The Nutritional Value and Health Benefits of Chickpeas and Hummus

Taylor C Wallace, Robert Murray, Kathleen M Zelman, Taylor C Wallace, Robert Murray, Kathleen M Zelman

Abstract

The 2015-2020 Dietary Guidelines for Americans advocate for increasing vegetable intake and replacing energy-dense foods with those that are nutrient-dense. Most Americans do not eat enough vegetables, and particularly legumes, each day, despite their well-established benefits for health. Traditional hummus is a nutrient-dense dip or spread made from cooked, mashed chickpeas, blended with tahini, olive oil, lemon juice, and spices. Consumers of chickpeas and/or hummus have been shown to have higher nutrient intakes of dietary fiber, polyunsaturated fatty acids, vitamin A, vitamin E, vitamin C, folate, magnesium, potassium, and iron as compared to non-consumers. Hummus consumers have also been shown to have higher Healthy Eating Index 2005 (HEI-2005) scores. This may be, in part, due to hummus' higher Naturally Nutrient Rich (NNR) score as compared to other dips and spreads. Emerging research suggests that chickpeas and hummus may play a beneficial role in weight management and glucose and insulin regulation, as well as have a positive impact on some markers of cardiovascular disease (CVD). Raw or cooked chickpeas and hummus also contain dietary bioactives such as phytic acid, sterols, tannins, carotenoids, and other polyphenols such as isoflavones, whose benefits may extend beyond basic nutrition requirements of humans. With chickpeas as its primary ingredient, hummus-and especially when paired with vegetables and/or whole grains-is a nutritious way for Americans to obtain their recommended servings of legumes. This manuscript reviews the nutritional value and health benefits of chickpeas and hummus and explores how these foods may help improve the nutrient profiles of meals.

Keywords: beans; chickpeas; hummus; legumes; vegetables.

Conflict of interest statement

The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. R.M. and K.M.Z. are on the Scientific Advisory Board of Sabra Dipping Co., LLC.

