1. Fernández-Miranda C., Pérez-Carreras M., Colina F., López-Alonso G., Vargas C., Solís-Herruzo J. A. A pilot trial of fenofibrate for the treatment of non-alcoholic fatty liver disease. Digestive and Liver Disease. 2008;40(3):200–205. doi: 10.1016/j.dld.2007.10.002.
    1. Finck B. N., Lehman J. J., Leone T. C., Welch M. J., Bennett M. J., Kovacs A., Han X., Gross R. W., Kozak R., Lopaschuk G. D., Kelly D. P. The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. Journal of Clinical Investigation. 2002;109(1):121–130. doi: 10.1172/JCI200214080.
    1. Duval C., Müller M., Kersten S. PPARα and dyslipidemia. Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids. 2007;1771(8):961–971. doi: 10.1016/j.bbalip.2007.05.003.
    1. Fatani S., Itua I., Clark P., Wong C., Naderali E. K. The effects of diet-induced obesity on hepatocyte insulin signaling pathways and induction of non-alcoholic liver damage. International Journal of General Medicine. 2011;4:211–219. doi: 10.2147/IJGM.S17376.
    1. Heikkinen S., Auwerx J., Argmann C. A. PPARγ in human and mouse physiology. Biochimica et Biophysica Acta: Molecular and Cell Biology of Lipids. 2007;1771(8):999–1013. doi: 10.1016/j.bbalip.2007.03.006.
    1. Neuschwander-Tetri B. A., Brunt E. M., Wehmeier K. R., Oliver D., Bacon B. R. Improved nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-γ ligand rosiglitazone. Hepatology. 2003;38(4):1008–1017. doi: 10.1053/jhep.2003.50420.
    1. Ratziu V., Charlotte F., Bernhardt C., Giral P., Halbron M., Lenaour G., Hartmann-Heurtier A., Bruckert E., Poynard T. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology. 2010;51(2):445–453. doi: 10.1002/hep.23270.
    1. Ratziu V., Giral P., Jacqueminet S., Charlotte F., Hartemann-Heurtier A., Serfaty L., Podevin P., Lacorte J.-M., Bernhardt C., Bruckert E., Grimaldi A., Poynard T. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology. 2008;135(1):100–110. doi: 10.1053/j.gastro.2008.03.078.
    1. Belfort R., Harrison S. A., Brown K., Darland C., Finch J., Hardies J., Balas B., Gastaldelli A., Tio F., Pulcini J., Berria R., Ma J. Z., Dwivedi S., Havranek R., Fincke C., DeFronzo R., Bannayan G. A., Schenker S., Cusi K. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. The New England Journal of Medicine. 2006;355(22):2297–2307. doi: 10.1056/NEJMoa060326.
    1. Aithal G. P., Thomas J. A., Kaye P. V., Lawson A., Ryder S. D., Spendlove I., Austin A. S., Freeman J. G., Morgan L., Webber J. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology. 2008;135(4):1176–1184. doi: 10.1053/j.gastro.2008.06.047.
    1. Lincoff A. M., Wolski K., Nicholls S. J., Nissen S. E. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. Journal of the American Medical Association. 2007;298(10):1180–1188. doi: 10.1001/jama.298.10.1180.
    1. Saha A. K., Avilucea P. R., Ye J.-M., Assifi M. M., Kraegen E. W., Ruderman N. B. Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochemical and Biophysical Research Communications. 2004;314(2):580–585. doi: 10.1016/j.bbrc.2003.12.120.
    1. Fryer L. G. D., Parbu-Patel A., Carling D. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. The Journal of Biological Chemistry. 2002;277(28):25226–25232. doi: 10.1074/jbc.M202489200.
    1. LeBrasseur N. K., Kelly M., Tsao T.-S., Farmer S. R., Saha A. K., Ruderman N. B., Tomas E. Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. The American Journal of Physiology—Endocrinology and Metabolism. 2006;291(1):E175–E181. doi: 10.1152/ajpendo.00453.2005.
    1. Nawrocki A. R., Rajala M. W., Tomas E., Pajvani U. B., Saha A. K., Trumbauer M. E., Pang Z., Chen A. S., Ruderman N. B., Chen H., Rossetti L., Scherer P. E. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. The Journal of Biological Chemistry. 2006;281(5):2654–2660. doi: 10.1074/jbc.M505311200.
