M. tuberculosis genotypic diversity and drug susceptibility pattern in HIV-infected and non-HIV-infected patients in northern Tanzania

Gibson S Kibiki, Bert Mulder, Wil M V Dolmans, Jessica L de Beer, Martin Boeree, Noel Sam, Dick van Soolingen, Christophe Sola, Adri G M van der Zanden, Gibson S Kibiki, Bert Mulder, Wil M V Dolmans, Jessica L de Beer, Martin Boeree, Noel Sam, Dick van Soolingen, Christophe Sola, Adri G M van der Zanden

Abstract

Background: Tuberculosis (TB) is a major health problem and HIV is the major cause of the increase in TB. Sub-Saharan Africa is endemic for both TB and HIV infection. Determination of the prevalence of M. tuberculosis strains and their drug susceptibility is important for TB control.TB positive culture, BAL fluid or sputum samples from 130 patients were collected and genotyped. The spoligotypes were correlated with anti-tuberculous drug susceptibility in HIV-infected and non-HIV patients from Tanzania.

Results: One-third of patients were TB/HIV co-infected. Forty-seven spoligotypes were identified. Fourteen isolates (10.8%) had new and unique spoligotypes while 116 isolates (89.2%) belonged to 33 known spoligotypes. The major spoligotypes contained nine clusters: CAS1-Kili 30.0%, LAM11- ZWE 14.6%, ND 9.2%, EAI 6.2%, Beijing 5.4%, T-undefined 4.6%, CAS1-Delhi 3.8%, T1 3.8% and LAM9 3.8%. Twelve (10.8%) of the 111 phenotypically tested strains were resistant to anti-TB drugs. Eight (7.2%) were monoresistant strains: 7 to isoniazid (INH) and one to streptomycin. Four strains (3.5%) were resistant to multiple drugs: one (0.9%) was resistant to INH and streptomycin and the other three (2.7%) were MDR strains: one was resistant to INH, rifampicin and ethambutol and two were resistant to all four anti-TB drugs. Mutation in the katG gene codon 315 and the rpoB hotspot region showed a low and high sensitivity, respectively, as predictor of phenotypic drug resistance.

Conclusion: CAS1-Kili and LAM11-ZWE were the most common families. Strains of the Beijing family and CAS1-Kili were not or least often associated with resistance, respectively. HIV status was not associated with spoligotypes, resistance or previous TB treatment.

Figures

Figure 1
Figure 1
Description of Mycobacterium tuberculosis strains and clusters (SIT) found in Tanzania. DST = Drug Susceptibility Testing. SIT = spoligo-international type. WT = wild type. MT = mutant type.

