Electrical and mechanical ventricular activation during left bundle branch block and resynchronization

Marc Strik, François Regoli, Angelo Auricchio, Frits Prinzen, Marc Strik, François Regoli, Angelo Auricchio, Frits Prinzen

Abstract

Cardiac resynchronization therapy (CRT) aims to treat selected heart failure patients suffering from conduction abnormalities with left bundle branch block (LBBB) as the culprit disease. LBBB remained largely underinvestigated until it became apparent that the amount of response to CRT was heterogeneous and that the therapy and underlying pathology were thus incompletely understood. In this review, current knowledge concerning activation in LBBB and during biventricular pacing will be explored and applied to current CRT practice, highlighting novel ways to better measure and treat the electrical substrate.

Figures

Fig. 1
Fig. 1
Typical examples of 3D electrical activation in canine hearts during normal conduction (left panel) and after creation of left bundle branch block (right panel). Each electrical activation map is reconstructed using a single-beat recording of simultaneous epicardial and endocardial electrical mapping. Epicardial potentials were derived using electrode bands placed around the heart, containing over 100 contact electrodes while the LV endocardium was mapped using custom-made plunge electrodes [63]. Early activated regions are indicated by a red color (close to 0 ms) and late activation regions are indicated by a dark blue color (over 100 ms), see color bar. Reproduced with permission [8]
Fig. 2
Fig. 2
Timing of electrical activation (depolarization) wavefronts in normal conduction and during LBBB shown in sagittal view. For reference, two QRS-T waveforms are shown in their anatomic locations (V3 on the chest and aVF inferiorly). Electrical activation starts at the small arrows and spreads in a wavefront with each colored line representing successive 10 ms. In normal conduction, activation begins within both the LV and RV endocardium. In LBBB, activation only begins in the RV and must proceed through the septum before reaching the LV endocardium. Reproduced with permission [64]
Fig. 3
Fig. 3
Epicardial isochrone maps during native rhythm in a patient with LBBB. Left anterior escending (LAD) coronary artery is shown and the approximate valve region is covered by gray. Earliest and latest ventricular activation times (in milliseconds) are indicated by framed numbers. Activation times are given with respect to QRS onset. QRSd QRS duration. Reproduced with permission [10]
Fig. 4
Fig. 4
3D reconstruction of electrical activation times of the LV and the RV during intrinsic conduction (LBBB) and BiV pacing (at the RV apex and basal-lateral LV wall) in representative hearts with LBBB (left), LBBB with LAD infarction (middle), and LBBB with LCX infarction (right). Reproduced with permission [65]
Fig. 5
Fig. 5
Typical examples of 3D electrical activation in canine hearts with chronic LBBB and transmural myocardial infarction during CRT with epicardial LV pacing (left panel) and endocardial LV pacing (right panel). Reproduced with permission [1]