    1. Kubota N., Terauchi Y., Kubota T., Kumagai H., Itoh S., Satoh H., Yano W., Ogata H., Tokuyama K., Takamoto I., Mineyama T., Ishikawa M., Moroi M., Sugi K., Yamauchi T., Ueki K., Tobe K., Noda T., Nagai R., Kadowaki T. Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways. The Journal of Biological Chemistry. 2006;281(13):8748–8755. doi: 10.1074/jbc.M505649200.
    1. Kintscher U., Law R. E. PPARγ-mediated insulin sensitization: the importance of fat versus muscle. The American Journal of Physiology—Endocrinology and Metabolism. 2005;288(2):E287–E291. doi: 10.1152/ajpendo.00440.2004.
    1. Nunn A. V. W., Bell J., Barter P. The integration of lipid-sensing and anti-inflammatory effects: how the PPARs play a role in metabolic balance. Nuclear Receptor. 2007;5, article 1 doi: 10.1186/1478-1336-5-1.
    1. Burkart E. M., Sambandam N., Han X., Gross R. W., Courtois M., Gierasch C. M., Shoghi K., Welch M. J., Kelly D. P. Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart. The Journal of Clinical Investigation. 2007;117(12):3930–3939. doi: 10.1172/JCI32578.
    1. Staels B., Rubenstrunk A., Noel B., Rigou G., Delataille P., Millatt L. J., Baron M., Lucas A., Tailleux A., Hum D. W., Ratziu V., Cariou B., Hanf R. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology. 2013;58(6):1941–1952. doi: 10.1002/hep.26461.
    1. Nagasawa T., Inada Y., Nakano S., Tamura T., Takahashi T., Maruyama K., Yamazaki Y., Kuroda J., Shibata N. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARδ agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. European Journal of Pharmacology. 2006;536(1-2):182–191. doi: 10.1016/j.ejphar.2006.02.028.
    1. Wu Z., Puigserver P., Andersson U., Zhang C., Adelmant G., Mootha V., Troy A., Cinti S., Lowell B., Scarpulla R. C., Spiegelman B. M. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–124. doi: 10.1016/S0092-8674(00)80611-X.
    1. Scarpulla R. C. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Annals of the New York Academy of Sciences. 2008;1147:321–334. doi: 10.1196/annals.1427.006.
    1. Sookoian S., Rosselli M. S., Gemma C., Burgueño A. L., Fernández Gianotti T., Castaño G. O., Pirola C. J. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor γ coactivator 1α promoter. Hepatology. 2010;52(6):1992–2000. doi: 10.1002/hep.23927.
    1. Herzig S., Long F., Jhala U. S., et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001;413:179–183.
    1. Yoon J. C., Puigserver P., Chen G., Donovan J., Wu Z., Rhee J., Adelmant G., Stafford J., Kahn C. R., Granner D. K., Newgard C. B., Spiegelman B. M. Control of hepatic gluconeogenesis through the transcriptional coaotivator PGC-1. Nature. 2001;413(6852):131–138. doi: 10.1038/35093050.
    1. Kang C., O'Moore K. M., Dickman J. R., Ji L. L. Exercise activation of muscle peroxisome proliferator-activated receptor-γ coactivator-1α signaling is redox sensitive. Free Radical Biology and Medicine. 2009;47(10):1394–1400. doi: 10.1016/j.freeradbiomed.2009.08.007.
    1. Borniquel S., Valle I., Cadenas S., Lamas S., Monsalve M. Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1alpha. The FASEB Journal. 2006;20(11):1889–1891. doi: 10.1096/fj.05-5189fje.
    1. Kumashiro N., Tamura Y., Uchida T., Ogihara T., Fujitani Y., Hirose T., Mochizuki H., Kawamori R., Watada H. Impact of oxidative stress and peroxisome proliferator-activated receptor γ coactivator-1α in hepatic insulin resistance. Diabetes. 2008;57(8):2083–2091. doi: 10.2337/db08-0144.
    1. Cantó C., Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways. Cellular and Molecular Life Sciences. 2010;67(20):3407–3423. doi: 10.1007/s00018-010-0454-z.