References

    1. Lauzardo M, Ashkin D. Phthisiology at the dawn of the new century. Chest. 2000;117:1455–1473. doi: 10.1378/chest.117.5.1455.
    1. Maher D, Chalet P, Spinaci S, Harries AD. Treatment of tuberculosis: guidelines for national programmes. Geneva: WHO. 1997.
    1. Bucher HC, Griffith LE, Guyatt GH, et al. Isoniazid prophylaxis for tuberculosis with in HIV infection: Meta-analysis of randomized controlled trials. AIDS. 1999;13:501–507. doi: 10.1097/00002030-199903110-00009.
    1. Daley CL, Small PM, Schecter GF, Schoolnik GK, McAdam RA, Jacobs WR, Jr, Hopewell PC. An outbreak of tuberculosis with accelerated progression among persons infected with the human immunodeficieny virus: an analysis using restriction-fragment-length-polymorphisms. N Engl J Med. 1992;326:231–235.
    1. Odhiambo JA, Borgdorff MW, Kiambih FM, et al. Tuberculosis and HIV the epidemic: increasing annual risk of infection in Kenya. 1986 – 1996. Am J Public Health. 1999;89:1078–1082.
    1. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Global burden of tuberculosis. Estimated incidence, prevalence, and mortality by country. JAMA. 1999;282:677–686. doi: 10.1001/jama.282.7.677.
    1. Cantwell MF, Binkin NJ. Tuberculosis in sub-Saharan Africa: A regional assessment of the impact of the human immunodeficiency virus and National Tuberculosis Control Program quality. Tuber Lung Dis. 1997;77:220–225. doi: 10.1016/S0962-8479(96)90004-0.
    1. Puustinen K, Marjamaki M, Rastogi N, Sola C, Filliol I, Ruuti P, Holmstrom P, Viljanen MK, Soini H. Characterization of Finnish Mycobacterium tuberculosis isolates by spoligotyping. J Clin Microbiol. 2003;41:1525–1528. doi: 10.1128/JCM.41.4.1525-1528.2003.
    1. van Crevel R, Nelwan RH, de Lenne W, et al. Mycobacterium tuberculosis Beijing genotype associate with febrile response to treatment. Emerg Infect Dis. 2001;7:880–883.
    1. Kamerbeek JL, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, et al. Simultaneous detection of and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–914.
    1. Kremer K, van Soolingen D, Frothingham R, Haas WH, Hermans PWM, Martin C, Palittapongarnpim P, Plikaytis BB, Riley LW, Yakrus MA, et al. Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol. 1999;37:2618.
    1. Chan MY, Borgdorff MW, Yip CW, de Haas PE, Wong WS, Kam KM, van Soolingen D. Seventy percent of the M. tuberculosis isolates in Hong Kong represent the Beijing genotype. Epidemiol Infect. 2001;127:169–171. doi: 10.1017/S0950268801005659.
    1. Frieden TR, Sherman LF, Maw KL, Fujiwara PI, Crawford JT, Nivin B, Sharp V, Hewlett D, Jr, Brudney K, Alland D, et al. A multi-institutional outbreak of highly drug-resistant tuberculosis: Epidemiology and clinical outcome. JAMA. 1996;276:1229–1235. doi: 10.1001/jama.276.15.1229.
    1. Morris S, Bai GH, Suffys P, Portillo-Gomez L, Fairchok M, Rouse D. Molecular mechanisms of multi drug resistance in clinical isolates of Mycobacterium tuberculosis. J Infect Dis. 1995;171:954–960.
    1. Stoeckle MY, Guan L, Riegler N, Weitzman I, Kreiswirth B, Komblum J, Laraque F, Riley LW. Catalase peroxidase gene sequences in Isoniazid-sensitive and resistance strains of Mycobacterium tuberculosis from New York City. J Infect Dis. 1993;168:1063–1065.
    1. Zhang Y, Heym B, Allen B, Young D, Cole S. The catalase peroxidase gene and Isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992;358:591–593. doi: 10.1038/358591a0.
    1. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR., Jr inhA, a gene encoding a target for Isoniazid and Ethionamide in Mycobacterium tuberculosis. Science. 1994;263:227–230. doi: 10.1126/science.8284673.
    1. Heym B, Honore N, Truffot-Pernot C, Banerjee A, Schurra C, Jacobs WR, Jr, van Embden JD, Grosset JH, Cole ST. Implication of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet. 1994;344:293–298. doi: 10.1016/S0140-6736(94)91338-2.
    1. van der zanden AGM, Te Koppele-Vije , Vijaya Bhanu N, van Soolingen D, Schouls LM. Use of DNA extracts from Ziehl Neelsen-stained slides for molecular detection of Rifampicin resistance and spoligotyping of Mycobacterium tuberculosis. J Clin Microbiol. 2003;41:1101–1108. doi: 10.1128/JCM.41.3.1101-1108.2003.
    1. Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SAM, Allix C, Aristimuno L, Arora J, Baumanis V, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiology. 2006;6
    1. Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM. Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci USA. 2004;101:4871–4876. doi: 10.1073/pnas.0305627101.
    1. McHugh TD, Batt SL, Shorten RJ, Gosling RD, Uiso L, Gillespie SH. Mycobacterium tuberculosis lineage: A naming of the parts. Tuberculosis. 2005;85:127–136. doi: 10.1016/j.tube.2004.06.002.
