The angiotensin converting enzyme insertion/deletion polymorphism alters the response of muscle energy supply lines to exercise

David Vaughan, Felicitas A Huber-Abel, Franziska Graber, Hans Hoppeler, Martin Flück, David Vaughan, Felicitas A Huber-Abel, Franziska Graber, Hans Hoppeler, Martin Flück

Abstract

The presence of a silencing sequence (the I-allele) in the gene for the upstream regulator of blood flow, angiotensin I-converting enzyme (ACE), is associated with superior endurance performance and its trainability. We tested in a retrospective study with 36 Caucasian men of Swiss descent whether carriers of the ACE I-allele demonstrate a modified adaptive response of energy supply lines in knee extensor muscle, and aerobic fitness, to endurance training based on 6 weeks of supervised bicycle exercise or 6 months of self-regulated running (p value <Bonferroni-corrected 5%). Body weight related maximal oxygen uptake and capillary density in vastus lateralis muscle before training were 20 and 23% lower, respectively, in carriers of the I-allele. Bicycle (n = 16) but not running type endurance training (n = 19) increased the volume content of subsarcolemmal mitochondria (2.5-fold) and intramyocellular lipid (2.1-fold). This was specifically amplified in I-allele carriers after 6 weeks of bicycle exercise. The enhanced adjustment in myocellular organelles of aerobic metabolism with bicycle training corresponded to ACE I-allele dependent upregulation of 23 muscle transcripts during recovery from the bicycle stimulus and with training. The majority of affected transcripts were associated with glucose (i.e. ALDOC, Glut2, LDHC) and lipid metabolism (i.e. ACADL, CPTI, CPTII, LIPE, LPL, FATP, CD36/FAT); all demonstrating an enhanced magnitude of change in carriers of the ACE I-allele. Our observations suggest that local improvements in mitochondrial metabolism, through a novel expression pathway, contribute to the varying trainability in endurance performance between subjects with genetically modified expression of the regulator of vascular tone, ACE.

Figures

Fig. 1
Fig. 1
ACE I-allele dependent effects on muscle-related parameters of fitness. Representative micrograph indicating the assessed ultra-structural parameters in vastus lateralis muscle
Fig. 2
Fig. 2
ACE I-allele dependent muscle adjustments to endurance training. Bar graph of mean + SE of fold changes in muscle parameters and VO2max in carriers and non-carriers of the ACE I-allele after bicycle training. n = 9 with no I-allele, 7 with I-allele. Vv volume density. *, p < Bonferroni-corrected 0.05 for post versus pre changes (paired T-test). # denotes a significant interaction effect between the fold-changes (‘post vs. pre-training’) and the ‘ACE I-allele’ at p < Bonferroni-corrected 0.05 (repeated ANOVA)
Fig. 3
Fig. 3
Genotype dependent expression changes to endurance exercise. a Heat map visualizing the regulation of the 15 gene transcripts and their functional ontology demonstrating level differences between carriers and non-carriers of the ACE I-allele in vastus lateralis muscle during recovery from bicycle exercise and after bicycle training. Colour code denotes the scale of fold changes 1, 8, 24 h after endurance exercise and training versus baseline in carriers of the I-allele, non-carriers of the I-allele, and the corresponding ratio between the two genotypes. b Bar graph of mean + SE for fold changes in training-induced expression for 8 transcripts which distinguished between ACE genotypes after training. #, q-value <5 %/231 for differences in fold changes between genotypes. n = 12. For abbreviations see legend to Fig. 4
Fig. 4
Fig. 4
Summary of ACE I-allele affected pathways Genmapp visualizing the metabolic pathways holding gene transcripts with ACE I/D genotype dependent expression post exercise/training. The assessed transcripts are given in boxes with the colour coding indicting a significant genotype effect. ACADL long chain acyl-CoA dehydrogenase, ACTN1 actinin alpha 1, ALDOC aldolase C, COL4A1 collagen type IV alpha 1, CPTI carnitine palmitoyltransferase I, CPTII Carnitine palmitoyltransferase II, CD36/FAT cluster of Differentiation 36)/fatty acid translocase, ETC. electron transport chain, FATP fatty acid transport protein, GIP glucose-dependent insulinotropic peptide, Glut2 Glucose transporter 2, HIF-1a subunit alpha of hypoxia-inducible factor 1, HO-1 heme oxygenase 1, IGF-II insulin-like growth factor II, IL-6 interleukin 6, Il-6RST interleukin 6 receptor signal transducer, LDHC lactate dehydrogenase C, LIPE hormone sensitive lipase transcript, LPL lipoprotein lipase, MMP-10 metalloproteinase 10, PDHA2 pyruvate dehydrogenase alpha 2, PGF placental growth factor, PPARA Peroxisome proliferator-activated receptor alpha, VHL von Hippel Landau tumour suppressor. For further abbreviations consult www.expasy.org