    1. Screaton R. A., Conkright M. D., Katoh Y., Best J. L., Canettieri G., Jeffries S., Guzman E., Niessen S., Yates J. R., III, Takemori H., Okamoto M., Montminy M. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell. 2004;119(1):61–74. doi: 10.1016/j.cell.2004.09.015.
    1. Koo S.-H., Flechner L., Qi L., Zhang X., Screaton R. A., Jeffries S., Hedrick S., Xu W., Boussouar F., Brindle P., Takemori H., Montminy M. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature. 2005;437(7062):1109–1114. doi: 10.1038/nature03967.
    1. Gupta R. K., Kaestner K. H. HNF-4α: from MODY to late-onset type 2 diabetes. Trends in Molecular Medicine. 2004;10(11):521–524. doi: 10.1016/j.molmed.2004.09.004.
    1. Hong Y. H., Varanasi U. S., Yang W., Leff T. AMP-activated protein kinase regulates HNF4alpha transcriptional activity by inhibiting dimer formation and decreasing protein stability. The Journal of Biological Chemistry. 2003;278(30):495–501.
    1. Leclerc I., Lenzner C., Gourdon L., Vaulont S., Kahn A., Viollet B. Hepatocyte nuclear factor-4alpha involved in type 1 maturity-onset diabetes of the young is a novel target of AMP-activated protein kinase. Diabetes. 2001;50(7):1515–1521. doi: 10.2337/diabetes.50.7.1515.
    1. Aatsinki S.-M., Buler M., Salomäki H., Koulu M., Pavek P., Hakkola J. Metformin induces PGC-1α expression and selectively affects hepatic PGC-1α functions. British Journal of Pharmacology. 2014;171(9):2351–2363. doi: 10.1111/bph.12585.
    1. Kim Y. D., Park K.-G., Lee Y.-S., Park Y.-Y., Kim D.-K., Nedumaran B., Jang W. G., Cho W.-J., Ha J., Lee I.-K., Lee C.-H., Choi H.-S. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes. 2008;57(2):306–314. doi: 10.2337/db07-0381.
    1. Lu T. T., Repa J. J., Mangelsdorf D. J. Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. The Journal of Biological Chemistry. 2001;276(41):37735–37738. doi: 10.1074/jbc.R100035200.
    1. Yoshikawa T., Shimano H., Amemiya-Kudo M., Yahagi N., Hasty A. H., Matsuzaka T., Okazaki H., Tamura Y., Iizuka Y., Ohashi K., Osuga J.-I., Harada K., Gotoda T., Kimura S., Ishibashi S., Yamada N. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Molecular and Cellular Biology. 2001;21(9):2991–3000. doi: 10.1128/MCB.21.9.2991-3000.2001.
    1. Joseph S. B., Laffitte B. A., Patel P. H., Watson M. A., Matsukuma K. E., Walczak R., Collins J. L., Osborne T. F., Tontonoz P. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. The Journal of Biological Chemistry. 2002;277(13):11019–11025. doi: 10.1074/jbc.M111041200.
    1. Higuchi N., Kato M., Shundo Y., Tajiri H., Tanaka M., Yamashita N., Kohjima M., Kotoh K., Nakamuta M., Takayanagi R., Enjoji M. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatology Research. 2008;38(11):1122–1129. doi: 10.1111/j.1872-034X.2008.00382.x.
    1. Murphy R. C., Johnson K. M. Cholesterol, reactive oxygen species, and the formation of biologically active mediators. The Journal of Biological Chemistry. 2008;283(23):15521–15525. doi: 10.1074/jbc.R700049200.
    1. Ikegami T., Hyogo H., Honda A., Miyazaki T., Tokushige K., Hashimoto E., Inui K., Matsuzaki Y., Tazuma S. Increased serum liver X receptor ligand oxysterols in patients with non-alcoholic fatty liver disease. Journal of Gastroenterology. 2012;47(11):1257–1266. doi: 10.1007/s00535-012-0585-0.
    1. Olkkonen V. M., Hynynen R. Interactions of oxysterols with membranes and proteins. Molecular Aspects of Medicine. 2009;30(3):123–133. doi: 10.1016/j.mam.2009.02.004.
    1. Kay H. Y., Kim W. D., Hwang S. J., Choi H.-S., Gilroy R. K., Wan Y.-J. Y., Kim S. G. Nrf2 inhibits LXRα-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxidants & Redox Signaling. 2011;15(8):2135–2146. doi: 10.1089/ars.2010.3834.
