Imaging of αvβ3 integrin expression in experimental myocardial ischemia with [68Ga]NODAGA-RGD positron emission tomography

Maria Grönman, Miikka Tarkia, Tuomas Kiviniemi, Paavo Halonen, Antti Kuivanen, Timo Savunen, Tuula Tolvanen, Jarmo Teuho, Meeri Käkelä, Olli Metsälä, Mikko Pietilä, Pekka Saukko, Seppo Ylä-Herttuala, Juhani Knuuti, Anne Roivainen, Antti Saraste, Maria Grönman, Miikka Tarkia, Tuomas Kiviniemi, Paavo Halonen, Antti Kuivanen, Timo Savunen, Tuula Tolvanen, Jarmo Teuho, Meeri Käkelä, Olli Metsälä, Mikko Pietilä, Pekka Saukko, Seppo Ylä-Herttuala, Juhani Knuuti, Anne Roivainen, Antti Saraste

Abstract

Background: Radiolabeled RGD peptides detect αvβ3 integrin expression associated with angiogenesis and extracellular matrix remodeling after myocardial infarction. We studied whether cardiac positron emission tomography (PET) with [68Ga]NODAGA-RGD detects increased αvβ3 integrin expression after induction of flow-limiting coronary stenosis in pigs, and whether αvβ3 integrin is expressed in viable ischemic or injured myocardium.

Methods: We studied 8 Finnish landrace pigs 13 ± 4 days after percutaneous implantation of a bottleneck stent in the proximal left anterior descending coronary artery. Antithrombotic therapy was used to prevent stent occlusion. Myocardial uptake of [68Ga]NODAGA-RGD (290 ± 31 MBq) was evaluated by a 62 min dynamic PET scan. The ischemic area was defined as the regional perfusion abnormality during adenosine-induced stress by [15O]water PET. Guided by triphenyltetrazolium chloride staining, tissue samples from viable and injured myocardial areas were obtained for autoradiography and histology.

Results: Stent implantation resulted in a partly reversible myocardial perfusion abnormality. Compared with remote myocardium, [68Ga]NODAGA-RGD PET showed increased tracer uptake in the ischemic area (ischemic-to-remote ratio 1.3 ± 0.20, p = 0.0034). Tissue samples from the injured areas, but not from the viable ischemic areas, showed higher [68Ga]NODAGA-RGD uptake than the remote non-ischemic myocardium. Uptake of [68Ga]NODAGA-RGD correlated with immunohistochemical detection of αvβ3 integrin that was expressed in the injured myocardial areas.

Conclusions: Cardiac [68Ga]NODAGA-RGD PET demonstrates increased myocardial αvβ3 integrin expression after induction of flow-limiting coronary stenosis in pigs. Localization of [68Ga]NODAGA-RGD uptake indicates that it reflects αvβ3 integrin expression associated with repair of recent myocardial injury.

Keywords: Angiogenesis; Myocardial ischemia; Positron emission tomography; αvβ3 integrin.

