Randomized control trial evaluation of a modified Paleolithic dietary intervention in the treatment of relapsing-remitting multiple sclerosis: a pilot study

Amanda K Irish, Constance M Erickson, Terry L Wahls, Linda G Snetselaar, Warren G Darling, Amanda K Irish, Constance M Erickson, Terry L Wahls, Linda G Snetselaar, Warren G Darling

Abstract

Background/objective: A Paleolithic diet may improve fatigue and quality of life in progressive multiple sclerosis (MS) patients, but past research has evaluated the effects of this dietary intervention in combination with other treatments such as exercise. Thus, the purpose of this pilot study was to evaluate a modified Paleolithic dietary intervention (MPDI) in the treatment of fatigue and other symptoms in relapsing-remitting MS (RRMS).

Methods: We measured the effects of a MPDI in 17 individuals with RRMS. Of 34 subjects randomly assigned to control (maintain usual diet) and intervention (MPDI) groups, nine subjects (one man) completed the control group and eight subjects (one man) completed the MPDI.

Results: Significant improvements were seen in Fatigue Severity Scale score and also in Multiple Sclerosis Quality of Life-54 and time to complete (dominant hand) 9-Hole Peg Test from baseline in MPDI subjects compared to controls. Increased vitamin K serum levels were also observed in MPDI subjects postprotocol compared to controls.

Conclusion: A Paleolithic diet may be useful in the treatment and management of MS, by reducing perceived fatigue, increasing mental and physical quality of life, increasing exercise capacity, and improving hand and leg function. By increasing vitamin K serum levels, the MPDI may also reduce inflammation.

Keywords: alternative medicine; complementary medicine; diet therapy; fatigue; gluten-free; nutrition therapy; quality of life.

Conflict of interest statement

Disclosure This study was supported by a grant from TZ Press, which is owned by Dr TLW. Dr TLW has a data management plan on file with The University of Iowa. The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
Study flowchart. Notes: Eighty-two individuals were screened for eligibility using a simple phone script. Seventy-one individuals were found eligible to participate; of these, thirty-one consented and completed baseline study measurements. Seventeen individuals were allocated to the MPDI, sixteen trained, and ten completed all study procedures. Two subjects were removed from the analysis due to nonadherence to the MPDI. Seventeen individuals were allocated to the control group, fifteen trained, and nine completed all study procedures.
Figure 2
Figure 2
Mean FSS scores at baseline and postprotocol in control and MPDI groups (A). Each bar represents the mean score from the nine questions of the FSS for each subject group (abscissa) at baseline (black bars) and postprotocol (crosshatch bars). Error bars indicate ± SE. Changes in FSS scores of individual control (C1–C9) and MPDI (D1–D8) subjects from baseline to postprotocol (B); * denotes significant difference. Abbreviations: MPDI, modified Paleolithic dietary intervention; FSS, Fatigue Severity Scale; SE, standard error.
Figure 3
Figure 3
Mean changes in MSQOL-M (A) and MSQOL-P (C). Each bar represents the mean score for the MSQOL mental (A) and physical (C) health domains for subject groups (abscissa) at baseline (black bars) and postprotocol (crosshatch bars). Error bars indicate ± SE. Changes in MSQOL scores of individual control (C1–C9) and MPDI (D1–D8) subjects from baseline to postprotocol for mental (B) and physical (D) health domains. * denotes significant difference. Abbreviations: MPDI, modified Paleolithic dietary intervention; MSQOL, Multiple Sclerosis Quality of Life; MSQOL-M, MSQOL mental; MSQOL-P, MSQOL physical; SE, standard error.
Figure 4
Figure 4
Average changes in motor tests for each group: dominant hand 9-HPT (A), nondominant hand 9-HPT (B), 25-FW (C), and 6-MW (D). Notes: Each bar represents the mean time (A–C), or distance walked (D), for the control or MPDI groups in the specified test at baseline and postprotocol. Average times in two 9-HPT trials with each hand and two 25-FW tests were used. Error bars indicate ± SE. Abbreviations: SE, standard error; 9-HPT, 9-Hole Peg Test; 25-FW, 25-Foot Walk; 6-MW, 6-minute walk; MPDI, modified Paleolithic dietary intervention.
Figure 5
Figure 5
Average changes in blood serum concentrations of vitamins K (A), B-1 (B), B-9 (C), B-12 (D), Hs-CRP (E), and HCY (F). Notes: Each bar represents the mean serum concentration of the specified measure for the control or MPDI group at baseline and postprotocol. Error bars indicate ± SE. The dashed lines represent presumptive upper and lower serum measure limits of healthy adults (normative laboratory values reported by testing facility). Abbreviations: MPDI, modified Paleolithic dietary intervention; SE, standard error; HCY, homocysteine.