References

    1. Almeida SS, Barros CC, Moraes MR, Russo FJ, Haro AS, Rosa TS, Alves MF, Pesquero JB, Carmona AK, Bacurau RF, Araujo RC. Plasma Kallikrein and Angiotensin I-converting enzyme N- and C-terminal domain activities are modulated by the insertion/deletion polymorphism. Neuropeptides. 2010;44:139–143. doi: 10.1016/j.npep.2009.12.003.
    1. Alvarez R, Terrados N, Ortolano R, Iglesias-Cubero G, JR R, Batalla A, Cortina A, Fernández-García B, Rodríguez C, Braga S, Alvarez V, Coto E. Genetic variation in the renin-angiotensin system and athletic performance. Eur J Appl Physiol. 2000;82:117–120. doi: 10.1007/s004210050660.
    1. Amaral SL, Linderman JR, Morse MM, Greene AS. Angiogenesis induced by electrical stimulation is mediated by angiotensin II and VEGF. Microcirculation. 2001;8:57–67.
    1. Baker J, Davids K. Gene and environmental constraints on variability in sports performance. Movement system variability. Urbana Champaign: Human Kinetics; 2006. pp. 109–129.
    1. Bellamy LM, Johnston AP, De Lisio M, Parise G. Skeletal muscle-endothelial cell cross talk through angiotensin II. Am J Physiol Cell Physiol. 2010;299:C1402–C1408. doi: 10.1152/ajpcell.00306.2010.
    1. Bonen A, Campbell SE, Benton CR, Chabowski A, Coort SL, Han XX, Koonen DP, Glatz JF, Luiken JJ. Regulation of fatty acid transport by fatty acid translocase/CD36. Proc Nutr Soc. 2004;63:245–249. doi: 10.1079/PNS2004331.
    1. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports and Exerc. 2001;33:S446–S451. doi: 10.1097/00005768-200106001-00013.
    1. Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2006–2007 update. Med Sci Sports and Exerc. 2009;41:35–73. doi: 10.1249/MSS.0b013e3181844179.
    1. Brothers RM, Haslund ML, Wray DW, Raven PB, Sander M. Exercise-induced inhibition of angiotensin II vasoconstriction in human thigh muscle. J Physiol. 2006;577:727–737. doi: 10.1113/jphysiol.2006.113977.
    1. Cam S, Colakoglu M, Colakoglu S, Sekuri C, Berdeli A. ACE I/D gene polymorphism and aerobic endurance development in response to training in a non-elite female cohort. J Sports Med Phys Fitness. 2007;47:234–238.
    1. Danser AH, Batenburg WW, van den Meiracker AH, Danilov SM. ACE phenotyping as a first step toward personalized medicine for ACE inhibitors. Why does ACE genotyping not predict the therapeutic efficacy of ACE inhibition? Pharmacol Ther. 2007;113:607–618. doi: 10.1016/j.pharmthera.2006.12.001.
    1. Dietze GJ, Henriksen EJ. Angiotensin-converting enzyme in skeletal muscle: sentinel of blood pressure control and glucose homeostasis. J Renin Angiotensin Aldosterone Syst. 2008;9:75–88. doi: 10.3317/jraas.2008.011.
    1. Egginton S, Zhou AL, Brown MD, Hudlicka O. Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res. 2001;49:634–646. doi: 10.1016/S0008-6363(00)00282-0.
    1. Evans AE, Poirier O, Kee F, Lecerf L, McCrum E, Falconer T, Crane J, O'Rourke DF, Cambien F (1994) Polymorphisms of the angiotensin-converting-enzyme gene in subjects who die from coronary heart disease. Q J Med 87:211–214
    1. Flueck M, Vaughan D, Westerblad H. Linking genes with exercise: where is the cut-off? Eur J Appl Physiol. 2010;110:1095–1098. doi: 10.1007/s00421-010-1662-9.
    1. Heffelfinger SC. The renin angiotensin system in the regulation of angiogenesis. Curr Pharm Des. 2007;13:1215–1229. doi: 10.2174/138161207780618858.
    1. Hoppeler H, Weibel ER. Limits for oxygen and substrate transport in mammals. J Exp Biol. 1998;201:1051–1064.
    1. Hoppeler H, Howald H, Conley K, Lindstedt SL, Claassen H, Vock P, Weibel ER. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol. 1985;59:320–327.
    1. Jamerson K, Nesbitt S, Amerena J, Grant E. Angiotensin mediates forearm glucose uptake by hemodynamic rather than direct effects. Hypertension. 1996;27(4):854–858. doi: 10.1161/01.HYP.27.4.854.
    1. Jayakumar A, Tai MH, Huang WY, al-Feel W, Hsu M, Abu-Elheiga L, Chirala SS, Wakil SJ. Human fatty acid synthase: properties and molecular cloning. Proc Natl Acad Sci USA. 1995;92:8695–8699. doi: 10.1073/pnas.92.19.8695.
    1. Jensen L, Bangsbo J, Hellsten Y. Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol. 2004;557:571–582. doi: 10.1113/jphysiol.2003.057711.