    1. Kim Y. W., Kim Y. M., Yang Y. M., Kay H. Y., Kim W. D., Lee J. W., Hwang S. J., Kim S. G. Inhibition of LXRalpha-dependent steatosis and oxidative injury by liquiritigenin, a licorice flavonoid, as mediated with Nrf2 activation. Antioxidants and Redox Signaling. 2011;14(5):733–745. doi: 10.1089/ars.2010.3260.
    1. Li Y., Jadhav K., Zhang Y. Bile acid receptors in non-alcoholic fatty liver disease. Biochemical Pharmacology. 2013;86(11):1517–1524. doi: 10.1016/j.bcp.2013.08.015.
    1. Parks D. J., Blanchard S. G., Bledsoe R. K., Chandra G., Consler T. G., Kliewer S. A., Stimmel J. B., Willson T. M., Zavacki A. M., Moore D. D., Lehmann J. M. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284(5418):1365–1368. doi: 10.1126/science.284.5418.1365.
    1. Lefebvre P., Cariou B., Lien F., Kuipers F., Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiological Reviews. 2009;89(1):147–191. doi: 10.1152/physrev.00010.2008.
    1. Lee F. Y., Lee H., Hubbert M. L., Edwards P. A., Zhang Y. FXR, a multipurpose nuclear receptor. Trends in Biochemical Sciences. 2006;31(10):572–580. doi: 10.1016/j.tibs.2006.08.002.
    1. Ip E., Farrell G. C., Robertson G., Hall P., Kirsch R., Leclercq I. Central role of PPARα-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology. 2003;38(1):123–132. doi: 10.1053/jhep.2003.50307.
    1. Yang Z.-X., Shen W., Sun H. Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease. Hepatology International. 2010;4(4):741–748. doi: 10.1007/s12072-010-9202-6.
    1. Zhang Y., Castellani L. W., Sinal C. J., Gonzalez F. J., Edwards P. A. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes and Development. 2004;18(2):157–169. doi: 10.1101/gad.1138104.
    1. Ma K., Saha P. K., Chan L., Moore D. D. Farnesoid X receptor is essential for normal glucose homeostasis. The Journal of Clinical Investigation. 2006;116(4):1102–1109. doi: 10.1172/JCI25604.
    1. Wang Y.-D., Chen W.-D., Wang M., Yu D., Forman B. M., Huang W. Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory response. Hepatology. 2008;48(5):1632–1643. doi: 10.1002/hep.22519.
    1. Fiorucci S., Antonelli E., Rizzo G., Renga B., Mencarelli A., Riccardi L., Orlandi S., Pellicciari R., Morelli A. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology. 2004;127(5):1497–1512. doi: 10.1053/j.gastro.2004.08.001.
    1. Fiorucci S., Rizzo G., Antonelli E., Renga B., Mencarelli A., Riccardi L., Orlandi S., Pruzanski M., Morelli A., Pellicciari R. A farnesoid X receptor-small heterodimer partner regulatory cascade modulates tissue metalloproteinase inhibitor-1 and matrix metalloprotease expression in hepatic stellate cells and promotes resolution of liver fibrosis. The Journal of Pharmacology and Experimental Therapeutics. 2005;314(2):584–595. doi: 10.1124/jpet.105.084905.
    1. Baghdasaryan A., Claudel T., Gumhold J., Silbert D., Adorini L., Roda A., Vecchiotti S., Gonzalez F. J., Schoonjans K., Strazzabosco M., Fickert P., Trauner M. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2−/− (Abcb4−/−) mouse cholangiopathy model by promoting biliary HCO3− output. Hepatology. 2011;54(4):1303–1312. doi: 10.1002/hep.24537.
    1. Krähenbühl S., Talos C., Fischer S., Reichen J. Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology. 1994;19(2):471–479. doi: 10.1016/0270-9139(94)90027-2.
    1. Blumberg B., Sabbagh W., Jr., Juguilon H., Bolado J., Jr., Van Meter C. M., Ong E. S., Evans R. M. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes and Development. 1998;12(20):3195–3205. doi: 10.1101/gad.12.20.3195.
