Role of controlled cardiac reoxygenation in reducing nitric oxide production and cardiac oxidant damage in cyanotic infantile hearts

K Morita, K Ihnken, G D Buckberg, M P Sherman, H H Young, L J Ignarro, K Morita, K Ihnken, G D Buckberg, M P Sherman, H H Young, L J Ignarro

Abstract

Cardiopulmonary bypass (CPB) is used increasingly to correct cyanotic heart defects during early infancy, but myocardial dysfunction is often seen after surgical repair. This study evaluates whether starting CPB at a conventional, hyperoxic pO2 causes an "unintentional" reoxygenation (ReO2) injury. We subjected 2-wk-old piglets to ventilator hypoxemia (FIO2 approximately 0.06, pO2 approximately 25 mmHg) followed by 5 min of ReO2 on CPB before instituting cardioplegia. CPB was begun in hypoxemic piglets by either abrupt ReO2 at a pO2 of 400 mmHg (standard clinical practice) or by maintaining pO2 approximately 25 mmHg on CPB until controlling ReO2 with blood cardioplegic arrest. The effects of abrupt vs. gradual ReO2 without surgical ischemia (blood cardioplegia) were also compared. Myocardial nitric oxide (NO) production (chemiluminescence measurements of NO2- + NO3-) and conjugated diene (CD) generation (spectrophotometric A233 measurements of lipid extracts) using aortic and coronary sinus blood samples were assessed during cardioplegic induction. 30 min after CPB, left ventricular end-systolic elastance (Ees, catheter conductance method) was used to determine cardiac function. CPB and blood cardioplegic arrest caused no functional or biochemical change in normoxic (control) hearts. Abrupt ReO2 caused a depression of myocardial function (Ees = 25 +/- 5% of control). Functional depression was relatively unaffected by gradual ReO2 without blood cardioplegia (34% recovery of Ees), and abrupt ReO2 immediately before blood cardioplegia caused a 10-fold rise in cardiac NO and CD production, with subsequent depression of myocardial function (Ees 21 +/- 2% of control). In contrast, controlled cardiac ReO2 reduced NO production 94%, CD did not rise, and Ees was 83 +/- 8% of normal. We conclude ReO2 injury is related to increased NO production during abrupt ReO2, nullifies the cardioprotective effects of blood cardioplegia, and that controlled cardiac ReO2 when starting CPB to correct cyanotic heart defects may reduce NO production and improve myocardial status postoperatively.

References

    1. Am J Physiol. 1992 Feb;262(2 Pt 2):H616-20
    1. Am J Physiol. 1984 Feb;246(2 Pt 2):H267-73
    1. Free Radic Biol Med. 1992;12(3):205-12
    1. J Thorac Cardiovasc Surg. 1992 Jul;104(1):159-64
    1. Am J Physiol. 1992 Jun;262(6 Pt 1):G1015-20
    1. Circulation. 1992 Jul;86(1):279-88
    1. Biochem Biophys Res Commun. 1992 Jun 30;185(3):960-6
    1. J Thorac Cardiovasc Surg. 1986 Mar;91(3):428-35
    1. J Thorac Cardiovasc Surg. 1986 Sep;92(3 Pt 2):621-35
    1. J Thorac Cardiovasc Surg. 1986 Sep;92(3 Pt 2):636-48
    1. Circ Res. 1986 Dec;59(6):612-9
    1. Chem Phys Lipids. 1987 Jul-Sep;44(2-4):149-73
    1. Pediatr Res. 1991 May;29(5):473-82
    1. J Pharmacol Exp Ther. 1991 Oct;259(1):310-6
    1. Biochem Biophys Res Commun. 1991 Oct 31;180(2):926-32
    1. J Thorac Cardiovasc Surg. 1988 Feb;95(2):223-9
    1. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4695-9
    1. Am Rev Respir Dis. 1989 Aug;140(2):531-54
    1. Gen Physiol Biophys. 1989 Aug;8(4):327-40
    1. J Mol Cell Cardiol. 1989 Jun;21(6):567-75
    1. Can J Cardiol. 1989 Oct;5(7):365-71
    1. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620-4
    1. Am J Physiol. 1990 Apr;258(4 Pt 2):H1025-31
    1. Annu Rev Pharmacol Toxicol. 1990;30:535-60
    1. Biochem J. 1990 Jun 1;268(2):437-42
    1. J Thorac Cardiovasc Surg. 1990 Nov;100(5):708-14
    1. Am J Physiol. 1990 Dec;259(6 Pt 2):H1901-11
    1. Arch Biochem Biophys. 1990 Dec;283(2):537-41
    1. J Mol Cell Cardiol. 1990 Sep;22(9):1035-47
    1. J Thorac Cardiovasc Surg. 1991 Apr;101(4):607-11
    1. J Thorac Cardiovasc Surg. 1992 Sep;104(3):608-18
    1. J Neurochem. 1992 Nov;59(5):1609-23
    1. J Clin Epidemiol. 1992 Nov;45(11):1265-87
    1. J Thorac Cardiovasc Surg. 1992 Nov;104(5):1349-55
    1. Am J Physiol. 1992 Dec;263(6 Pt 2):H1963-6
    1. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1102-6
    1. Circulation. 1993 Jul;88(1):193-7
    1. J Biol Chem. 1951 Nov;193(1):265-75
    1. J Thorac Cardiovasc Surg. 1991 Dec;102(6):895-903
    1. Cardiology. 1971;56(1):209-15
    1. J Thorac Cardiovasc Surg. 1991 May;101(5):777-82
    1. Pharmacol Rev. 1991 Jun;43(2):109-42
    1. Am J Physiol. 1991 Aug;261(2 Pt 2):H416-23
    1. J Mol Cell Cardiol. 1978 Jul;10(7):641-68
    1. Circ Res. 1978 Nov;43(5):677-87
    1. J Thorac Cardiovasc Surg. 1980 Sep;80(3):350-9
    1. J Mol Cell Cardiol. 1980 Aug;12(8):797-808
    1. Am J Cardiol. 1981 Sep;48(3):500-6
    1. Am J Pathol. 1983 Apr;111(1):98-111
    1. J Pediatr Surg. 1992 Jan;27(1):48-53

Source: PubMed

3
Subskrybuj