Anti-apoptotic activity of ETB receptor agonist, IRL-1620, protects neural cells in rats with cerebral ischemia

Seema Briyal, Amaresh K Ranjan, Mary G Hornick, Anupama K Puppala, Thanh Luu, Anil Gulati, Seema Briyal, Amaresh K Ranjan, Mary G Hornick, Anupama K Puppala, Thanh Luu, Anil Gulati

Abstract

Endothelin-B receptor agonist, IRL-1620, provides significant neuroprotection following cerebral ischemia in rats. Whether this neuroprotection is due to inhibition of apoptosis is unknown. IRL-1620-treated rats following permanent middle cerebral artery occlusion (MCAO) showed significant improvement in neurological and motor functions along with a decrease in infarct volume at 24 h (-81.3%) and day 7 (-73.0%) compared to vehicle group. Cerebral blood flow (CBF) significantly improved in IRL-1620-treated animals compared to vehicle by day 7 post MCAO. IRL-1620-treated rats showed an increase in phospho-Akt and decrease in Bad level 7 h post-occlusion compared to vehicle, while Akt and Bad expression was similar in cerebral hemispheres at 24 h post-MCAO. The phospho-Bad level was lower in vehicle- but not in IRL-1620-treated rats at 24 h. Anti-apoptotic Bcl-2 expression decreased, while pro-apoptotic Bax expression increased in vehicle-treated MCAO rats, these changes were attenuated (P < 0.01) by IRL-1620. Mitochondrial membrane-bound Bax intensity significantly decreased in IRL-1620 compared to vehicle-treated MCAO rats. IRL-1620 treatment reduced (P < 0.001) the number of TUNEL-positive cells compared to vehicle at 24 h and day 7 post MCAO. The results demonstrate that IRL-1620 is neuroprotective and attenuates neural damage following cerebral ischemia in rats by increasing CBF and reducing apoptosis.

Conflict of interest statement

Dr. Gulati is an employee of Pharmazz, Inc, he has issued and pending related patents. All other authors declare no competing interests.

Figures

Figure 1
Figure 1
Expression of total Akt and pAkt (A) and total Bad and pBad (B) protein levels with β-actin as a loading control. Lane 1- Sham [LH]; Lane 2 – Sham [RH]; Lane 3 –MCAO + Vehicle [LH]; Lane 4 –MCAO + Vehicle [RH]; Lane 5 – MCAO + IRL-1620 [LH]; Lane 5 – MCAO + IRL-1620 [RH]. LH = Left hemisphere; RH = Right hemisphere. *P < 0.01 compared to sham, #P < 0.05 compared LH; @P < 0.001 compared to MCAO + vehicle [RH]. Full-length blots are presented in supplementary file.
Figure 2
Figure 2
Expression of Bcl-2 (A) and Bax (B) protein levels with β-actin as a loading control. Lane 1 – sham [LH]; lane 2 – sham [RH]; lane 3 –MCAO + Vehicle [LH]; lane 4 –MCAO + vehicle [RH]; lane 5 –MCAO + IRL-1620 [LH]; lane 6 –MCAO + IRL-1620 [RH]. Values are expressed as mean ± S.E.M. *P #P < 0.05 compared LH; @P < 0.001 compare to MCAO + vehicle [RH]. Full-length blots are presented in supplementary file.
Figure 3
Figure 3
Bax translocation to mitochondria in cerebral ischemia-induced apoptosis. Bax was immuno-stained with anti-Bax, and the mitochondria were stained with MitoTracker (green). The merged image indicates colocalization of Bax on mitochondria. Values are expressed as mean ± S.E.M. *P @P < 0.001 compare to MCAO + vehicle.
Figure 4
Figure 4
TUNEL positive cells per 750 µm2 in the ischemic region were detected by TUNEL staining 24 h and day 7 after MCAO. Values are expressed as mean ± S.E.M. *p < 0.0001 compared to sham; @p < 0.001 compared to vehicle.
Figure 5
Figure 5
Effect of IRL-1620 on cerebral blood flow before, after and day 7 post MCAO in rat brains. Values are expressed as mean ± SEM. *P @P < 0.05 compared to MCAO + vehicle; $P < 0.0001 compared to IRL-1620 1 h post MCAO.
Figure 6
Figure 6
Effect of IRL-1620 on infarct volume in MCAO rats. 2 mm coronal sections of brains stained with TTC to visualize the infarct area 7 h, 24 h and day 7 post MCAO (red indicates normal tissue and white indicates infarct tissue). Values are expressed as mean ± SEM. *P @P < 0.05 compared to MCAO + vehicle.
Figure 7
Figure 7
Stimulation of ETB receptors by IRL-1620 can stimulate apoptotic signaling pathways which may be implicated in its neuroprotective effect.