References

    1. Goverman J. Autoimmune T cell responses in the central nervous system. Nat Rev Immunol. 2009;9(6):393–407.
    1. Ramagopalan SV, Dobson R, Meier UC, Giovannoni G. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. Lancet Neurol. 2010;9(7):727–739.
    1. Goodin DS. The causal cascade to multiple sclerosis: a model for MS pathogenesis. PLoS One. 2009;4(2):e4565.
    1. Marrie RA. Environmental risk factors in multiple sclerosis aetiology. Lancet Neurol. 2004;3(12):709–718.
    1. Mc Guire C, Prinz M, Beyaert R, van Loo G. Nuclear factor kappa B (NF-kappaB) in multiple sclerosis pathology. Trends Mol Med. 2013;19(10):604–613.
    1. Bitsch A, Bruck W. Differentiation of multiple sclerosis subtypes: implications for treatment. CNS Drugs. 2002;16(6):405–418.
    1. Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology. 1996;46(4):907–911.
    1. D’Hooghe MB, Nagels G, Bissay V, De Keyser J. Modifiable factors influencing relapses and disability in multiple sclerosis. Mult Scler. 2010;16(7):773–785.
    1. Clegg A, Bryant J. Immunomodulatory drugs for multiple sclerosis: a systematic review of clinical and cost effectiveness. Expert Opin Pharmacother. 2001;2(4):623–639.
    1. Chaudhuri A, Behan PO. Treatment of multiple sclerosis: beyond the NICE guidelines. QJM. 2005;98(5):373–378.
    1. Jelinek GA, Hassed CS. Managing multiple sclerosis in primary care: are we forgetting something? Qual Prim Care. 2009;17(1):55–61.
    1. Yadav V, Shinto L, Bourdette D. Complementary and alternative medicine for the treatment of multiple sclerosis. Expert Rev Clin Immunol. 2010;6(3):381–395.
    1. Jongen PJ, Ruimschotel R, Heerings M, et al. Improved self-efficacy in persons with relapsing remitting multiple sclerosis after an intensive social cognitive wellness program with participation of support partners: a 6-months observational study. Health Qual Life Outcomes. 2014;12:40.
    1. Hadgkiss EJ, Jelinek GA, Weiland TJ, et al. Health-related quality of life outcomes at 1 and 5 years after a residential retreat promoting lifestyle modification for people with multiple sclerosis. Neurol Sci. 2013;34(2):187–195.
    1. McCabe MP, McKern S, McDonald E. Coping and psychological adjustment among people with multiple sclerosis. J Psychosom Res. 2004;56(3):355–361.
    1. Farinotti M, Vacchi L, Simi S, Di Pietrantonj C, Brait L, Filippini G. Dietary interventions for multiple sclerosis. Cochrane Database Syst Rev. 2012;12:CD004192.
    1. Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a narrative review. Complement Ther Med. 2011;19(4):228–237.
    1. Jacobs DR, Jr, Gross MD, Tapsell LC. Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr. 2009;89(5):1543S–1548S.
    1. Jacobs DR, Tapsell LC. Food synergy: the key to a healthy diet. Proc Nutr Soc. 2013;72(2):200–206.
    1. Wu X, Schauss AG. Mitigation of inflammation with foods. J Agric Food Chem. 2012;60(27):6703–6717.
    1. Sears B, Ricordi C. Anti-inflammatory nutrition as a pharmacological approach to treat obesity. J Obes. 2011;2011:14.
    1. Riccio P, Rossano R. Nutrition facts in multiple sclerosis. ASN Neuro. 2015;7(1) pii: 1759091414568185.
    1. Berkson BM, Rubin DM, Berkson AJ. Revisiting the ALA/N (alpha-lipoic acid/low-dose naltrexone) protocol for people with metastatic and nonmetastatic pancreatic cancer: a report of 3 new cases. Integr Cancer Ther. 2009;8(4):416–422.