References

    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture 2015–2020 Dietary Guidelines for Americans. [(accessed on 15 July 2016)]; Available online: .
    1. U.S. Department of Agriculture, Economic Research Service . Dried Beans. U.S. Department of Agriculture, Economic Research Service; Washington, DC, USA: 2013.
    1. Deosthale Y.G. Food processing and nutritive value of legumes. In: Srivastava H.C., editor. Pulse Production, Constraints and Opportunities. 1st ed. Volume 1. IBH Publishing Company; New Delhi, India: 1982. pp. 377–388.
    1. Khokhar S., Chauhan B.M. Antinutritional factors in mothbean (Vigna acenitifolia): Varietal difference and effect of methods of domestic processing and cooking. J. Food Sci. 1986;51:591–594. doi: 10.1111/j.1365-2621.1986.tb13887.x.
    1. Vijayakumari K., Sidduraju P., Pugalenthi M., Janardhanan K. Effect of soaking and heat processing on the levels of antinutrients and digestible proteins in seeds of Vigna aconitifolia and Vigna sinensis. Food Chem. 1998;63:259–264. doi: 10.1016/S0308-8146(97)00207-0.
    1. Davidson A. The Oxford Companion to Food. 1st ed. Oxford University Press; New York, NY, USA: 1999.
    1. Food and Agriculture Organization of the United Nations FAOSTAT 2013. [(accessed on 27 October 2016)]. Available online: .
    1. Huntrods D. Agriculture Marketing Research Center. Iowa State University; Ames, IA, USA: 2013.
    1. Saharan K., Khetarpaul N. Protein quality traits of vegetable and field peas: Varietal differences. Plant Foods Hum. Nutr. 1994;45:11–22. doi: 10.1007/BF01091225.
    1. Information Resources Inc. [(accessed on 15 June 2016)]. Available online: .
    1. Jukanti A.K., Gaur P.M., Gowda C.L., Chibbar R.N. Nutritional quality and health benefits of chickpea (Cicerarietinum L.): A review. Br. J. Nutr. 2012;108:S11–S26. doi: 10.1017/S0007114512000797.
    1. O’Neil C.E., Nicklas T.A., Fulgoni V.L. Chickpeas and hummus are associated with better nutrient intake, diet quality, and levels of some cardiovascular risk factors: National Health and Nutrition Examination Survey 2003–2010. J. Nutr. Food Sci. 2014;4:1. doi: 10.4172/2155-9600.1000254.
    1. Papanikolaou Y., Fulgoni V.L., III Bean consumption is associated with greater nutrient intake, reduced systolic blood pressure, lower body weight, and a smaller waist circumference in adults: Results from the National Health and Nutrition Examination Survey 1999–2002. J. Am. Coll. Nutr. 2008;27:569–576. doi: 10.1080/07315724.2008.10719740.
    1. Mitchell D.C., Lawrence F.R., Hartman T.J., Curran J.M. Consumption of dry beans, peas, and lentils could improve diet quality in the US population. J. Acad. Nutr. Diet. 2009;109:909–913. doi: 10.1016/j.jada.2009.02.029.
    1. Pittaway J.K., Robertson I.K., Ball M.J. Chickpeas may influence fatty acid and fiber intake in an ad libitum diet, leading to small improvements in serum lipid profile and glycemic control. J. Am. Diet. Assoc. 2008;108:1009–1013. doi: 10.1016/j.jada.2008.03.009.
    1. Murty C.M., Pittaway J.K., Ball M.J. Chickpea supplementation in an Australian diet affects food choice, satiety and bowel health. Appetite. 2010;54:282–288. doi: 10.1016/j.appet.2009.11.012.
    1. Lackey C.J., Kolasa K.M. Healthy eating: Defining the nutrient quality of foods. Nutr. Today. 2004;39:26–29. doi: 10.1097/00017285-200401000-00008.
    1. Drewnowski A. Concept of a nutritious food: Toward a nutrient density score. Am. J. Clin. Nutr. 2005;82:721–732.
    1. Monsivais P., McLain J., Drewnowski A. The rising disparity in price of healthful foods: 2004–2008. Food Policy. 2010;35:514–520. doi: 10.1016/j.foodpol.2010.06.004.
    1. U.S. Food and Drug Administration Calories count. Report of the Working Group on Obesity 2004. [(accessed on 28 June 2016)]; Available online: .
    1. Albete I., Astrup A., Martinez J.A., Martinez J.A., Thorsdottir I., Zulet M.A. Obesity and the metabolic syndrome: Role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance. Nutr. Rev. 2010;68:214–231. doi: 10.1111/j.1753-4887.2010.00280.x.
    1. Sichieri R. Dietary patterns and their associations with obesity in the Brazilian city of Rio de Janeiro. Obes. Res. 2002;10:42–48. doi: 10.1038/oby.2002.6.
    1. Newby P.K., Muller D., Hallfrisch J., Andres R., Tucker K.L. Food patterns measured by factor analysis and anthropometric changes in adults. Am. J. Clin. Nutr. 2004;80:504–513.
    1. Roberts S.B., Hajduk C.L., Howarth N.C., Russel R., McCrory M.A. Dietary variety predicts low body mass index and inadequate macronutrient and micronutrient intakes in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. 2005;60:613–621. doi: 10.1093/gerona/60.5.613.