References

    1. Benjamin EJ, et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485.
    1. Baynash AG, et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994;79:1277–1285. doi: 10.1016/0092-8674(94)90018-3.
    1. Choi DW. Trends in neurosciences. 1995. Calcium: still center-stage in hypoxic-ischemic neuronal death; pp. 58–60.
    1. Ekinci FJ, Malik KU, Shea TB. Activation of the L voltage-sensitive calcium channel by mitogen-activated protein (MAP) kinase following exposure of neuronal cells to beta-amyloid. MAP kinase mediates beta-amyloid-induced neurodegeneration. The Journal of biological chemistry. 1999;274:30322–30327. doi: 10.1074/jbc.274.42.30322.
    1. Lahav R, et al. Endothelin 3 selectively promotes survival and proliferation of neural crest-derived glial and melanocytic precursors in vitro. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:14214–14219. doi: 10.1073/pnas.95.24.14214.
    1. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990;348:730–732. doi: 10.1038/348730a0.
    1. Yanagisawa M, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–415. doi: 10.1038/332411a0.
    1. Castaneda MM, Cubilla MA, Lopez-Vicchi MM, Suburo AM. Endothelinergic cells in the subependymal region of mice. Brain research. 2010;1321:20–30. doi: 10.1016/j.brainres.2010.01.056.
    1. Ehrenreich H, et al. Endothelin b receptor deficiency is associated with an increased rate of neuronal apoptosis in the dentate gyrus. Neuroscience. 2000;95:993–1001. doi: 10.1016/S0306-4522(99)00507-2.
    1. Gulati A, Kumar A, Morrison S, Shahani BT. Effect of centrally administered endothelin agonists on systemic and regional blood circulation in the rat: role of sympathetic nervous system. Neuropeptides. 1997;31:301–309. doi: 10.1016/S0143-4179(97)90063-9.
    1. Sharifi AM, Schiffrin EL. Apoptosis in aorta of deoxycorticosterone acetate-salt hypertensive rats: effect of endothelin receptor antagonism. Journal of hypertension. 1997;15:1441–1448. doi: 10.1097/00004872-199715120-00011.
    1. Shichiri M, Kato H, Marumo F, Hirata Y. Endothelin-1 as an autocrine/paracrine apoptosis survival factor for endothelial cells. Hypertension. 1997;30:1198–1203. doi: 10.1161/01.HYP.30.5.1198.
    1. Riechers CC, et al. Endothelin B receptor deficient transgenic rescue rats: a rescue phenomenon in the brain. Neuroscience. 2004;124:719–723. doi: 10.1016/j.neuroscience.2003.10.023.
    1. Vidovic M, et al. Deficiency in endothelin receptor B reduces proliferation of neuronal progenitors and increases apoptosis in postnatal rat cerebellum. Cellular and molecular neurobiology. 2008;28:1129–1138. doi: 10.1007/s10571-008-9292-z.
    1. Dembowski C, et al. Phenotype, intestinal morphology, and survival of homozygous and heterozygous endothelin B receptor–deficient (spotting lethal) rats. Journal of pediatric surgery. 2000;35:480–488. doi: 10.1016/S0022-3468(00)90218-5.
    1. Leonard MG, Prazad P, Puppala B, Gulati A. Selective Endothelin-B Receptor Stimulation Increases Vascular Endothelial Growth Factor in the Rat Brain during Postnatal Development. Drug research. 2015;65:607–613. doi: 10.1055/s-0034-1398688.
    1. Briyal S, Nguyen C, Leonard M, Gulati A. Stimulation of endothelin B receptors by IRL-1620 decreases the progression of Alzheimer’s disease. Neuroscience. 2015;301:1–11. doi: 10.1016/j.neuroscience.2015.05.044.
    1. Gulati A. Understanding neurogenesis in the adult human brain. Indian journal of pharmacology. 2015;47:583–584. doi: 10.4103/0253-7613.169598.
