Targeting Autophagy in Cancer: Update on Clinical Trials and Novel Inhibitors

Cynthia I Chude, Ravi K Amaravadi, Cynthia I Chude, Ravi K Amaravadi

Abstract

Eukaryotes use autophagy as a mechanism for maintaining cellular homeostasis by degrading and recycling organelles and proteins. This process assists in the proliferation and survival of advanced cancers. There is mounting preclinical evidence that targeting autophagy can enhance the efficacy of many cancer therapies. Hydroxychloroquine (HCQ) is the only clinically-approved autophagy inhibitor, and this systematic review focuses on HCQ use in cancer clinical trials. Preclinical trials have shown that HCQ alone and in combination therapy leads to enhancement of tumor shrinkage. This has provided the base for multiple ongoing clinical trials involving HCQ alone and in combination with other treatments. However, due to its potency, there is still a need for more potent and specific autophagy inhibitors. There are multiple autophagy inhibitors in the pre-clinical stage at various stages of development. Additional studies on the mechanism of HCQ and other autophagy inhibitors are still required to answer questions surrounding how these agents will eventually be used in the clinic.

Keywords: Hydroxychloroquine; autophagy; cancer; clinical trials; lysosomes; potent autophagy inhibitors; retinopathy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic overview of the autophagic pathway and potential drug target points of the pathway. The autophagic pathway involves the following steps: induction, nucleation, maturation and degradation. Initiation of the pathway begins with growth factors signaling the activation of the mammalian target of rapamycin (mTORC1). The Unc-51-like kinase 1 (ULK1) complex consisting of autophagy-related gene 13 (ATG13) and family interacting protein of 200 Kd ( FIP200) is required to initiate Beclin 1 class III PI3K complex, which is responsible for initiating the Vacuolar Protein Sorting Protein 34 (Vps34), Beclin 1, ATG14L, p150 complex that initiates the formation of the phagophore membrane. ATG12-ATG5 and the microtubule-associated protein light chain 3 (LC3) conjugates are essential for the formation of the autophagosome and its degradation in the lysosome.

