Training Older Adults to Use Tablet Computers: Does It Enhance Cognitive Function?

Micaela Y Chan, Sara Haber, Linda M Drew, Denise C Park, Micaela Y Chan, Sara Haber, Linda M Drew, Denise C Park

Abstract

Purpose of the study: Recent evidence shows that engaging in learning new skills improves episodic memory in older adults. In this study, older adults who were computer novices were trained to use a tablet computer and associated software applications. We hypothesize that sustained engagement in this mentally challenging training would yield a dual benefit of improved cognition and enhancement of everyday function by introducing useful skills.

Design and methods: A total of 54 older adults (age 60-90) committed 15 hr/week for 3 months. Eighteen participants received extensive iPad training, learning a broad range of practical applications. The iPad group was compared with 2 separate controls: a Placebo group that engaged in passive tasks requiring little new learning; and a Social group that had regular social interaction, but no active skill acquisition. All participants completed the same cognitive battery pre- and post-engagement.

Results: Compared with both controls, the iPad group showed greater improvements in episodic memory and processing speed but did not differ in mental control or visuospatial processing.

Implications: iPad training improved cognition relative to engaging in social or nonchallenging activities. Mastering relevant technological devices have the added advantage of providing older adults with technological skills useful in facilitating everyday activities (e.g., banking). This work informs the selection of targeted activities for future interventions and community programs.

Keywords: Cognitive aging; Cognitive intervention; Cognitive training; Engagement; Technology; iPad.

© The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America.

Figures

Figure 1.
Figure 1.
Mean standardized gain scores for iPad, Placebo, and Social. Error bars: ±1 SE.
Figure 2.
Figure 2.
Individual gain score (pretest adjusted to 0) for tasks with significant differences.