References

    1. Strik M, Ploux S, Vernooy K, Prinzen FW. Cardiac resynchronization therapy: refocus on the electrical substrate. Circulation Journal. 2011;75:1297–1304. doi: 10.1253/circj.CJ-11-0356.
    1. Vernooy K, Cornelussen RN, Verbeek XA, Vanagt WY, van Hunnik A, Kuiper M, et al. Cardiac resynchronization therapy cures dyssynchronopathy in canine left bundle-branch block hearts. European Heart Journal. 2007;28:2148–2155. doi: 10.1093/eurheartj/ehm207.
    1. Bilchick KC, Kamath S, DiMarco JP, Stukenborg GJ. Bundle-branch block morphology and other predictors of outcome after cardiac resynchronization therapy in medicare patients. Circulation. 2010;122:2022–2030. doi: 10.1161/CIRCULATIONAHA.110.956011.
    1. Eppinger H, Rothberger J. Ueber die folgen der durchschneidung der tawaraschen schenkel des reizleitungssystems. Zeitschrift für Klinische Medizin. 1910;70:1–20.
    1. Demoulin JC, Kulbertus HE. Histopathological examination of concept of left hemiblock. British Heart Journal. 1972;34:807–814. doi: 10.1136/hrt.34.8.807.
    1. Massing GK, James TN. Anatomical configuration of the his bundle and bundle branches in the human heart. Circulation. 1976;53:609–621.
    1. Durrer D, van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC. Total excitation of the isolated human heart. Circulation. 1970;41:899–912.
    1. Strik, M., van Middendorp, L. B., & Vernooy, K. (2011). Animal models of dyssynchrony. Journal of Cardiovascular Translational Research. doi:10.1007/s12265-011-9336-5.
    1. Vassallo JA, Cassidy DM, Marchlinski FE, Buxton AE, Waxman HL, Doherty JU, et al. Endocardial activation of left bundle branch block. Circulation. 1984;69:914–923. doi: 10.1161/01.CIR.69.5.914.
    1. Jia P, Ramanathan C, Ghanem RN, Ryu K, Varma N, Rudy Y. Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: observation of variable electrophysiologic responses. Heart Rhythm. 2006;3(Jia P, Ramanathan C, Ghanem RN, Ryu K, Varma N, Rudy Y):296–310. doi: 10.1016/j.hrthm.2005.11.025.
    1. Rodriguez LM, Timmermans C, Nabar A, Beatty G, Wellens HJ. Variable patterns of septal activation in patients with left bundle branch block and heart failure. Journal of Cardiovascular Electrophysiology. 2003;14:135–141. doi: 10.1046/j.1540-8167.2003.02421.x.
    1. Auricchio A, Fantoni C, Regoli F, Carbucicchio C, Goette A, Geller C, et al. Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation. 2004;109:1133–1139. doi: 10.1161/01.CIR.0000118502.91105.F6.
    1. Narula OS. Longitudinal dissociation in the his bundle. Bundle branch block due to asynchronous conduction within the His bundle in man. Circulation. 1977;56:996–1006.
    1. Bacharova L, Mateasik A, Krause R, Prinzen FW, Auricchio A, Potse M. The effect of reduced intercellular coupling on electrocardiographic signs of left ventricular hypertrophy. Journal of Electrocardiology. 2011;44:571–576. doi: 10.1016/j.jelectrocard.2011.06.004.
    1. Surawicz B, Childers R, Deal BJ, Gettes LS, Bailey JJ, Gorgels A, et al. Aha/accf/hrs recommendations for the standardization and interpretation of the electrocardiogram: Part III: intraventricular conduction disturbances. Journal of the American College of Cardiology. 2009;53:976–981. doi: 10.1016/j.jacc.2008.12.013.
    1. Strauss DG, Selvester RH, Lima JA, Arheden H, Miller JM, Gerstenblith G, et al. Ecg quantification of myocardial scar in cardiomyopathy patients with or without conduction defects: correlation with cardiac magnetic resonance and arrhythmogenesis. Circulation. Arrhythmia and Electrophysiology. 2008;1:327–336. doi: 10.1161/CIRCEP.108.798660.
    1. Fantoni C, Kawabata M, Massaro R, Regoli F, Raffa S, Arora V, et al. Right and left ventricular activation sequence in patients with heart failure and right bundle branch block: a detailed analysis using three-dimensional non-fluoroscopic electroanatomic mapping system. Journal of Cardiovascular Electrophysiology. 2005;16:112–119. doi: 10.1046/j.1540-8167.2005.40777.x.
    1. Tang, A. S., Wells, G. A., Talajic, M., Arnold, M. O., Sheldon, R., Connolly, S., et al. (2010). Cardiac-resynchronization therapy for mild-to-moderate heart failure. The New England Journal of Medicine. doi:10.1056/NEJMoa1009540.