References

    1. Guo J.Y., Teng X., Laddha S.V., Ma S., Van Nostrand S.C., Yang Y., Khor S., Chan C.S., Rabinowitz J.D., White E. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes Dev. 2016;30:1704–1717. doi: 10.1101/gad.283416.116.
    1. Rubinsztein D.C., Codogno P., Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 2012;11:709–730. doi: 10.1038/nrd3802.
    1. Ozpolat B., Benbrook D.M. Targeting autophagy in cancer management—Strategies and developments. Cancer Manag. Res. 2015;7:291–299. doi: 10.2147/CMAR.S34859.
    1. Yin Z., Pascual C., Klionsky D.J. Autophagy: Machinery and regulation. Microb. Cell. 2016;3:588–596. doi: 10.15698/mic2016.12.546.
    1. Amaravadi R.K., Lippincott-Schwartz J., Yin X.M., Weiss W.A., Takebe N., Timmer W., DiPaola R.S., Lotze M.T., White E. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 2011;17:654–666. doi: 10.1158/1078-0432.CCR-10-2634.
    1. Chen Y., Yu L. Recent progress in autophagic lysosome reformation. Traffic. 2017;18:358–361. doi: 10.1111/tra.12484.
    1. Rong Y., Liu M., Ma L., Du W., Zhang H., Tian Y., Cao Z., Li Y., Ren H., Zhang C., et al. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat. Cell Boil. 2012;14:924–934. doi: 10.1038/ncb2557.
    1. White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer. 2012;12:401–410. doi: 10.1038/nrc3262.
    1. Russell R.C., Yuan H.X., Guan K.L. Autophagy regulation by nutrient signaling. Cell. Res. 2014;24:42–57. doi: 10.1038/cr.2013.166.
    1. Shi T.T., Yu X.X., Yan L.J., Xiao H.T. Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother. Pharmacol. 2017;79:287–294. doi: 10.1007/s00280-016-3197-1.
    1. Carneiro L.A., Travassos L.H. The interplay between nlrs and autophagy in immunity and inflammation. Front. Immunol. 2013;4:361. doi: 10.3389/fimmu.2013.00361.
    1. Kraft C., Kijanska M., Kalie E., Siergiejuk E., Lee S.S., Semplicio G., Stoffel I., Brezovich A., Verma M., Hansmann I., et al. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 2012;31:3691–3703. doi: 10.1038/emboj.2012.225.
    1. Kim Y.C., Guan K.L. Mtor: A pharmacologic target for autophagy regulation. J. Clin. Investig. 2015;125:25–32. doi: 10.1172/JCI73939.
    1. Morris D.H., Yip C.K., Shi Y., Chait B.T., Wang Q.J. Beclin 1-Vps34 complex architecture: Understanding the nuts and bolts of therapeutic targets. Front. Biol. 2015;10:398–426. doi: 10.1007/s11515-015-1374-y.
    1. Donner A. Autophagy: Deubiquitinating p53. Nat. Chem. Biol. 2011;7:856. doi: 10.1038/nchembio.723.
    1. Dowdle W.E., Nyfeler B., Nagel J., Elling R.A., Liu S., Triantafellow E., Menon S., Wang Z., Honda A., Pardee G., et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 2014;16:1069–1079. doi: 10.1038/ncb3053.
    1. Kang R., Zeh H.J., Lotze M.T., Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18:571–580. doi: 10.1038/cdd.2010.191.
    1. Wu Y.T., Tan H.L., Shui G., Bauvy C., Huang Q., Wenk M.R., Ong C.N., Codogno P., Shen H.M. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 2010;285:10850–10861. doi: 10.1074/jbc.M109.080796.
    1. Hansen S.H., Olsson A., Casanova J.E. Wortmannin, an inhibitor of phosphoinositide 3-kinase, inhibits transcytosis in polarized epithelial cells. J. Biol. Chem. 1995;270:28425–28432.
    1. Avni D., Glucksam Y., Zor T. The Phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 modulates cytokine expression in macrophages via p50 nuclear factor κ inhibition, in a PI3K-independent mechanism. Biochem. Pharmacol. 2012;83:106–114. doi: 10.1016/j.bcp.2011.09.025.
    1. McNamara C.R., Degterev A. Small-molecule inhibitors of the PI3K signaling network. Future Med. Chem. 2011;3:549–565. doi: 10.4155/fmc.11.12.
    1. Ronan B., Flamand O., Vescovi L., Dureuil C., Durand L., Fassy F., Bachelot M.-F., Lamberton A., Mathieu M., Bertrand T., et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 2014;10:1013–1019. doi: 10.1038/nchembio.1681.
    1. Curran E., Smith S.M. Phosphoinositide 3-kinase inhibitors in lymphoma. Cur. Opin. Oncol. 2014;26:469–475. doi: 10.1097/CCO.0000000000000113.
