Binasal Occlusion (BNO), Visual Motion Sensitivity (VMS), and the Visually-Evoked Potential (VEP) in mild Traumatic Brain Injury and Traumatic Brain Injury (mTBI/TBI)

Kenneth J Ciuffreda, Naveen K Yadav, Diana P Ludlam, Kenneth J Ciuffreda, Naveen K Yadav, Diana P Ludlam

Abstract

The diagnosis and treatment of the possible visual sequelae in those with traumatic brain injury (TBI) represents an important area of health care in this special population. One of their most prevalent yet elusive visual symptoms is visual motion sensitivity (VMS). In this review, we present the basic VMS phenomenon and its related symptoms, clinical studies in the area, clinical research investigations using the visual-evoked potential (VEP) as a cortical probe, and possible mechanisms and related neurophysiology that may underlie VMS. Lastly, therapeutic interventions are briefly described, as well as future directions for clinical research and patient care in those with VMS and TBI.

Keywords: binasal occlusion (BNO); dorsal stream; magnocellular pathway; traumatic brain injury (TBI); visual motion perception; visual motion sensitivity (VMS); visually-evoked potential (VEP); visuomotor.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Strabismus mask for esotropia.
Figure 2
Figure 2
Gibsonian optic flow while walking down a supermarket aisle.
Figure 3
Figure 3
Schematic representation of binasal occluders on a subject [11,12].
Figure 4
Figure 4
Representation of the binocular visual-field with binasal occluders in place, including the checkerboard visual stimulus. Not drawn to scale. f = fovea [12].
Figure 5
Figure 5
Group mean amplitude for the full field without and with binasal occluders in normals and in mTBI [12]. * means statically significant.
Figure 6
Figure 6
Diagnostic group mean amplitude difference for individual subjects (%). Positive and negative percentage values represent an increase or decrease in mean amplitude difference values, respectively [11].
Figure 7
Figure 7
Group mean VEP amplitude for the four test conditions (baseline, prism, BNO, and BNO plus prism). Plotted is the mean +1 SEM. (a) visually-normal; (b) mTBI. Brackets with an asterisk (*) represent significant differences (p < 0.05) [12].
Figure 8
Figure 8
Group mean VEP latency (P100) for the four test conditions (baseline, prism, BNO, and BNO plus prism). Plotted is the mean +1 SEM. (a) visually-normal; (b) mTBI. Brackets with an asterisk (*) represent significant differences (p < 0.05) [12].
Figure 9
Figure 9
Percentage amplitude differences for three test conditions relative to baseline values for each subject. Negative values indicate a decrease in amplitude and positive values indicate an increase in amplitude. (a) Visually-normal; (b) mTBI [12].
Figure 10
Figure 10
Visual motion habituation training: (a) optokinetic drum (OKN); (b) hand motion.

References

    1. Medow N.B. The evolution of strabismus surgery. In: Nelson L.B., Olitsky S.E., editors. Harley’s Pediatric Ophthalmology. 5th ed. Lippincott Williams and Wilkins; New York, NY, USA: 2005. pp. 553–557.
    1. Tassinari J.D. Binasal occlusion. J. Behav. Optom. 1990;1:16–21.
    1. Ciuffreda K.J., Ludlam D.P. Conceptual model of optometric vision care in mild traumatic brain injury. J. Behav. Optom. 2011;22:10–12.
    1. Ciuffreda K.J., Ludlam D.P., Yadav N.K. Conceptual model pyramid of optometric vision care in mild traumatic brain injury (mTBI) Vis. Dev. Rehabil. 2015;1:105–108.
    1. Gibson J.J. The Perception of the Visual World. Houghton Miffin; Boston, MA, USA: 1950.
    1. Ciuffreda K.J. Visual vertigo syndrome: Clinical demonstration and diagnostic tool. Clin. Eye Vis. Care. 1999;11:41–42. doi: 10.1016/S0953-4431(99)00010-7.
    1. Gallop S. Binasal occlusion—Immediate sustainable symptomatic relief. Optom. Vis. Perform. 2014;2:74–78.
    1. Gallop S. A variation on the use of binasal occlusion: A case study. J. Behav. Optom. 1998;9:31–35.
    1. Proctor A. Traumatic brain injury and binasal occlusion. Optom. Vis. Dev. 2009;40:45–50.
    1. Ciuffreda K.J. The scientific efficacy of optometric vision therapy in non-strabismic accommodative and vergence disorders. Optometry. 2002;73:735–762.
    1. Ciuffreda K.J., Yadav N.K., Ludlam D.P. Effect of binasal occlusion (BNO) on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI) Brain Inj. 2013;27:41–47. doi: 10.3109/02699052.2012.700088.
    1. Yadav N.K., Ciuffreda K.J. Effect of binasal occlusion (BNO) and base-in (BI) prisms on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI) Brain Inj. 2014;28:1568–1580. doi: 10.3109/02699052.2014.939718.
    1. Padula W.V., Argyris S., Ray J. Visual evoked potential (VEP) evaluating treatment for post-traumatic vision syndrome (PTVS) in patients with traumatic brain injury (TBI) Brain Inj. 1994;8:125–133. doi: 10.3109/02699059409150964.
    1. Ogle K.N. In: Optics: An Introduction for Ophthalmologists. Charles C., editor. Thomas; Springfield, IL, USA: 1961.
    1. Semrud-Clikeman M. Traumatic Brain Injury in Children and Adolescents. The Guilford Press; New York, NY, USA: 2001. p. 28.
    1. Jampolsky A. Characteristics of suppression in strabismus. Arch. Ophthalmol. 1955;54:683–696. doi: 10.1001/archopht.1955.00930020689010.
    1. de Graef T.A., van Ee R., Croonenberg D., Klink P.C., Sack A.T. Visual suppression at the offset of binocular rivalry. J. Vis. 2017;17 doi: 10.1167/17.1.2.
    1. Yadav N.K., Thiagarajan P., Ciuffreda K.J. Effect of oculomotor vision rehabilitation on the visual-evoked potential and visual attention in mild traumatic brain injury. Brain Inj. 2014;28:922–929. doi: 10.3109/02699052.2014.887227.
    1. Patel R., Ciuffreda K.J., Tannen B., Kapoor N. Elevated coherent motion thresholds in mild traumatic brain injury. Optometry. 2011;82:284–289. doi: 10.1016/j.optm.2010.10.012.
    1. Chapman C., Hoag R., Giaschi D. The effect of disrupting the human magnocellular pathway on global motion perception. Vis. Res. 2004;44:2551–2557. doi: 10.1016/j.visres.2004.06.003.
    1. Pitzalis S., Fattori P., Galletti C. The functional role of the medical area V6. Front. Behav. Neurosci. 2013;16:91. doi: 10.3389/fnbeh.2012.00091.
    1. Pitzalis S., Fattori P., Galletti C. The human cortical areas V6 and V6a. Vis. Neurosci. 2015;32:E007. doi: 10.1017/S0952523815000048.
    1. Wada A., Sakano Y., Ando H. Differential responses to a visual motion signal in human medial cortex region revealed by wide-view stimulation. Front. Psychol. 2016;7:309. doi: 10.3389/fpsyg.2016.00309.
    1. Ciuffreda K.J. [(accessed on 1 April 2017)]; Available online: .
    1. Cohen A., Tannen B. (College of Optometry, State University of New York, New York, NY, USA). Personal communication. 2017.

Source: PubMed

3
Subskrybuj