    1. Eldholm V, Matee M, Mfinanga SGM, Heun M, Dahle UR. A first insight into the genetic diversity of Mycobacterium tuberculosis in Dar es Salaam, Tanzania, assessed by spoligotyping. BMC Microbiol. 2006;6:76. doi: 10.1186/1471-2180-6-76.
    1. Anh DD, Borgdorff MW, Van LN, Lan NTN, Gorkom Tvan, Soolingen Dvan, Kremer K, et al. "Beijing " genotype emerging in Vietnam. Imerg Infect Dis. 2000;6:302–305.
    1. Niemann S, Rusch-Gerdes S, Joloba ML, Whalen CC, Guwatudde D, Ellner JJ, Eisenach K, Fumokong N, Johnson LJ, Aisu T, et al. Mycobacterium africanum subtype II is associated with two distinct genotypes and is a major cause of human tuberculosis in Kampala, Uganda. J Clin Microbiol. 2002;40:3398–3405. doi: 10.1128/JCM.40.9.3398-3405.2002.
    1. Diguimbaye C, Hilty M, Ngandolo R, Mahamat HH, Pfyffer GE, Baggi F, Tanner M, Schelling E, Zinsstag J. Molecular characterization and drug resistance testing of Mycobacterium tuberculosis isolates from Chad. J Clin Microbiol. 2006;44:1575–1577. doi: 10.1128/JCM.44.4.1575-1577.2006.
    1. Kuaban C, Bercion R, Noeske J, Cunin P, Nkamsse P, Ngo NS. Anti-tuberculosis drug resistance in the West province of Cameroon. Int J Tuberc Lung Dis. 2000;4:356–360.
    1. Streicher EM, Warren RM, Kewley C, Simpson J, Rastogi N, Sola C, van der Spuy GD, van Helden PD, Victor TC. Genotypic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates from rural districts of Western Cape province of South Africa. J Clin Microbiol. 2004;42:891–894. doi: 10.1128/JCM.42.2.891-894.2004.
    1. Tudo G, Gonzalez J, Obama R, Rodriguez JM, Franco JR, Espasa M, Simarro PR, Escaramis G, Ascaso C, Garcia A, et al. Study of resistance to anti-tuberculosis drugs in five districts of Equatorial Guinea: rates, risk factors, genotyping of gene mutations and molecular epidemiology. Int J Tuberc Lung Dis. 2004;8:15–22.
    1. Espinal MA, Laszlo A, Simonsen L, Boulahbal F, Kim SJ, Reniero A, Hoffner S, Rieder HL, Binkin NJ, Dye C, et al. Global trends in resistance to antituberculosis drugs. World Health Organisation – International Union Against Tuberculosis and Lung Disease Working Group on anti-Tuberculosis Drug Resistance Surveillance. N Engl J Med. 2001;344:1294–1303. doi: 10.1056/NEJM200104263441706.
    1. Ministry of Health The United Republic of Tanzania manual of the national tuberculosis and leprosy programme in Tanzania. 2003.
    1. Sanders M, Van Deun A, Ntakirutimana D, et al. Rifampicin monoresistant Mycobacterium tuberculosis in Bujumbura; results of drug resistance survey. Int J Tuberc Lung Dis. 2006;10:178–183.
    1. van Rie A, Warren RM, Beyers N, Gie RP, Classen CN, Richardson M, et al. Transmission of a multidrug-resistant Mycobacterium tuberculosis strain resembling "strain W" among noninstitutionalized, human immunodeficiency virus -seronegative patients. J Infect Dis. 1999;180:1608–1615. doi: 10.1086/315054.
    1. Murray JF. The white plague: down and out, or up and coming? Am Rev Respir Dis. 1989;140:1788–1795.
    1. Elliot AM, Halwiindi B, Hayes RJ, Luo N, Mwinga AG, Tembo G, Machiels L, Steenbergen G, Pobee JO, Nunn P. The impact of human immunodeficiency virus on mortality of patients treated for tuberculosis in a cohort study in Zambia. Trans R Soc Trop Med Hyg. 1995;89:78–82. doi: 10.1016/0035-9203(95)90668-1.
    1. Harries AD, Nyangulu DS, Kang'ombe C, Ndalama D, Glynn JR, Banda H, Wirima JJ, Salaniponi FM, Maher D, Nunn P. Treatment outcome of an unselected cohort of tuberculosis patients in relation to human immunodeficiency virus serostatus in Zomba hospital, Malawi. Trans R Soc Trop Med Hyg. 1998;92:343–347. doi: 10.1016/S0035-9203(98)91036-7.
    1. Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, Kaplan G, Barry CE. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature. 2004;431:84–87. doi: 10.1038/nature02837.
    1. Kent PT, Kubica GP. Public health mycobacteriology – a guide for level III laboratory. U.S. Department of Health and Human Services, Washington, D.C.; 1985.
    1. van der zanden AGM, Hoentjen AH, Heilmann FG, Weltevreden LM, Schouls LM, van Embden JD. Simultaneous detection of and strain differentiation of Mycobacterium tuberculosis complex in paraffin wax embedded tissues and stained microsopic preparations. Mol Pathol. 1998;51:209–214.
    1. Kwok S, Higuchi R. Avoiding false positive with PCR. Nature. 1989;339:237–238. doi: 10.1038/339237a0.
    1. Longo MC, Berninger MS, Hartley JL. Use of Uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990;93:125–128. doi: 10.1016/0378-1119(90)90145-H.
    1. International Spoligotype Database of the Institut Pasteur de Guadeloupe
    1. Balows . Manual of clinical microbiology. 5. 1991. Phenotypic DST with proportional method; pp. 304–340.

Source: PubMed

3
Subskrybuj