Figures

Fig. 1
Fig. 1
Co-registration of [68Ga]NODAGA-RGD and [15O]water PET images and definition of myocardial contours. a and f demonstrate [68Ga]NODAGA-RGD images during the first 2 min after injection of the tracer, b and g demonstrate the fusion of [15O]water PET images (c, h) and [68Ga]NODAGA-RGD images used in the co-registration (a, f). Yellow lines represent myocardial contours defined in [15O]water PET images and copied to the [68Ga]NODAGA-RGD images. d and i demonstrate the fusion of the [15O]water PET images (c, h) and [68Ga]NODAGA-RGD images during the last 20 min of the imaging session (e, j) that demonstrate higher activity in the ischemic area in the anteroseptal wall as compared with the remote myocardium in the inferoposterior wall
Fig. 2
Fig. 2
Cardiac [68Ga]NODAGA-RGD and [15O]water in vivo PET analyses. a and b demonstrate polar maps of MBF measured by [15O]water PET at rest and during adenosine stress, respectively. c and d show polar maps of [68Ga]NODAGA-RGD uptake. Note the presence of increased [68Ga]NODAGA-RGD uptake in c co-localizing with an area of reduced myocardial perfusion (asterisk in a, b) as compared with the remote area (arrowhead in a, b). Distribution of [68Ga]NODAGA-RGD is homogenous in the left ventricle of sham operated pig (d)
Fig. 3
Fig. 3
Myocardial histology. Left panel representative image of 2,3,5-triphenyltetrazolium chloride (TTC) staining. The arrows show the areas where the tissue samples of the injured area, viable ischemic area and remote area were collected. ao demonstrate stainings of hematoxylin-eosin (ac) and Masson’s trichrome (df), and immunohistochemical stainings of CD31 (gi), αvβ3 integrin (jl) and α-smooth muscle actin (mo), and autoradiography (pr) from the remote myocardium, from the viable ischemic area or injured myocardium based on TTC staining. Scale bar 50 µm
Fig. 4
Fig. 4
Immunohistochemistry of endothelial cells and αvβ3 integrin. The graphs in a and b show areal percentages of myocardium stained with CD31 antibodies (endothelial cells) and αvβ3 integrin antibodies, respectively. Integrin αvβ3 staining correlates with the [68Ga]NODAGA-RGD uptake measured by autoradiography in the viable ischemic area, in the injured area and in the remote area (c)
Fig. 5
Fig. 5
Kinetics [68Ga]NODAGA-RGD. Mean (n = 8) time-activity curves of average [68Ga]NODAGA-RGD uptake in the remote myocardium, in the ischemic area and in the blood from the whole imaging session (a) and from the end part of the imaging session (b)
Fig. 6
Fig. 6
Quantification of [68Ga]NODAGA-RGD uptake. The graphs in a show [68Ga]NODAGA-RGD uptake measured in PET images in the remote myocardium and in the ischemic area. b Shows [68Ga]NODAGA-RGD uptake measured with a gamma counter (ex vivo biodistribution) in myocardial tissue samples obtained from the remote myocardium and from the viable ischemic area or injured myocardium based on TTC staining. c Shows [68Ga]NODAGA-RGD uptake by autoradiography in myocardial tissue sections in the remote myocardium, viable ischemic area or injured myocardium. n number, SUV standardized uptake value