    1. Nam NH. Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem. 2006;6(8):945–951.
    1. Ramakers JD, Mensink RP, Schaart G, Plat J. Arachidonic acid but not eicosapentaenoic acid (EPA) and oleic acid activates NF-kappaB and elevates ICAM-1 expression in Caco-2 cells. Lipids. 2007;42(8):687–698.
    1. Hernandez-Lahoz C, Rodrigo L. Gluten-related disorders and demyelinating diseases. Med Clin (Barc) 2012;140(7):314–319. Spanish.
    1. Rodrigo L, Hernandez-Lahoz C, Fuentes D, Alvarez N, Lopez-Vazquez A, Gonzalez S. Prevalence of celiac disease in multiple sclerosis. BMC Neurol. 2011;11:31.
    1. Hadjivassiliou M, Sanders DS, Grunewald RA, Woodroofe N, Boscolo S, Aeschlimann D. Gluten sensitivity: from gut to brain. Lancet Neurol. 2010;9(3):318–330.
    1. Shor DB, Barzilai O, Ram M, et al. Gluten sensitivity in multiple sclerosis: experimental myth or clinical truth? Ann N Y Acad Sci. 2009;1173:343–349.
    1. Stefferl A, Schubart A, Storch M, et al. Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. J Immunol. 2000;165(5):2859–2865.
    1. Malosse D, Perron H, Sasco A, Seigneurin JM. Correlation between milk and dairy product consumption and multiple sclerosis prevalence: a worldwide study. Neuroepidemiology. 1992;11(4–6):304–312.
    1. Butcher J. The distribution of multiple sclerosis in relation to the dairy industry and milk consumption. N Z Med J. 1976;83(566):427–430.
    1. Hamid R, Masood A. Dietary lectins as disease causing toxicants. Pak J Nutr. 2009;8(3):293–303.
    1. Riccio P, Rossano R, Liuzzi GM. May diet and dietary supplements improve the wellness of multiple sclerosis patients? A molecular approach. Autoimmune Dis. 2011;2010:249842.
    1. Maroon JC, Bost JW, Maroon A. Natural anti-inflammatory agents for pain relief. Surg Neurol Int. 2010;1:80.
    1. Kidd PM. Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Altern Med Rev. 2005;10(4):268–293.
    1. Torkildsen O, Loken-Amsrud KI, Wergeland S, Myhr KM, Holmoy T. Fat-soluble vitamins as disease modulators in multiple sclerosis. Acta Neurol Scand Suppl. 2013;(196):16–23.
    1. Sanoobar M, Dehghan P, Khalili M, Azimi A, Seifar F. Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: a double blind randomized clinical trial. Nutr Neurosci. 2016;19(3):138–143.
    1. Bisht B, Darling WG, Shivapour ET, et al. Multimodal intervention improves fatigue and quality of life in subjects with progressive multiple sclerosis: a pilot study. Degener Neurol Neuromuscul Dis. 2015;5:19–35.
    1. McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121–127.
    1. Bisht B, Darling WG, Grossmann RE, et al. A multimodal intervention for patients with secondary progressive multiple sclerosis: feasibility and effect on fatigue. J Altern Complement Med. 2014;20(5):347–355.
    1. Valko PO, Bassetti CL, Bloch KE, Held U, Baumann CR. Validation of the fatigue severity scale in a Swiss cohort. Sleep. 2008;31(11):1601–1607.
    1. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–1123.
    1. Vickrey BG, Hays RD, Harooni R, Myers LW, Ellison GW. A health-related quality of life measure for multiple sclerosis. Qual Life Res. 1995;4(3):187–206.
    1. Myers J, Bader D, Madhavan R, Froelicher V. Validation of a specific activity questionnaire to estimate exercise tolerance in patients referred for exercise testing. Am Heart J. 2001;142(6):1041–1046.