    1. Gulati A. Endothelin Receptors, Mitochondria and Neurogenesis in Cerebral Ischemia. Current neuropharmacology. 2016;14:619–626. doi: 10.2174/1570159X14666160119094959.
    1. Leonard MG, Briyal S, Gulati A. Endothelin B receptor agonist, IRL-1620, reduces neurological damage following permanent middle cerebral artery occlusion in rats. Brain research. 2011;1420:48–58. doi: 10.1016/j.brainres.2011.08.075.
    1. Leonard MG, Briyal S, Gulati A. Endothelin B receptor agonist, IRL-1620, provides long-term neuroprotection in cerebral ischemia in rats. Brain research. 2012;1464:14–23. doi: 10.1016/j.brainres.2012.05.005.
    1. Leonard MG, Gulati A. Endothelin B receptor agonist, IRL-1620, enhances angiogenesis and neurogenesis following cerebral ischemia in rats. Brain research. 2013;1528:28–41. doi: 10.1016/j.brainres.2013.07.002.
    1. Gulati A, Hornick MG, Briyal S, Lavhale MS. A novel neuroregenerative approach using ET(B) receptor agonist, IRL-1620, to treat CNS disorders. Physiological research. 2018;67:S95–S113.
    1. Yagami T, et al. Effects of endothelin B receptor agonists on amyloid beta protein (25-35)-induced neuronal cell death. Brain research. 2002;948:72–81. doi: 10.1016/S0006-8993(02)02951-7.
    1. Yagami T, et al. Effects of an endothelin B receptor agonist on secretory phospholipase A2-IIA-induced apoptosis in cortical neurons. Neuropharmacology. 2005;48:291–300. doi: 10.1016/j.neuropharm.2004.09.011.
    1. Brinkmann K, Kashkar H. Targeting the mitochondrial apoptotic pathway: a preferred approach in hematologic malignancies? Cell death & disease. 2014;5:e1098. doi: 10.1038/cddis.2014.61.
    1. O’Neill KL, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes &. development. 2016;30:973–988. doi: 10.1101/gad.276725.115.
    1. Wei MC, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292:727–730. doi: 10.1126/science.1059108.
    1. Gu N, et al. Anti-apoptotic and angiogenic effects of intelectin-1 in rat cerebral ischemia. Brain research bulletin. 2017;130:27–35. doi: 10.1016/j.brainresbull.2016.12.006.
    1. Kajimoto M, et al. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion. Journal of cerebral blood flow and metabolism. 2016;36:1992–2004. doi: 10.1177/0271678X16666846.
    1. Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug design, development and therapy. 2015;9:3445–3454. doi: 10.2147/DDDT.S56071.
    1. Sommer CJ. Ischemic stroke: experimental models and reality. Acta neuropathologica. 2017;133:245–261. doi: 10.1007/s00401-017-1667-0.
    1. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. Journal of basic and clinical pharmacy. 2016;7:27–31. doi: 10.4103/0976-0105.177703.
    1. Reddy, G., Tolcher, A., Gulati, A., Chawla, S. & Allen L. F. Pharmacokinetics of SPI-1620 in a Phase I, open label, ascending dose study of the safety, tolerability, pharmacokinetics and pharmacodynamics of the endothelin B receptor agonist, SPI-1620, in recurrent or progressive carcinoma. Life Sciences25 (2013).
    1. Archer CR, Robinson EL, Drawnel FM, Roderick HL. Endothelin-1 promotes hypertrophic remodelling of cardiac myocytes by activating sustained signalling and transcription downstream of endothelin type A receptors. Cellular signalling. 2017;36:240–254. doi: 10.1016/j.cellsig.2017.04.010.
    1. Bremnes T, et al. Regulation and intracellular trafficking pathways of the endothelin receptors. The Journal of biological chemistry. 2000;275:17596–17604. doi: 10.1074/jbc.M000142200.