References

    1. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994;264:569–571. doi: 10.1126/science.7512751.
    1. Manso AM, Kang S-M, Ross RS. Integrins, focal adhesions, and cardiac fibroblasts. J Investig Med. 2009;57:856–860. doi: 10.2310/JIM.0b013e3181c5e61f.
    1. Meoli DF, Sadeghi MM, Krassilnikova S, Bourke BN, Giordano FJ, Dione DP, et al. Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest. 2004;113:1684–1691. doi: 10.1172/JCI200420352.
    1. Higuchi T, Bengel FM, Seidl S, Watzlowik P, Kessler H, Hegenloh R, et al. Assessment of αvβ3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc Res. 2008;78:395–403. doi: 10.1093/cvr/cvn033.
    1. Laitinen I, Notni J, Pohle K, Rudelius M, Farrell E, Nekolla SG, et al. Comparison of cyclic RGD peptides for αvβ3 integrin detection in a rat model of myocardial infarction. EJNMMI Res. 2013;3:38. doi: 10.1186/2191-219X-3-38.
    1. Kiugel M, Dijkgraaf I, Kytö V, Helin S, Liljenbäck H, Saanijoki T, et al. Dimeric [(68)Ga]DOTA-RGD peptide targeting αvβ 3 integrin reveals extracellular matrix alterations after myocardial infarction. Mol Imaging Biol. 2014;16:793–801. doi: 10.1007/s11307-014-0752-1.
    1. Menichetti L, Kusmic C, Panetta D, Arosio D, Petroni D, Matteucci M, et al. MicroPET/CT imaging of αvβ3 integrin via a novel 68Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction. Eur J Nucl Med Mol Imaging. 2013;40:1265–1274. doi: 10.1007/s00259-013-2432-9.
    1. Gao H, Lang L, Guo N, Cao F, Quan Q, Hu S, et al. PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18F-AlF-NOTA-PRGD2. Eur J Nucl Med Mol Imaging. 2012;39:683–692. doi: 10.1007/s00259-011-2052-1.
    1. Kalinowski L, Dobrucki LW, Meoli DF, Dione DP, Sadeghi MM, Madri JA, et al. Targeted imaging of hypoxia-induced integrin activation in myocardium early after infarction. J Appl Physiol. 2008;104:1504–1512. doi: 10.1152/japplphysiol.00861.2007.
    1. van den Borne SWM, Isobe S, Verjans JW, Petrov A, Lovhaug D, Li P, et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J Am Coll Cardiol. 2008;52:2017–2028. doi: 10.1016/j.jacc.2008.07.067.
    1. Dobrucki LW, Tsutsumi Y, Kalinowski L, Dean J, Gavin M, Sen S, et al. Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imaging. J Mol Cell Cardiol. 2010;48:1071–1079. doi: 10.1016/j.yjmcc.2009.10.008.
    1. Dobrucki LW, Meoli DF, Hu J, Sadeghi MM, Sinusas AJ. Regional hypoxia correlates with the uptake of a radiolabeled targeted marker of angiogenesis in rat model of myocardial hypertrophy and ischemic injury. J Physiol Pharmacol. 2009;60(Suppl 4):117–123.
    1. Sherif HM, Saraste A, Nekolla SG, Weidl E, Reder S, Tapfer A, et al. Molecular imaging of early αvβ3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. J Nucl Med. 2012;53:318–323. doi: 10.2967/jnumed.111.091652.
    1. Sun Y, Zeng Y, Zhu Y, Feng F, Xu W, Wu C, et al. Application of (68)Ga-PRGD2 PET/CT for αvβ3-integrin imaging of myocardial infarction and stroke. Theranostics. 2014;4:778–786. doi: 10.7150/thno.8809.
    1. Rasmussen T, Follin B, Kastrup J, Brandt-Larsen M, Madsen J, Emil Christensen T, et al. Angiogenesis PET tracer uptake (68 Ga-NODAGA-E[(cRGDyK)]2) in induced myocardial infarction in minipigs. Diagnostics. 2016;6:26. doi: 10.3390/diagnostics6020026.
    1. Sun M, Opavsky MA, Stewart DJ, Rabinovitch M, Dawood F, Wen WH, et al. Temporal response and localization of integrins β1 and β3 in the heart after myocardial infarction: regulation by cytokines. Circulation. 2003;107:1046–1052. doi: 10.1161/01.CIR.0000051363.86009.3C.
    1. Antonov AS, Antonova GN, Munn DH, Mivechi N, Lucas R, Catravas JD, et al. αVβ3 integrin regulates macrophage inflammatory responses via PI3 kinase/Akt-dependent NF-κB activation. J Cell Physiol. 2011;226:469–476. doi: 10.1002/jcp.22356.