    1. Cutter GR, Baier ML, Rudick RA, et al. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain. 1999;122(Pt 5):871–882.
    1. Solari A, Radice D, Manneschi L, Motti L, Montanari E. The multiple sclerosis functional composite: different practice effects in the three test components. J Neurol Sci. 2005;228(1):71–74.
    1. Fisher JS, Jak AJ, Kniker JE, Rudick RA, Cutter GR. Administration and Scoring Manual for the Multiple Sclerosis Functional Composite Measure (MSFC) New York, NY: Demos; 1999.
    1. Rao SM, Leo GJ, Haughton VM, Aubin-Faubert P, Bernardin L. Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis. Neurology. 1989;39(2 Pt 1):161–166.
    1. Tombaugh TN, Rees L, Baird B, Kost J. The effects of list difficulty and modality of presentation on a computerized version of the Paced Serial Addition Test (PSAT) J Clin Exp Neuropsychol. 2004;26(2):257–265.
    1. Goldman MD, Marrie RA, Cohen JA. Evaluation of the six-minute walk in multiple sclerosis subjects and healthy controls. Mult Scler. 2008;14(3):383–390.
    1. Soilu-Hanninen M, Koskinen JO, Laaksonen M, Hanninen A, Lilius EM, Waris M. High sensitivity measurement of CRP and disease progression in multiple sclerosis. Neurology. 2005;65(1):153–155.
    1. Sellner J, Greeve I, Mattle HP. Atorvastatin decreases high-sensitivity C-reactive protein in multiple sclerosis. Mult Scler. 2008;14(7):981–984.
    1. Triantafyllou N, Evangelopoulos ME, Kimiskidis VK, et al. Increased plasma homocysteine levels in patients with multiple sclerosis and depression. Ann Gen Psychiatry. 2008;7:17.
    1. Zhang P, Dilley C, Mattson MP. DNA damage responses in neural cells: focus on the telomere. Neuroscience. 2007;145(4):1439–1448.
    1. Obeid R, Herrmann W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 2006;580(13):2994–3005.
    1. Oldreive CE, Doherty GH. Neurotoxic effects of homocysteine on cerebellar Purkinje neurons in vitro. Neurosci Lett. 2007;413(1):52–57.
    1. Kruman II, Culmsee C, Chan SL, et al. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci. 2000;20(18):6920–6926.
    1. Jhala SS, Wang D, Hazell AS. Thiamine deficiency results in release of soluble factors that disrupt mitochondrial membrane potential and downregulate the glutamate transporter splice-variant GLT-1b in cultured astrocytes. Biochem Biophys Res Commun. 2014;448(3):335–341.
    1. Jhala SS, Hazell AS. Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism. Neurochem Int. 2011;58(3):248–260.
    1. Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci. 2003;26(3):137–146.
    1. Kronenberg G, Colla M, Endres M. Folic acid, neurodegenerative and neuropsychiatric disease. Curr Mol Med. 2009;9(3):315–323.
    1. Reynolds EH. Multiple sclerosis and vitamin B12 metabolism. J Neuroimmunol. 1992;40(2–3):225–230.
    1. Vos M, Esposito G, Edirisinghe JN, et al. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science. 2012;336(6086):1306–1310.
    1. Li J, Wang H, Rosenberg PA. Vitamin K prevents oxidative cell death by inhibiting activation of 12-lipoxygenase in developing oligodendrocytes. J Neurosci Res. 2009;87(9):1997–2005.
    1. Carrie I, Portoukalian J, Vicaretti R, Rochford J, Potvin S, Ferland G. Menaquinone-4 concentration is correlated with sphingolipid concentrations in rat brain. J Nutr. 2004;134(1):167–172.