    1. Jones A, Montgomery HE, Woods DR. Human performance: a role for the ACE genotype? Exerc Sport Sci Rev. 2002;30:184–190. doi: 10.1097/00003677-200210000-00008.
    1. Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev. 2006;86:205–243. doi: 10.1152/physrev.00023.2004.
    1. Krustrup P, Soderlund K, Mohr M, Gonzalez-Alonso J, Bangsbo J. Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans. Pflugers Arch. 2004;449:56–65. doi: 10.1007/s00424-004-1304-3.
    1. Lampert E, Mettauer B, Hoppeler H, Charloux A, Charpentier A, Lonsdorfer J. Skeletal muscle response to short endurance training in heart transplant recipients. J Am Coll Cardiol. 1998;32:420–426. doi: 10.1016/S0735-1097(98)00227-7.
    1. Lester S, Heatley S, Bardy P, Bahnisch J, Bannister K, Faull R, Clarkson A. The DD genotype of the angiotensin-converting enzyme occurs in very low frequency in Australian Aboriginals. Nephrol Dial Transplant. 1999;4:887–890. doi: 10.1093/ndt/14.4.887.
    1. Munzenmaier DH, Greene AS. Opposing actions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension. 1996;27:760–765. doi: 10.1161/01.HYP.27.3.760.
    1. Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol. 1999;87:1313–1316.
    1. Petersen MC, Greene AS. Angiotensin II is a critical mediator of prazosin-induced angiogenesis in skeletal muscle. Microcirculation. 2007;14:583–591. doi: 10.1080/10739680701404697.
    1. Puthucheary Z, Skipworth JR, Rawal J, Loosemore M, Van Someren K, Montgomery HE. The ACE gene and human performance: 12 years on. Sports Med. 2011;41:433–448. doi: 10.2165/11588720-000000000-00000.
    1. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86:1343–1346. doi: 10.1172/JCI114844.
    1. Santana HA, Moreira SR, Neto WB, Silva CB, Sales MM, Oliveira VN, Asano RY, Espindola FS, Nobrega OT, Campbell CS, Simoes HG. The higher exercise intensity and the presence of allele I of ACE gene elicit a higher post-exercise blood pressure reduction and nitric oxide release in elderly women: an experimental study. BMC Cardiovasc Disord. 2011;11:71. doi: 10.1186/1471-2261-11-71.
    1. Schmutz S, Dapp C, Wittwer M, Vogt M, Hoppeler H, Fluck M. Endurance training modulates the muscular transcriptome response to acute exercise. Pflugers Arch. 2006;451:678–687. doi: 10.1007/s00424-005-1497-0.
    1. Schmutz S, Dapp C, Wittwer M, Durieux AC, Mueller M, Weinstein F, Vogt M, Hoppeler H, Flueck M. A hypoxia complement differentiates the muscle response to endurance exercise. Exp Physiol. 2010;95(6):723–735. doi: 10.1113/expphysiol.2009.051029.
    1. Song R, Preston G, Yosypiv IV. Angiotensin II stimulates in vitro branching morphogenesis of the isolated ureteric bud. Mech Dev. 2011;128(7–10):359–367. doi: 10.1016/j.mod.2011.07.002.
    1. Suter E, Hoppeler H, Claassen H, Billeter R, Aebi U, Horber F, Jaeger P, Marti B. Ultrastructural modification of human skeletal muscle tissue with 6-month moderate-intensity exercise training. Int J Sports Med. 1995;16:160–166. doi: 10.1055/s-2007-972985.
    1. Timmons JA. Variability in training-induced skeletal muscle adaptation. J Appl Physiol. 2011;110:846–853. doi: 10.1152/japplphysiol.00934.2010.
    1. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98:5116–5121. doi: 10.1073/pnas.091062498.
    1. Woods DR, World M, Rayson MP, Williams AG, Jubb M, Jamshidi Y, Hayward M, Mary DA, Humphries SE, H.E M, H.E M. Endurance enhancement related to the human angiotensin I-converting enzyme I-D polymorphism is not due to differences in the cardiorespiratory response to training. Eur J Appl Physiol. 2002;86:240–244. doi: 10.1007/s00421-001-0545-5.
    1. Yan Z, Okutsu M, Akhtar YN, Lira VA. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol. 2011;110:264–274. doi: 10.1152/japplphysiol.00993.2010.
    1. Zhang B, Tanaka H, Shono N, Miura S, Kiyonaga A, Shindo M, Saku K. The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet. 2003;63:139–144. doi: 10.1034/j.1399-0004.2003.00029.x.
    1. Zhang B, Shono N, Fan P, Ando S, Xu H, Jimi S, Miura S, Kumagai K, Win KM, Matsunaga A, Iwasaski H, Saku K. Histochemical characteristics of soleus muscle in angiotensin-converting enzyme gene knockout mice. Hypertens Res. 2005;28:681–688. doi: 10.1291/hypres.28.681.

Source: PubMed

3
Subskrybuj