    1. Li I.H., Ma K.H., Weng S.J., Huang S.S., Liang C.M., Huang Y.S. Autophagy activation is involved in 3,4-methylenedioxymethamphetamine (“ecstasy”)—Induced neurotoxicity in cultured cortical neurons. PLoS ONE. 2014;9:e116565. doi: 10.1371/journal.pone.0116565.
    1. Cherra S.J., 3rd, Kulich S.M., Uechi G., Balasubramani M., Mountzouris J., Day B.W., Chu C.T. Regulation of the autophagy protein LC3 by phosphorylation. J. Cell Biol. 2010;190:533–539. doi: 10.1083/jcb.201002108.
    1. Xie Y., Kang R., Sun X., Zhong M., Huang J., Klionsky D.J., Tang D. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy. 2015;11:28–45. doi: 10.4161/15548627.2014.984267.
    1. Klionsky D.J., Schulman B.A. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat. Struct. Mol. Biol. 2014;21:336–345. doi: 10.1038/nsmb.2787.
    1. Tanida I., Ueno T., Kominami E. LC3 and autophagy. Methods Mol. Biol. 2008;445:77–88.
    1. Cook K.L., Warri A., Soto-Pantoja D.R., Clarke P.A., Cruz M.I., Zwart A., Clarke R. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin. Cancer Res. 2014;20:3222–3232. doi: 10.1158/1078-0432.CCR-13-3227.
    1. Wang Y., Peng R.Q., Li D.D., Ding Y., Wu X.Q., Zeng Y.X., Zhu X.F., Zhang X.S. Chloroquine enhances the cytotoxicity of topotecan by inhibiting autophagy in lung cancer cells. Chin. J. Cancer. 2011;30:690–700. doi: 10.5732/cjc.011.10056.
    1. Pellegrini P., Strambi A., Zipoli C., Hagg-Olofsson M., Buoncervello M., Linder S., De Milito A. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: Implications for cancer therapies. Autophagy. 2014;10:562–571. doi: 10.4161/auto.27901.
    1. Fu D., Zhou J., Zhu W.S., Manley P.W., Wang Y.K., Hood T., Wylie A., Xie X.S. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat. Chem. 2014;6:614–622. doi: 10.1038/nchem.1961.
    1. Sui X., Chen R., Wang Z., Huang Z., Kong N., Zhang M., Han W., Lou F., Yang J., Zhang Q., et al. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis. 2013;4:e838. doi: 10.1038/cddis.2013.350.
    1. Barnard R.A., Wittenburg L.A., Amaravadi R.K., Gustafson D.L., Thorburn A., Thamm D.H. Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy. 2014;10:1415–1425. doi: 10.4161/auto.29165.
    1. Warhurst D.C., Steele J.C., Adagu I.S., Craig J.C., Cullander C. Hydroxychloroquine is much less active than chloroquine against chloroquine-resistant plasmodium falciparum, in agreement with its physicochemical properties. J. Antimicrob. Chemother. 2003;52:188–193. doi: 10.1093/jac/dkg319.
    1. Finbloom D.S., Silver K., Newsome D.A., Gunkel R. Comparison of hydroxychloroquine and chloroquine use and the development of retinal toxicity. J. Rheumatol. 1985;12:692–694.
    1. Manic G., Obrist F., Kroemer G., Vitale I., Galluzzi L. Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell. Oncol. 2014;1:e29911. doi: 10.4161/mco.29911.
    1. Goldberg S.B., Supko J.G., Neal J.W., Muzikansky A., Digumarthy S., Fidias P., Temel J.S., Heist R.S., Shaw A.T., McCarthy P.O., et al. A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer. J. Thorac. Oncol. 2012;7:1602–1608. doi: 10.1097/JTO.0b013e318262de4a.
    1. Donohue E., Thomas A., Maurer N., Manisali I., Zeisser-Labouebe M., Zisman N., Anderson H.J., Ng S.S., Webb M., Bally M., et al. The autophagy inhibitor verteporfin moderately enhances the antitumor activity of gemcitabine in a pancreatic ductal adenocarcinoma model. J. Cancer. 2013;4:585–596. doi: 10.7150/jca.7030.
    1. Amaravadi R.K., Winkler J.D. Lys05: A new lysosomal autophagy inhibitor. Autophagy. 2012;8:1383–1384. doi: 10.4161/auto.20958.
    1. Lee H.O., Mustafa A., Hudes G.R., Kruger W.D. Hydroxychloroquine destabilizes phospho-S6 in human renal carcinoma cells. PLoS ONE. 2015;10:e0131464. doi: 10.1371/journal.pone.0131464.
    1. Wolpin B.M., Rubinson D.A., Wang X., Chan J.A., Cleary J.M., Enzinger P.C., Fuchs C.S., McCleary N.J., Meyerhardt J.A., Ng K., et al. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist. 2014;19:637–638. doi: 10.1634/theoncologist.2014-0086.
    1. Vogl D.T., Stadtmauer E.A., Tan K.S., Heitjan D.F., Davis L.E., Pontiggia L., Rangwala R., Piao S., Chang Y.C., Scott E.C., et al. Combined autophagy and proteasome inhibition: A phase I trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy. 2014;10:1380–1390. doi: 10.4161/auto.29264.