    1. Ohsaki Y, Shirakawa H, Miura A, et al. Vitamin K suppresses the lipopolysaccharide-induced expression of inflammatory cytokines in cultured macrophage-like cells via the inhibition of the activation of nuclear factor kappaB through the repression of IKKalpha/beta phosphorylation. J Nutr Biochem. 2010;21(11):1120–1126.
    1. Achiron A, Feldman A, Magalashvili D, Dolev M, Gurevich M. Suppressed RNA-polymerase 1 pathway is associated with benign multiple sclerosis. PLoS One. 2012;7(10):e46871.
    1. Ferland G. Vitamin K and brain function. Semin Thromb Hemost. 2013;39(8):849–855.
    1. Shea MK, Cushman M, Booth SL, Burke GL, Chen H, Kritchevsky SB. Associations between vitamin K status and haemostatic and inflammatory biomarkers in community-dwelling adults. The Multi-Ethnic Study of Atherosclerosis. Thromb Haemost. 2014;112(3):438–444.
    1. Subar AF, Kirkpatrick SI, Mittl B, et al. The Automated Self-Administered 24-hour dietary recall (ASA24): a resource for researchers, clinicians, and educators from the National Cancer Institute. J Acad Nutr Diet. 2012;112(8):1134–1137.
    1. Moshfegh AJ, Rhodes DG, Baer DJ, et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am J Clin Nutr. 2008;88(2):324–332.
    1. Gupta SK. Intention-to-treat concept: a review. Perspect Clin Res. 2011;2(3):109–112.
    1. Armijo-Olivo S, Warren S, Magee D. Intention to treat analysis, compliance, drop-outs and how to deal with missing data in clinical research: a review. Phys Ther Rev. 2009;14(1):36–49.
    1. Higginson IJ, Hart S, Silber E, Burman R, Edmonds P. Symptom prevalence and severity in people severely affected by multiple sclerosis. J Palliat Care. 2006;22(3):158–165.
    1. Fisk JD, Pontefract A, Ritvo PG, Archibald CJ, Murray TJ. The impact of fatigue on patients with multiple sclerosis. Can J Neurol Sci. 1994;21(1):9–14.
    1. Egner A, Phillips VL, Vora R, Wiggers E. Depression, fatigue, and health-related quality of life among people with advanced multiple sclerosis: results from an exploratory telerehabilitation study. Neuro-Rehabilitation. 2003;18(2):125–133.
    1. Attarian HP, Brown KM, Duntley SP, Carter JD, Cross AH. The relationship of sleep disturbances and fatigue in multiple sclerosis. Arch Neurol. 2004;61(4):525–528.
    1. Reese D, Shivapour ET, Wahls TL, Dudley-Javoroski SD, Shields R. Neuromuscular electrical stimulation and dietary interventions to reduce oxidative stress in a secondary progressive multiple sclerosis patient leads to marked gains in function: a case report. Cases J. 2009;2:7601.
    1. Learmonth YC, Dlugonski D, Pilutti LA, Sandroff BM, Klaren R, Motl RW. Psychometric properties of the Fatigue Severity Scale and the Modified Fatigue Impact Scale. J Neurol Sci. 2013;331(1–2):102–107.
    1. Lee D, Newell R, Ziegler L, Topping A. Treatment of fatigue in multiple sclerosis: a systematic review of the literature. Int J Nurs Pract. 2008;14(2):81–93.
    1. Pucci E, Branas P, D’Amico R, Giuliani G, Solari A, Taus C. Amantadine for fatigue in multiple sclerosis. Cochrane Database Syst Rev. 2007;1:CD002818.
    1. Schwarz S, Leweling H. Multiple sclerosis and nutrition. Mult Scler. 2005;11(1):24–32.
    1. Ozakbas S, Cagiran I, Ormeci B, Idiman E. Correlations between multiple sclerosis functional composite, expanded disability status scale and health-related quality of life during and after treatment of relapses in patients with multiple sclerosis. J Neurol Sci. 2004;218(1–2):3–7.