    1. Augustin L.S., Chiavaroli L., Campbell J., Ezatagha A., Jenkins A.L., Esfahani A., Kendall C.W. Post-prandial glucose and insulin responses of hummus alone or combined with a carbohydrate food: A dose-response study. Nutr. J. 2016;27:13. doi: 10.1186/s12937-016-0129-1.
    1. Jenkins D.J., Wolever T.M., Taylor R.H., Barker H.M., Fielden H. Exceptionally low blood glucose response to dried beans: Comparison with other carbohydrate foods. Br. Med. J. 1980;281:578–580. doi: 10.1136/bmj.281.6240.578.
    1. Jenkins D.J., Wolever T.M., Taylor R.H., Barker H., Fielden H., Baldwin J.M. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981;34:362–366.
    1. Mollard R.C., Luhovyy B.L., Panahi S., Nunez M., Hanley A., Anderson G.H. Regular consumption of pulses for 8 weeks reduces metabolic syndrome risk factors in overweight and obese adults. Br. J. Nutr. 2012;108(Suppl. 1):S111–S122. doi: 10.1017/S0007114512000712.
    1. Yang Y., Zhou L., Gu Y., Zhang Y., Tang J., Li F., Shang W., Jiang B., Yue X., Chen M. Dietary chickpeas reverse visceral adiposity, dyslipidemia and insulin resistance in rats induced by a chronic high-fat diet. Br. J. Nutr. 2007;98:720–726. doi: 10.1017/S0007114507750870.
    1. Hodge A.M., English D.R., O’Dea K., Giles G.G. Dietary patterns and diabetes incidence in the Melbourne Collaborative Cohort Study. Am. J. Epidemiol. 2007;161:2573–2578. doi: 10.1093/aje/kwk061.
    1. Villegas R., Gao Y.T., Yang G., Li H.L., Elasy T.A., Zheng W. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am. J. Clin. Nutr. 2008;87:162–167.
    1. Welch I.M., Bruce C., Hill S.E., Read N.W. Duodenal and illeal lipid suppresses postprandial blood glucose and insulin responses in man: Possible implications for dietary management of diabetes mellitus. Clin. Sci. 1987;72:209–216. doi: 10.1042/cs0720209.
    1. Jackson K.G., Wolstencroft E.J., Bateman P.A., Yaqoob P., Williams C.M. Acute effects of meal fatty acids on postprandial NEFA, glucose and apo E response: Implications for insulin sensitivity and lipoprotein regulation? Br. J. Nutr. 2005;93:693–700. doi: 10.1079/BJN20051410.
    1. Atkinson F.S., Foster-Powell K., Brand-Miller J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31:2281–2283. doi: 10.2337/dc08-1239.
    1. Pittway J.K., Ahuja K.D., Cehun M., Chronopoulos A., Robertson I.K., Nestel P.J., Ball M.J. Dietary supplementation with chickpeas for at least five weeks results in small but significant reductions in serum total and low-density lipoprotein cholesterols in adult women and men. Ann. Nutr. Metab. 2006;50:512–518. doi: 10.1159/000098143.
    1. Bazzano L.A., Thompson A.M., Tees M.T., Nguyen C.H., Winham D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011;4:94–103. doi: 10.1016/j.numecd.2009.08.012.
    1. National Academies of Medicine . Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. National Academies Press; Washington, DC, USA: 2005.
    1. Halton T.L., Willett W.C., Lui S. Low-carbohydrate-diet score and risk of coronary heart disease in women. N. Engl. J. Med. 2006;355:1991–2002. doi: 10.1056/NEJMoa055317.
    1. Fernando W.M.U., Hill J.E., Zello G.A. Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in healthy adults. Benef. Microb. 2010;1:197–207. doi: 10.3920/BM2009.0027.
    1. Cummings J.H., Stephen A.M., Branch W.J. Implications of dietary fibre breakdown in the human colon. In: Bruce R., Tannenbaum S., Correa P., editors. Banbury Report 7 Gastrointestinal Cancer. Volume 1. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA: 1981. pp. 71–81.
    1. Mathers J.C. Pulses and carcinogenesis: Potential for the prevention of colon, breast and other cancers. Br. J. Nutr. 2002;88(Suppl. 3):S273–S279. doi: 10.1079/BJN2002717.
    1. Murillo G., Choi J.K., Vioque J., Pan O. Efficacy of garbanzo and soybean flour in suppression of aberrant crypt foci in the colons of CF-1 mice. Anticancer Res. 2004;24:3049–3056.
    1. Mittal G., Vadhera S., Brar A.P.S. Protective role of chickpea seed coat fibre on N-nitrosodiethylamine-induced toxicity in hypercholesterolemic rats. Exp. Toxicol. Pathol. 2009;61:363–370. doi: 10.1016/j.etp.2008.07.006.
    1. Agurs-Collins T., Smoot D., Afful J., Makambi K., Adams-Campbell L.L. Legume intake and reduced colorectal adenoma risk in African-Americans. J. Natl. Black Nurses Assoc. 2006;17:162–167.
    1. Nestel P., Cehun M., Chronopoulos A. Effects of long-term consumption and single meals of chickpea on plasma glucose, insulin, and triacylglycerol concentrations. Am. J. Clin. Nutr. 2004;79:390–395.

Source: PubMed

3
Subskrybuj