    1. Gervais R, Leclercq C, Shankar A, Jacobs S, Eiskjaer H, Johannessen A, et al. Surface electrocardiogram to predict outcome in candidates for cardiac resynchronization therapy: a sub-analysis of the care-hf trial. European Journal of Heart Failure. 2009;11:699–705. doi: 10.1093/eurjhf/hfp074.
    1. Zareba W, Klein H, Cygankiewicz I, Hall WJ, McNitt S, Brown M, et al. Effectiveness of cardiac resynchronization therapy by qrs morphology in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (madit-crt) Circulation. 2011;123:1061–1072. doi: 10.1161/CIRCULATIONAHA.110.960898.
    1. Sipahi, I., Carrigan, T. P., Rowland, D. Y., Stambler, B. S., & Fang, J. C. (2011). Impact of QRS duration on clinical event reduction with cardiac resynchronization therapy: meta-analysis of randomized controlled trials. Archives of Internal Medicine. doi:10.1001/archinternmed.2011.247.
    1. Hsing, J. M., Selzman, K. A., Leclercq, C., Pires, L. A., McLaughlin, M. G., McRae, S. E., et al. (2011). Paced left ventricular qrs width and ecg parameters predict outcomes after cardiac resynchronization therapy: prospect-ECG sub-study. Circulation. Arrhythmia and Electrophysiology. doi:10.1161/CIRCEP.111.962605.
    1. Grant RP, Dodge HT. Mechanisms of QRS complex prolongation in man; left ventricular conduction disturbances. American Journal of Medicine. 1956;20:834–852. doi: 10.1016/0002-9343(56)90204-2.
    1. Strauss DG, Selvester RH. The QRS complex—a biomarker that “images” the heart: QRS scores to quantify myocardial scar in the presence of normal and abnormal ventricular conduction. Journal of Electrocardiology. 2009;42:85–96. doi: 10.1016/j.jelectrocard.2008.07.011.
    1. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, et al. Results of the predictors of response to CRT (prospect) trial. Circulation. 2008;117:2608–2616. doi: 10.1161/CIRCULATIONAHA.107.743120.
    1. Sweeney MO, van Bommel RJ, Schalij MJ, Borleffs CJ, Hellkamp AS, Bax JJ. Analysis of ventricular activation using surface electrocardiography to predict left ventricular reverse volumetric remodeling during cardiac resynchronization therapy. Circulation. 2010;121:626–634. doi: 10.1161/CIRCULATIONAHA.109.894774.
    1. Varma N. Left ventricular conduction delays and relation to qrs configuration in patients with left ventricular dysfunction. The American Journal of Cardiology. 2009;103:1578–1585. doi: 10.1016/j.amjcard.2009.01.379.
    1. Singh JP, Fan D, Heist EK, Alabiad CR, Taub C, Reddy V, et al. Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm. 2006;3:1285–1292. doi: 10.1016/j.hrthm.2006.07.034.
    1. Fung JW, Chan JY, Yip GW, Chan HC, Chan WW, Zhang Q, et al. Effect of left ventricular endocardial activation pattern on echocardiographic and clinical response to cardiac resynchronization therapy. Heart. 2007;93:432–437. doi: 10.1136/hrt.2007.115295.
    1. Mollema SA, Bleeker GB, van der Wall EE, Schalij MJ, Bax JJ. Usefulness of qrs duration to predict response to cardiac resynchronization therapy in patients with end-stage heart failure. The American Journal of Cardiology. 2007;100:1665–1670. doi: 10.1016/j.amjcard.2007.06.071.
    1. Marcus GM, Rose E, Viloria EM, Schafer J, De Marco T, Saxon LA, et al. Septal to posterior wall motion delay fails to predict reverse remodeling or clinical improvement in patients undergoing cardiac resynchronization therapy. Journal of the American College of Cardiology. 2005;46:2208–2214. doi: 10.1016/j.jacc.2005.05.095.
    1. Pitzalis MV, Iacoviello M, Romito R, Guida P, De Tommasi E, Luzzi G, et al. Ventricular asynchrony predicts a better outcome in patients with chronic heart failure receiving cardiac resynchronization therapy. Journal of the American College of Cardiology. 2005;45:65–69. doi: 10.1016/j.jacc.2004.09.058.
    1. Seo Y, Ito H, Nakatani S, Takami M, Naito S, Shiga T, et al. The role of echocardiography in predicting responders to cardiac resynchronization therapy. Circulation Journal. 2011;75:1156–1163. doi: 10.1253/circj.CJ-10-0861.
    1. Russel IK, Zwanenburg JJ, Germans T, Marcus JT, Allaart CP, de Cock CC, et al. Mechanical dyssynchrony or myocardial shortening as mri predictor of response to biventricular pacing? Journal of Magnetic Resonance Imaging. 2007;26:1452–1460. doi: 10.1002/jmri.21133.