    1. Kargarfard M, Etemadifar M, Baker P, Mehrabi M, Hayatbakhsh R. Effect of aquatic exercise training on fatigue and health-related quality of life in patients with multiple sclerosis. Arch Phys Med Rehabil. 2012;93(10):1701–1708.
    1. Berger JR. Functional improvement and symptom management in multiple sclerosis: clinical efficacy of current therapies. Am J Manag Care. 2011;17(Suppl 5 Improving):S146–S153.
    1. Habek M, Hojsak I, Brinar VV. Nutrition in multiple sclerosis. Clin Neurol Neurosurg. 2010;112(7):616–620.
    1. Filippi M, Rocca MA. MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J Neurol. 2005;252(Suppl 5):v16–24.
    1. Tomassini V, Matthews PM, Thompson AJ, et al. Neuroplasticity and functional recovery in multiple sclerosis. Nat Rev Neurol. 2012;8(11):635–646.
    1. Hon G, Hassan M, van Rensburg SJ, et al. Immune cell membrane fatty acids and inflammatory marker, C-reactive protein, in patients with multiple sclerosis. Br J Nutr. 2009;102(9):1334–1340.
    1. Vrethem M, Mattsson E, Hebelka H, et al. Increased plasma homo-cysteine levels without signs of vitamin B12 deficiency in patients with multiple sclerosis assessed by blood and cerebrospinal fluid homocysteine and methylmalonic acid. Mult Scler. 2003;9(3):239–245.
    1. Teunissen CE, van Boxtel MP, Jolles J, et al. Homocysteine in relation to cognitive performance in pathological and non-pathological conditions. Clin Chem Lab Med. 2005;43(10):1089–1095.
    1. Teunissen CE, Killestein J, Kragt JJ, Polman CH, Dijkstra CD, Blom HJ. Serum homocysteine levels in relation to clinical progression in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2008;79(12):1349–1353.
    1. Goodkin DE, Jacobsen DW, Galvez N, Daughtry M, Secic M, Green R. Serum cobalamin deficiency is uncommon in multiple sclerosis. Arch Neurol. 1994;51(11):1110–1114.
    1. Ramsaransing GS, Fokkema MR, Teelken A, Arutjunyan AV, Koch M, De Keyser J. Plasma homocysteine levels in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2006;77(2):189–192.
    1. Cala CM, Moseley CE, Steele C, et al. T cell cytokine signatures: biomarkers in pediatric multiple sclerosis. J Neuroimmunol. 2016;297:1–8.
    1. National Institutes of Health (NIH) Folate Dietary Supplement Fact Sheet. 2012. [Accessed October 23, 2014]. Available from: .
    1. NIH Vitamin B12 Dietary Supplement Fact Sheet. 2011. [Accessed October 23, 2014]. Available from: .
    1. USDA USDA National Nutrient Database for Standard Reference. 2011. [Accessed October 12, 2014]. Available from:
    1. Sharma S, Sheehy T, Kolonel LN. Ethnic differences in grains consumption and their contribution to intake of B-vitamins: results of the Multiethnic Cohort Study. Nutr J. 2013;12:65.
    1. Jacques PF, Sulsky SI, Sadowski JA, Phillips JC, Rush D, Willett WC. Comparison of micronutrient intake measured by a dietary questionnaire and biochemical indicators of micronutrient status. Am J Clin Nutr. 1993;57(2):182–189.
    1. Pufulete M, Emery PW, Nelson M, Sanders TA. Validation of a short food frequency questionnaire to assess folate intake. Br J Nutr. 2002;87(4):383–390.
    1. Green R. Indicators for assessing folate and vitamin B12 status and for monitoring the efficacy of intervention strategies. Food Nutr Bull. 2008;29(Suppl 2):S52–S63. discussion S64–S56.
    1. Pietrzik K, Bronstrup A. Vitamins B12, B6 and folate as determinants of homocysteine concentration in the healthy population. Eur J Pediatr. 1998;157(Suppl 2):S135–S138.