    1. Sarrazy V, Koehler A, Chow ML, Zimina E, Li CX, Kato H, et al. Integrins αvβ5 and αvβ3 promote latent TGF-β1 activation by human cardiac fibroblast contraction. Cardiovasc Res. 2014;102:407–417. doi: 10.1093/cvr/cvu053.
    1. Rissanen TT, Nurro J, Halonen PJ, Tarkia M, Saraste A, Rannankari M, et al. The bottleneck stent model for chronic myocardial ischemia and heart failure in pigs. Am J Physiol Heart Circ Physiol. 2013;305:H1297–H1308. doi: 10.1152/ajpheart.00561.2013.
    1. Tarkia M, Saraste A, Saanijoki T, Oikonen V, Vähäsilta T, Strandberg M, et al. Evaluation of 68 Ga-labeled tracers for PET imaging of myocardial perfusion in pigs. Nucl Med Biol. 2012;39:715–723. doi: 10.1016/j.nucmedbio.2011.11.007.
    1. Tarkia M, Stark C, Haavisto M, Kentala R, Vähäsilta T, Savunen T, et al. Cardiac remodeling in a new pig model of chronic heart failure: Assessment of left ventricular functional, metabolic, and structural changes using PET, CT, and echocardiography. J Nucl Cardiol. 2015;22:655–665. doi: 10.1007/s12350-015-0068-9.
    1. Kajander SA, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste A, et al. Clinical value of absolute quantification of myocardial perfusion with (15)O-water in coronary artery disease. Circ Cardiovasc Imaging. 2011;4:678–684. doi: 10.1161/CIRCIMAGING.110.960732.
    1. Elsasser A, Schlepper M, Klovekorn W-P, Cai W-J, Zimmermann R, Muller K-D, et al. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation. 1997;96:2920–2931. doi: 10.1161/01.CIR.96.9.2920.
    1. Jenkins WS, Vesey AT, Stirrat C, Connell M, Lucatelli C, Neale A, et al. Cardiac αVβ3 integrin expression following acute myocardial infarction in humans. Heart. 2017;103:607–615. doi: 10.1136/heartjnl-2016-310115.
    1. Windecker S, Kolh P, Alfonso F, Collet J-P, Cremer J, Falk V, et al. ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2014;35:2541–2619. doi: 10.1093/eurheartj/ehu278.
    1. Van Der Gucht A, Pomoni A, Jreige M, Allemann P, Prior JO. 68Ga-NODAGA-RGDyK PET/CT imaging in esophageal cancer: First-in-Human Imaging. Clin Nucl Med. 2016;41:e491–e492. doi: 10.1097/RLU.0000000000001365.
    1. Buchegger F, Viertl D, Baechler S, Dunet V, Kosinski M, Poitry-Yamate C, et al. 68Ga-NODAGA-RGDyK for αvβ3 integrin PET imaging. Nuklearmedizin. 2011;50:225–233. doi: 10.3413/Nukmed-0416-11-06.
    1. Knetsch PA, Petrik M, Griessinger CM, Rangger C, Fani M, Kesenheimer C, et al. [68Ga]NODAGA-RGD for imaging αvβ3 integrin expression. Eur J Nucl Med Mol Imaging. 2011;38:1303–1312. doi: 10.1007/s00259-011-1778-0.
    1. Swindle MM, Makin A, Herron AJ, Clubb FJ, Frazier KS. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49:344–356. doi: 10.1177/0300985811402846.
    1. Johnson LL, Schofield L, Donahay T, Bouchard M, Poppas A, Haubner R. Radiolabeled arginine-glycine-aspartic acid peptides to image angiogenesis in swine model of hibernating myocardium. JACC Cardiovasc Imaging. 2008;1:500–510. doi: 10.1016/j.jcmg.2008.05.002.
    1. Cai M, Ren L, Yin X, Guo Z, Li Y, He T, et al. PET monitoring angiogenesis of infarcted myocardium after treatment with vascular endothelial growth factor and bone marrow mesenchymal stem cells. Amino Acids. 2016;48:811–820. doi: 10.1007/s00726-015-2129-4.
    1. Rasmussen T, Follin B, Kastrup J, Christensen TE, Hammelev KP, Kjær A, et al. Myocardial perfusion of infarcted and normal myocardium in propofol-anesthetized minipigs using 82Rubidium PET. J Nucl Cardiol. 2016;23:599–603. doi: 10.1007/s12350-016-0453-z.
    1. Bennett JS, Berger BW, Billings PC. The structure and function of platelet integrins. J Thromb Haemost. 2009;7(Suppl 1):200–205. doi: 10.1111/j.1538-7836.2009.03378.x.
    1. Chen Y, Qin S, Ding Y, Li S, Yang G, Zhang J, et al. Reference values of biochemical and hematological parameters for Guizhou minipigs. Exp Biol Med. 2011;236:477–482. doi: 10.1258/ebm.2011.010283.

Source: PubMed

3
Subskrybuj