    1. Torrent-Guasp F, Kocica MJ, Corno AF, Komeda M, Carreras-Costa F, Flotats A, et al. Towards new understanding of the heart structure and function. European Journal of Cardio-Thoracic Surgery. 2005;27:191–201. doi: 10.1016/j.ejcts.2004.11.026.
    1. Voigt JU, Schneider TM, Korder S, Szulik M, Gurel E, Daniel WG, et al. Apical transverse motion as surrogate parameter to determine regional left ventricular function inhomogeneities: a new, integrative approach to left ventricular asynchrony assessment. European Heart Journal. 2009;30:959–968. doi: 10.1093/eurheartj/ehp062.
    1. Lim P, Buakhamsri A, Popovic ZB, Greenberg NL, Patel D, Thomas JD, et al. Longitudinal strain delay index by speckle tracking imaging: a new marker of response to cardiac resynchronization therapy. Circulation. 2008;118:1130–1137. doi: 10.1161/CIRCULATIONAHA.107.750190.
    1. Klimusina J, De Boeck BW, Leenders GE, Faletra FF, Prinzen F, Averaimo M, et al. Redistribution of left ventricular strain by cardiac resynchronization therapy in heart failure patients. European Journal of Heart Failure. 2011;13:186–194. doi: 10.1093/eurjhf/hfq197.
    1. Tanaka H, Nesser HJ, Buck T, Oyenuga O, Janosi RA, Winter S, et al. Dyssynchrony by speckle-tracking echocardiography and response to cardiac resynchronization therapy: results of the speckle tracking and resynchronization (star) study. European Heart Journal. 2010;31:1690–1700. doi: 10.1093/eurheartj/ehq213.
    1. De Boeck BW, Teske AJ, Meine M, Leenders GE, Cramer MJ, Prinzen FW, et al. Septal rebound stretch reflects the functional substrate to cardiac resynchronization therapy and predicts volumetric and neurohormonal response. European Journal of Heart Failure. 2009;11:863–871. doi: 10.1093/eurjhf/hfp107.
    1. Helm RH, Leclercq C, Faris OP, Ozturk C, McVeigh E, Lardo AC, et al. Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation. 2005;111:2760–2767. doi: 10.1161/CIRCULATIONAHA.104.508457.
    1. Bilchick KC, Dimaano V, Wu KC, Helm RH, Weiss RG, Lima JA, et al. Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy. JACC. Cardiovascular Imaging. 2008;1:561–568. doi: 10.1016/j.jcmg.2008.04.013.
    1. Mangiavacchi M, Gasparini M, Faletra F, Klersy C, Morenghi E, Galimberti P, et al. Clinical predictors of marked improvement in left ventricular performance after cardiac resynchronization therapy in patients with chronic heart failure. American Heart Journal. 2006;151:477 e471–477 e476. doi: 10.1016/j.ahj.2005.08.008.
    1. St John Sutton MG, Plappert T, Abraham WT, Smith AL, DeLurgio DB, Leon AR, et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation. 2003;107:1985–1990. doi: 10.1161/01.CIR.0000065226.24159.E9.
    1. Rademakers LM, van Kerckhoven R, van Deursen CJ, Strik M, van Hunnik A, Kuiper M, et al. Myocardial infarction does not preclude electrical and hemodynamic benefits of cardiac resynchronization therapy in dyssynchronous canine hearts circulation. Arrhythmia and Electrophysiology. 2010;3:361–368. doi: 10.1161/CIRCEP.109.931865.
    1. Chalil S, Foley PW, Muyhaldeen SA, Patel KC, Yousef ZR, Smith RE, et al. Late gadolinium enhancement-cardiovascular magnetic resonance as a predictor of response to cardiac resynchronization therapy in patients with ischaemic cardiomyopathy. Europace. 2007;9:1031–1037. doi: 10.1093/europace/eum133.
    1. Leyva F, Foley PW, Chalil S, Ratib K, Smith RE, Prinzen F, et al. Cardiac resynchronisation therapy guided by late gadolinium-enhancement cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance. 2011;13:29. doi: 10.1186/1532-429X-13-29.
    1. Delgado V, van Bommel RJ, Bertini M, Borleffs CJ, Marsan NA, Arnold CT, et al. Relative merits of left ventricular dyssynchrony, left ventricular lead position, and myocardial scar to predict long-term survival of ischemic heart failure patients undergoing cardiac resynchronization therapy. Circulation. 2011;123:70–78. doi: 10.1161/CIRCULATIONAHA.110.945345.
    1. Faletra FF, Conca C, Klersy C, Klimusina J, Regoli F, Mantovani A, et al. Comparison of eight echocardiographic methods for determining the prevalence of mechanical dyssynchrony and site of latest mechanical contraction in patients scheduled for cardiac resynchronization therapy. The American Journal of Cardiology. 2009;103:1746–1752. doi: 10.1016/j.amjcard.2009.02.043.