    1. MacFarlane AJ, Shi Y, Greene-Finestone LS. High-dose compared with low-dose vitamin B-12 supplement use is not associated with higher vitamin B-12 status in children, adolescents, and older adults. J Nutr. 2014;144(6):915–920.
    1. Vogiatzoglou A, Smith AD, Nurk E, et al. Dietary sources of vitamin B-12 and their association with plasma vitamin B-12 concentrations in the general population: the Hordaland Homocysteine Study. Am J Clin Nutr. 2009;89(4):1078–1087.
    1. Dullemeijer C, Souverein OW, Doets EL, et al. Systematic review with dose-response meta-analyses between vitamin B-12 intake and European Micronutrient Recommendations Aligned’s prioritized bio-markers of vitamin B-12 including randomized controlled trials and observational studies in adults and elderly persons. Am J Clin Nutr. 2013;97(2):390–402.
    1. Tucker KL, Rich S, Rosenberg I, et al. Plasma vitamin B-12 concentrations relate to intake source in the Framingham Offspring study. Am J Clin Nutr. 2000;71(2):514–522.
    1. Lucock M, Wild J, Smithells R, Hartley R. Biotransformation of pteroylmonoglutamic acid during absorption: implications of Michaelis-Menten kinetics. Eur J Clin Nutr. 1989;43(9):631–635.
    1. Kelly P, McPartlin J, Goggins M, Weir DG, Scott JM. Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am J Clin Nutr. 1997;65(6):1790–1795.
    1. Kalmbach RD, Choumenkovitch SF, Troen AM, D’Agostino R, Jacques PF, Selhub J. Circulating folic acid in plasma: relation to folic acid fortification. Am J Clin Nutr. 2008;88(3):763–768.
    1. Garrett M, Hogan N, Larkin A, Saunders J, Jakeman P, Coote S. Exercise in the community for people with multiple sclerosis – a follow-up of people with minimal gait impairment. Mult Scler. 2013;19(6):790–798.
    1. Garrett M, Hogan N, Larkin A, Saunders J, Jakeman P, Coote S. Exercise in the community for people with minimal gait impairment due to MS: an assessor-blind randomized controlled trial. Mult Scler. 2013;19(6):782–789.
    1. Farinotti M, Simi S, Di Pietrantonj C, et al. Dietary interventions for multiple sclerosis. Cochrane Database Syst Rev. 2007;1:CD004192.
    1. United States Census Bureau . Educational Attainment in the United States: 2014 – Detailed Tables. 2014.
    1. Bunner AE, Agarwal U, Gonzales JF, Valente F, Barnard ND. Nutrition intervention for migraine: a randomized crossover trial. J Headache Pain. 2014;15(1):69.
    1. Brader L, Rejnmark L, Carlberg C, et al. Effects of a healthy Nordic diet on plasma 25-hydroxyvitamin D concentration in subjects with metabolic syndrome: a randomized, [corrected] controlled trial (SYS-DIET) Eur J Nutr. 2014;53(4):1123–1134.
    1. Crum AJ, Langer EJ. Mind-set matters: exercise and the placebo effect. Psychol Sci. 2007;18(2):165–171.
    1. Cherkin DC, Sherman KJ, Avins AL, et al. A randomized trial comparing acupuncture, simulated acupuncture, and usual care for chronic low back pain. Arch Intern Med. 2009;169(9):858–866.
    1. Turner JA, Deyo RA, Loeser JD, Von Korff M, Fordyce WE. The importance of placebo effects in pain treatment and research. JAMA. 1994;271(20):1609–1614.
    1. Benson H, Friedman R. Harnessing the power of the placebo effect and renaming it “remembered wellness”. Annu Rev Med. 1996;47:193–199.
    1. Moore SD, King AC, Kiernan M, Gardner CD. Outcome expectations and realizations as predictors of weight regain among dieters. Eat Behav. 2011;12(1):60–63.

Source: PubMed

3
Subskrybuj