    1. Chun M, Lin HY, Henis YI, Lodish HF. Endothelin-induced endocytosis of cell surface ETA receptors. Endothelin remains intact and bound to the ETA receptor. The Journal of biological chemistry. 1995;270:10855–10860. doi: 10.1074/jbc.270.18.10855.
    1. Liu S, Premont RT, Kontos CD, Huang J, Rockey DC. Endothelin-1 activates endothelial cell nitric-oxide synthase via heterotrimeric G-protein betagamma subunit signaling to protein jinase B/Akt. The Journal of biological chemistry. 2003;278:49929–49935. doi: 10.1074/jbc.M306930200.
    1. Liu S, Premont RT, Rockey DC. Endothelial nitric-oxide synthase (eNOS) is activated through G-protein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein. The Journal of biological chemistry. 2014;289:18163–18174. doi: 10.1074/jbc.M113.521203.
    1. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. Journal of cellular and molecular medicine. 2005;9:59–71. doi: 10.1111/j.1582-4934.2005.tb00337.x.
    1. Crowder RJ, Freeman RS. Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. The Journal of neuroscience. 1998;18:2933–2943. doi: 10.1523/JNEUROSCI.18-08-02933.1998.
    1. Kilic E, et al. The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB journal. 2006;20:1185–1187. doi: 10.1096/fj.05-4829fje.
    1. Gabryel B, Pudelko A, Malecki A. Erk1/2 and Akt kinases are involved in the protective effect of aniracetam in astrocytes subjected to simulated ischemia in vitro. European journal of pharmacology. 2004;494:111–120. doi: 10.1016/j.ejphar.2004.04.042.
    1. Wang SJ, et al. Potentiation of Akt and suppression of caspase-9 activations by electroacupuncture after transient middle cerebral artery occlusion in rats. Neuroscience letters. 2002;331:115–118. doi: 10.1016/S0304-3940(02)00866-2.
    1. Kilic E, Kilic U, Reiter RJ, Bassetti CL, Hermann DM. Tissue-plasminogen activator-induced ischemic brain injury is reversed by melatonin: role of iNOS and Akt. Journal of pineal research. 2005;39:151–155. doi: 10.1111/j.1600-079X.2005.00228.x.
    1. Datta SR, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–241. doi: 10.1016/S0092-8674(00)80405-5.
    1. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke; a journal of cerebral circulation. 2009;40:e331–339. doi: 10.1161/STROKEAHA.108.531632.
    1. Martinou JC, et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron. 1994;13:1017–1030. doi: 10.1016/0896-6273(94)90266-6.
    1. Hata R, Gillardon F, Michaelidis TM, Hossmann KA. Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metabolic brain disease. 1999;14:117–124. doi: 10.1023/A:1020709814456.
    1. Dubal DB, Shughrue PJ, Wilson ME, Merchenthaler I, Wise PM. Estradiol modulates bcl-2 in cerebral ischemia: a potential role for estrogen receptors. The Journal of neuroscience. 1999;19:6385–6393. doi: 10.1523/JNEUROSCI.19-15-06385.1999.
    1. Kilic E, Dietz GP, Hermann DM, Bahr M. Intravenous TAT-Bcl-Xl is protective after middle cerebral artery occlusion in mice. Annals of neurology. 2002;52:617–622. doi: 10.1002/ana.10356.
    1. Smaili SS, Hsu YT, Sanders KM, Russell JT, Youle RJ. Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential. Cell death and differentiation. 2001;8:909–920. doi: 10.1038/sj.cdd.4400889.
    1. Tikhomirov O, Carpenter G. Bax activation and translocation to mitochondria mediate EGF-induced programmed cell death. Journal of cell science. 2005;118:5681–5690. doi: 10.1242/jcs.02676.