    1. Rangwala R., Leone R., Chang Y.C., Fecher L.A., Schuchter L.M., Kramer A., Tan K.S., Heitjan D.F., Rodgers G., Gallagher M., et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy. 2014;10:1369–1379. doi: 10.4161/auto.29118.
    1. Rangwala R., Chang Y.C., Hu J., Algazy K.M., Evans T.L., Fecher L.A., Schuchter L.M., Torigian D.A., Panosian J.T., Troxel A.B., et al. Combined mtor and autophagy inhibition: Phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy. 2014;10:1391–1402. doi: 10.4161/auto.29119.
    1. Rosenfeld M.R., Ye X., Supko J.G., Desideri S., Grossman S.A., Brem S., Mikkelson T., Wang D., Chang Y.C., Hu J., et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10:1359–1368. doi: 10.4161/auto.28984.
    1. Mahalingam D., Mita M., Sarantopoulos J., Wood L., Amaravadi R.K., Davis L.E., Mita A.C., Curiel T.J., Espitia C.M., Nawrocki S.T., et al. Combined autophagy and HDAC inhibition: A phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy. 2014;10:1403–1414. doi: 10.4161/auto.29231.
    1. De Ruijter A.J., van Gennip A.H., Caron H.N., Kemp S., van Kuilenburg A.B. Histone deacetylases (HDACS): Characterization of the classical HDAC family. Biochem. J. 2003;370:737–749. doi: 10.1042/bj20021321.
    1. Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–326. doi: 10.1016/j.cell.2010.01.028.
    1. De Milito A., Canese R., Marino M.L., Borghi M., Iero M., Villa A., Venturi G., Lozupone F., Iessi E., Logozzi M., et al. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int. J. Cancer. 2010;127:207–219. doi: 10.1002/ijc.25009.
    1. Egan D.F., Chun M.G., Vamos M., Zou H., Rong J., Miller C.J., Lou H.J., Raveendra-Panickar D., Yang C.C., Sheffler D.J., et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell. 2015;59:285–297. doi: 10.1016/j.molcel.2015.05.031.
    1. Liu J., Xia H., Kim M., Xu L., Li Y., Zhang L., Cai Y., Norberg H.V., Zhang T., Furuya T., et al. Beclin 1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell. 2011;147:223–234. doi: 10.1016/j.cell.2011.08.037.
    1. Shao S., Li S., Qin Y., Wang X., Yang Y., Bai H., Zhou L., Zhao C., Wang C. Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia. Int. J. Oncol. 2014;44:1661–1668. doi: 10.3892/ijo.2014.2313.
    1. Pasquier B. SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells. Autophagy. 2015;11:725–726. doi: 10.1080/15548627.2015.1033601.
    1. Akin D., Wang S.K., Habibzadegah-Tari P., Law B., Ostrov D., Li M., Yin X.M., Kim J.S., Horenstein N., Dunn W.A., Jr. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy. 2014;10:2021–2035. doi: 10.4161/auto.32229.
    1. Donohue E., Tovey A., Vogl A.W., Arns S., Sternberg E., Young R.N., Roberge M. Inhibition of autophagosome formation by the benzoporphyrin derivative verteporfin. J. Biol. Chem. 2011;286:7290–7300. doi: 10.1074/jbc.M110.139915.
    1. Wu H.M., Shao L.J., Jiang Z.F., Liu R.Y. Gemcitabine-induced autophagy protects human lung cancer cells from apoptotic death. Lung. 2016;194:959–966. doi: 10.1007/s00408-016-9936-6.
    1. Carew J.S., Nawrocki S.T. Drain the lysosome: Development of the novel orally available autophagy inhibitor ROC-325. Autophagy. 2017;13:765–766. doi: 10.1080/15548627.2017.1280222.
    1. Carew J.S., Espitia C.M., Zhao W., Han Y., Visconte V., Phillips J., Nawrocki S.T. Disruption of autophagic degradation with ROC-325 antagonizes renal cell carcinoma pathogenesis. Clin. Cancer Res. 2016;23:2869–2879. doi: 10.1158/1078-0432.CCR-16-1742.
    1. Tsang A.C., Ahmadi Pirshahid S., Virgili G., Gottlieb C.C., Hamilton J., Coupland S.G. Hydroxychloroquine and chloroquine retinopathy: A systematic review evaluating the multifocal electroretinogram as a screening test. Ophthalmology. 2015;122:1239–1251. doi: 10.1016/j.ophtha.2015.02.011.
    1. Solomon V.R., Lee H. Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharmacol. 2009;625:220–233. doi: 10.1016/j.ejphar.2009.06.063.
    1. Onyenwoke R.U., Brenman J.E. Lysosomal storage diseases-regulating neurodegeneration. J. Exp. Neurosci. 2015;9:81–91. doi: 10.4137/JEN.S25475.

Source: PubMed

3
Subskrybuj