    1. Strik, M., Rademakers, L. M., van Deursen, C. J., van Hunnik, A., Kuiper, M., Klersy, C., et al. (2011). Endocardial left ventricular pacing improves cardiac resynchronization therapy in chronic asynchronous infarction and heart failure models. Circulation. Arrhythmia and Electrophysiology. doi:10.1161/CIRCEP.111.965814.
    1. van Deursen C, van Geldorp IE, Rademakers LM, van Hunnik A, Kuiper M, Klersy C, et al. Left ventricular endocardial pacing improves resynchronization therapy in canine left bundle-branch hearts. Circulation. Arrhythmia and Electrophysiology. 2009;2:580–587. doi: 10.1161/CIRCEP.108.846022.
    1. Spragg DD, Dong J, Fetics BJ, Helm R, Marine JE, Cheng A, et al. Optimal left ventricular endocardial pacing sites for cardiac resynchronization therapy in patients with ischemic cardiomyopathy. Journal of the American College of Cardiology. 2010;56:774–781. doi: 10.1016/j.jacc.2010.06.014.
    1. Jais P, Takahashi A, Garrigue S, Yamane T, Hocini M, Shah DC, et al. Mid-term follow-up of endocardial biventricular pacing. Pacing and Clinical Electrophysiology. 2000;23:1744–1747.
    1. van Gelder BM, Scheffer MG, Meijer A, Bracke FA. Transseptal endocardial left ventricular pacing: an alternative technique for coronary sinus lead placement in cardiac resynchronization therapy. Heart Rhythm. 2007;4:454–460. doi: 10.1016/j.hrthm.2006.11.023.
    1. Kassai I, Foldesi C, Szekely A, Szili-Torok T. Alternative method for cardiac resynchronization: transapical lead implantation. The Annals of Thoracic Surgery. 2009;87:650–652. doi: 10.1016/j.athoracsur.2008.04.080.
    1. Echt DS, Cowan MW, Riley RE, Brisken AF. Feasibility and safety of a novel technology for pacing without leads. Heart Rhythm. 2006;3:1202–1206. doi: 10.1016/j.hrthm.2006.06.012.
    1. Soliman OI, Geleijnse ML, Theuns DA, van Dalen BM, Vletter WB, Jordaens LJ, et al. Usefulness of left ventricular systolic dyssynchrony by real-time three-dimensional echocardiography to predict long-term response to cardiac resynchronization therapy. The American Journal of Cardiology. 2009;103:1586–1591. doi: 10.1016/j.amjcard.2009.01.372.
    1. Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. Journal of the American College of Cardiology. 2004;44:1834–1840. doi: 10.1016/j.jacc.2004.08.016.
    1. Yu CM, Lin H, Zhang Q, Sanderson JE. High prevalence of left ventricular systolic and diastolic asynchrony in patients with congestive heart failure and normal QRS duration. Heart. 2003;89:54–60. doi: 10.1136/heart.89.1.54.
    1. Suffoletto MS, Dohi K, Cannesson M, Saba S, Gorcsan J., 3rd Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation. 2006;113:960–968. doi: 10.1161/CIRCULATIONAHA.105.571455.
    1. Jansen AH, van Dantzig J, Bracke F, Meijer A, Peels KH, van den Brink RB, et al. Qualitative observation of left ventricular multiphasic septal motion and septal-to-lateral apical shuffle predicts left ventricular reverse remodeling after cardiac resynchronization therapy. The American Journal of Cardiology. 2007;99:966–969. doi: 10.1016/j.amjcard.2006.11.044.
    1. Buss SJ, Humpert PM, Bekeredjian R, Hardt SE, Zugck C, Schellberg D, et al. Echocardiographic phase imaging to predict reverse remodeling after cardiac resynchronization therapy. JACC. Cardiovascular Imaging. 2009;2:535–543. doi: 10.1016/j.jcmg.2009.03.003.
    1. Mills RW, Cornelussen RN, Mulligan LJ, Strik M, Rademakers LM, Skadsberg ND, et al. Left ventricular septal and left ventricular apical pacing chronically maintain cardiac contractile coordination, pump function and efficiency. Circulation. Arrhythmia and Electrophysiology. 2009;2:571–579. doi: 10.1161/CIRCEP.109.882910.
    1. Strauss DG, Selvester RH, Wagner GS. Defining left bundle branch block in the era of cardiac resynchronization therapy. The American Journal of Cardiology. 2011;107:927–934. doi: 10.1016/j.amjcard.2010.11.010.
    1. Rademakers LM. Electrical and hemodynamic benefits of endocardial crt with chronic infarction and LBBB. Heart Rhythm. 2009;6:S237.

Source: PubMed

3
Subskrybuj