References

    1. Album tArt LLC. (n.d.). ScrapPad - Scrapbook for iPad Retrieved from
    1. Alzheimer’s Association. (2010). Changing the trajectory of Alzheimer’s disease: A national imperative. Chicago, IL: Author.
    1. Anguera J. A. Boccanfuso J. S. Rintoul J. L. Al-Hashimi O. Faraji F. Janowich J., …Gazzaley A (2013). Video game training enhances cognitive control in older adults. Nature, 501, 97–101. doi:10.1038/nature12486
    1. Ball K. Berch D. B. Helmers K. F. Jobe J. B. Leveck M. D. Marsiske M., … Willis S. L (2002). Effects of cognitive training interventions with older adults. Journal of the American Medical Association, 288, 2271–2281. doi:10.1001/jama.288.18.2271
    1. Basak C. Boot W. R. Voss M. W., & Kramer A. F (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23, 765–777. doi:10.1037/a0013494
    1. Blom G. (1958). Statistical estimates and transformed beta-variables. New York: Wiley.
    1. Brandt J. (1991). The Hopkins Verbal Learning Test: Development of a new memory test with six equivalent forms. Clinical Neuropsychologist, 5, 125–142. doi:10.1080/13854049108403297
    1. Carlson M. C. Saczynski J. S. Rebok G. W. Seeman T. Glass T. A. McGill S., …Fried L. P (2008). Exploring the effects of an “everyday” activity program on executive function and memory in older adults: Experience Corps. The Gerontologist, 48, 793–801. doi:10.1093/geront/48.6.793
    1. Czaja S. J. Guerrier J. H. Nair S. N., & Landauer T. K (1993). Computer communication as an aid to independence for older adults. Behaviour & Information Technology, 12, 197–207. doi:10.1080/01449299308924382
    1. Czaja S. J. Lee C. C. Branham J., & Remis P (2012). OASIS connections: Results from an evaluation study. The Gerontologist, 52, 712–721. doi:10.1093/geront/gns004
    1. Eriksen B. A., & Eriksen C. W (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149. doi:10.3758/BF03203267
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.
    1. Gutchess A. H. Welsh R. C. Hedden T. Bangert A. Minear M. Liu L. L., & Park D. C (2005). Aging and the neural correlates of successful picture encoding: Frontal activations compensate for decreased medial-temporal activity. Journal of Cognitive Neuroscience, 17, 84–96. doi:10.1162/0898929052880048
    1. Mynatt E. D., & Rogers W. A (2001). Developing technology to support the functional independence of older adults. Ageing International, 27, 24–41. doi:10.1007/s12126-001-1014-5
    1. Park D. C., Gutchess A. H., Meade M. L., Stine-Morrow E. A. (2007). Improving cognitive function in older adults: Nontraditional approaches. The Journal of Gerontology, Series B: Psychological Sciences and Social Sciences, 62, 45–52.
    1. Park D. C. Lodi-Smith J. Drew L. Haber S. Hebrank A. Bischof G. N., & Aamodt W (2013). The impact of sustained engagement on cognitive function in older adults: The Synapse Project. Psychological Science, 25, 103–112. doi:10.1177/0956797613499592
    1. Park D. C., Reuter-Lorenz P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196. doi:10.1146/annurev.psych.59.103006.093656
    1. Park D. C., & Shaw R. J (1992). Effect of environmental support on implicit and explicit memory in younger and older adults. Psychology and Aging, 7, 632–642. doi:10.1037/0882-7974.7.4.632
    1. Park D. C. Smith A. D. Lautenschlager G. Earles J. L. Frieske D. Zwahr M., & Gaines C. L (1996). Mediators of long-term memory performance across the life span. Psychology and Aging, 11, 621–637. doi:10.1037/0882-7974.11.4.621
    1. Raven J. Raven J. C., & Court J. H (1998). Manual for Raven’s Progressive Matrices and Vocabulary Scale. San Antonio, TX: The Psychological Corporation.
    1. Robbins T. W. James M. Owen A. M. Sahakian B. J. McInnes L., & Rabbitt P (1994). Cambridge Neuropsychological Test Automated Battery (CANTAB): A factor analytic study of a large sample of normal elderly volunteers. Dementia and Geriatric Cognitive Disorders, 5, 266–281. doi:10.1159/000106735
    1. Salthouse T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403–428.
    1. Salthouse T. A., & Babcock R. L (1991). Decomposing adult age differences in working memory. Developmental Psychology, 27, 763–776. doi:10.1037/0012-1649.27.5.763
    1. Schmiedek F. Lovden M., & Lindenberger U (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO Study. Frontiers in Aging Neuroscience, 2, 27. doi:10.3389/fnagi.2010.00027
    1. Snellen H. (1863). Probebuchstaben zur Bestimmung der Sehschaerfe. Utrecht, Netherlands: PW van de Weijer.
    1. Stine-Morrow E. A. L. Parisi J. M. Morrow D. G., & Park D. C (2008). The effects of an engaged lifestyle on cognitive vitality: A field experiment. Psychology and Aging, 23, 778–786. doi:10.1037/a0014341
    1. Tranter L. J., & Koutstaal W (2008). Age and flexible thinking: An experimental demonstration of the beneficial effects of increased cognitively stimulating activity on fluid intelligence in healthy older adults. Neuropsychology, Development, and Cognition, 15, 184–207. doi:10.1080/13825580701322163
    1. Twitter Inc. (2012). Twitter (Version 4.1.3). Retrieved from
    1. Wilson R. S. Barnes L. L. Krueger K. R. Hoganson G. Bienias J. L., & Bennett D. A (2005). Early and late life cognitive activity and cognitive systems in old age. Journal of the International Neuropsychological Society, 1, 400–407. doi:10.1017/S1355617705050459
    1. Wilson R. S. Bennett D. A. Bienias J. L. Mendes De Leon C. F. Morris M. C., & Evans D. A (2003). Cognitive activity and cognitive decline in a biracial community population. Neurology, 61, 812–816. doi:10.1212/01.WNL.0000083989.44027.05
    1. Wilson R. S. Scherr P. A. Schneider J. A. Tang Y., & Bennett D. A (2007). Relation of cognitive activity to risk of developing Alzheimer disease. Neurology, 69, 1911–1920. doi:10.1212/01.wnl.0000271087.67782.cb
    1. Zynga Inc. (2009). Words with Friends (Version 4.12). Retrieved from

Source: PubMed

3
Subskrybuj