    1. Moreau A., Téruel C., Beylot M., Albalea V., Tamasi V., Umbdenstock T., Parmentier Y., Sa-Cunha A., Suc B., Fabre J.-M., Navarro F., Ramos J., Meyer U., Maurel P., Vilarem M.-J., Pascussi J.-M. A novel pregnane X receptor and S14-mediated lipogenic pathway in human hepatocyte. Hepatology. 2009;49(6):2068–2079. doi: 10.1002/hep.22907.
    1. Nakamura K., Moore R., Negishi M., Sueyoshi T. Nuclear pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. The Journal of Biological Chemistry. 2007;282(13):9768–9776. doi: 10.1074/jbc.M610072200.
    1. Bhalla S., Ozalp C., Fang S., Xiang L., Kemper J. K. Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1α. Functional implications in hepatic cholesterol and glucose metabolism. The Journal of Biological Chemistry. 2004;279(43):45139–45147. doi: 10.1074/jbc.M405423200.
    1. Valenti L., Rametta R., Dongiovanni P., Maggioni M., Fracanzani A. L., Zappa M., Lattuada E., Roviaro G., Fargion S. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes. 2008;57(5):1355–1362. doi: 10.2337/db07-0714.
    1. He J., Gao J., Xu M., Ren S., Stefanovic-Racic M., O'Doherty R. M., Xie W. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes. 2013;62(6):1876–1887. doi: 10.2337/db12-1039.
    1. Mani S., Dou W., Redinbo M. R. PXR antagonists and implication in drug metabolism. Drug Metabolism Reviews. 2013;45(1):60–72. doi: 10.3109/03602532.2012.746363.
    1. Ekins S., Kholodovych V., Ai N., Sinz M., Gal J., Gera L., Welsh W. J., Bachmann K., Mani S. Computational discovery of novel low micromolar human pregnane X receptor antagonists. Molecular Pharmacology. 2008;74(3):662–672. doi: 10.1124/mol.108.049437.
    1. Biswas A., Mani S., Redinbo M. R., Krasowski M. D., Li H., Ekins S. Elucidating the “Jekyll and Hyde” nature of PXR: the case for discovering antagonists or allosteric antagonists. Pharmaceutical Research. 2009;26(8):1807–1815. doi: 10.1007/s11095-009-9901-7.
    1. Kohjima M., Higuchi N., Kato M., Kotoh K., Yoshimoto T., Fujino T., Yada M., Yada R., Harada N., Enjoji M., Takayanagi R., Nakamuta M. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. International Journal of Molecular Medicine. 2008;21(4):507–511.
    1. Furuta E., Pai S. K., Zhan R., Bandyopadhyay S., Watabe M., Mo Y.-Y., Hirota S., Hosobe S., Tsukada T., Miura K., Kamada S., Saito K., Iiizumi M., Liu W., Ericsson J., Watabe K. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Research. 2008;68(4):1003–1011. doi: 10.1158/0008-5472.CAN-07-2489.
    1. Sekiya M., Hiraishi A., Touyama M., Sakamoto K. Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells. Biochemical and Biophysical Research Communications. 2008;375(4):602–607. doi: 10.1016/j.bbrc.2008.08.068.
    1. Cao K., Xu J., Zou X., Li Y., Chen C., Zheng A., Li H., Szeto I. M.-Y., Shi Y., Long J., Liu J., Feng Z. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radical Biology & Medicine. 2014;67:396–407. doi: 10.1016/j.freeradbiomed.2013.11.029.
    1. Ono M., Ogasawara M., Hirose A., Mogami S., Ootake N., Aritake K., Higuchi T., Okamoto N., Sakamoto S., Yamamoto M., Urade Y., Saibara T., Oben J. A. Bofutsushosan, a Japanese herbal (Kampo) medicine, attenuates progression of nonalcoholic steatohepatitis in mice. Journal of Gastroenterology. 2014;49(6):1065–1073. doi: 10.1007/s00535-013-0852-8.
    1. Endo M., Masaki T., Seike M., Yoshimatsu H. TNF-α induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c) Experimental Biology and Medicine. 2007;232(5):614–621.
    1. Woods A., Azzout-Marniche D., Foretz M., Stein S. C., Lemarchand P., Ferre P., Foufelle F., Carling D. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Molecular and Cellular Biology. 2000;20(18):6704–6711. doi: 10.1128/MCB.20.18.6704-6711.2000.

Source: PubMed

3
Subskrybuj