    1. Namura S, Nagata I, Takami S, Masayasu H, Kikuchi H. Ebselen reduces cytochrome c release from mitochondria and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Stroke; a journal of cerebral circulation. 2001;32:1906–1911. doi: 10.1161/01.STR.32.8.1906.
    1. Penninger JM, Kroemer G. Mitochondria, AIF and caspases–rivaling for cell death execution. Nature cell biology. 2003;5:97–99. doi: 10.1038/ncb0203-97.
    1. Romero JR, et al. Cerebral collateral circulation in carotid artery disease. Current cardiology reviews. 2009;5:279–288. doi: 10.2174/157340309789317887.
    1. Symon L, Ishikawa S, Meyer JS. Cerebral arterial pressure changes and development of leptomeningeal collateral circulation. Neurology. 1963;13:237–250. doi: 10.1212/WNL.13.3.237.
    1. Cuccione E, Padovano G, Versace A, Ferrarese C, Beretta S. Cerebral collateral circulation in experimental ischemic stroke. Experimental & translational stroke medicine. 2016;8:2. doi: 10.1186/s13231-016-0015-0.
    1. Koizumi J, Yoshida Y, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema. I. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Japanese Journal of Stroke. 1986;8:1–8. doi: 10.3995/jstroke.8.1.
    1. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke; a journal of cerebral circulation. 1989;20:84–91. doi: 10.1161/01.STR.20.1.84.
    1. Briyal S, Shah S, Gulati A. Neuroprotective and anti-apoptotic effects of liraglutide in the rat brain following focal cerebral ischemia. Neuroscience. 2014;281C:269–281. doi: 10.1016/j.neuroscience.2014.09.064.
    1. Tatlisumak Turgut, Carano Richard A. D., Takano Kentaro, Opgenorth Terry J., Sotak Christopher H., Fisher Marc. A Novel Endothelin Antagonist, A-127722, Attenuates Ischemic Lesion Size in Rats With Temporary Middle Cerebral Artery Occlusion. Stroke. 1998;29(4):850–858. doi: 10.1161/01.STR.29.4.850.
    1. Moran PM, Higgins LS, Cordell B, Moser PC. Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein. Proceedings of the National Academy of Sciences of the United States of America. 1995;92:5341–5345. doi: 10.1073/pnas.92.12.5341.
    1. Markgraf CG, et al. Sensorimotor and cognitive consequences of middle cerebral artery occlusion in rats. Brain research. 1992;575:238–246. doi: 10.1016/0006-8993(92)90085-N.
    1. Rogers, D. C., Campbell, C. A., Stretton, J. L. & Mackay, K. B. Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat. Stroke; a journal of cerebral circulation28, 2060–2065; discussion 2066 (1997).
    1. Shen H, Wang Y. Correlation of locomotor activity and brain infarction in rats with transient focal ischemia. Journal of neuroscience methods. 2010;186:150–154. doi: 10.1016/j.jneumeth.2009.11.008.
    1. Li F, Irie K, Anwer MS, Fisher M. Delayed triphenyltetrazolium chloride staining remains useful for evaluating cerebral infarct volume in a rat stroke model. Journal of cerebral blood flow and metabolism. 1997;17:1132–1135. doi: 10.1097/00004647-199710000-00016.
    1. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. The Journal of biological chemistry. 1951;193:265–275.
    1. Husse B, Sopart A, Isenberg G. Cyclical mechanical stretch-induced apoptosis in myocytes from young rats but necrosis in myocytes from old rats. American journal of physiology. Heart and circulatory physiology. 2003;285:H1521–1527. doi: 10.1152/ajpheart.00890.2002.
    1. Yu YS, et al. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors. Cell research. 2004;14:341–346. doi: 10.1038/sj.cr.7290234.

Source: PubMed

3
Subskrybuj