Cerebellar tDCS: A Novel Approach to Augment Language Treatment Post-stroke

Rajani Sebastian, Sadhvi Saxena, Kyrana Tsapkini, Andreia V Faria, Charltien Long, Amy Wright, Cameron Davis, Donna C Tippett, Antonios P Mourdoukoutas, Marom Bikson, Pablo Celnik, Argye E Hillis, Rajani Sebastian, Sadhvi Saxena, Kyrana Tsapkini, Andreia V Faria, Charltien Long, Amy Wright, Cameron Davis, Donna C Tippett, Antonios P Mourdoukoutas, Marom Bikson, Pablo Celnik, Argye E Hillis

Abstract

People with post-stroke aphasia may have some degree of chronic deficit for which current rehabilitative treatments are variably effective. Accumulating evidence suggests that transcranial direct current stimulation (tDCS) may be useful for enhancing the effects of behavioral aphasia treatment. However, it remains unclear which brain regions should be stimulated to optimize effects on language recovery. Here, we report on the therapeutic potential of right cerebellar tDCS in augmenting language recovery in SMY, who sustained bilateral MCA infarct resulting in aphasia and anarthria. We investigated the effects of 15 sessions of anodal cerebellar tDCS coupled with spelling therapy using a randomized, double-blind, sham controlled within-subject crossover trial. We also investigated changes in functional connectivity using resting state functional magnetic resonance imaging before and 2 months post-treatment. Both anodal and sham treatments resulted in improved spelling to dictation for trained and untrained words immediately after and 2 months post-treatment. However, there was greater improvement with tDCS than with sham, especially for untrained words. Further, generalization to written picture naming was only noted during tDCS but not with sham. The resting state functional connectivity data indicate that improvement in spelling was accompanied by an increase in cerebro-cerebellar network connectivity. These results highlight the therapeutic potential of right cerebellar tDCS to augment spelling therapy in an individual with large bilateral chronic strokes.

Keywords: aphasia; cerebellar tDCS; resting state fMRI; spelling therapy; stroke.

Figures

Figure 1
Figure 1
Lesion map of SMY.
Figure 2
Figure 2
Back and lateral views of the modeling data of the electric field distributions below the stimulating electrode on the right cerebellum.
Figure 3
Figure 3
Fisher-transformed correlation matrix for the resting state data for SMY (top panel) at time point 1 (TP1: prior to the start of treatment) and time point 2 (TP2: 2-months follow up time point). Control participant's data is shown in the bottom panel. Difference map shows the difference in correlation between the scan for the resting state data. Correlations were assessed across 14 ROIs. Regions are labeled as numbers corresponding to the left and right superior frontal gyrus (SFG; region 1 and 2), superior frontal gyrus_prefrontal cortex (SFG_PFC; region 3 and 4), middle frontal gyrus dorsolateral prefrontal cortex (MFG_DLPC; region 5 and 6), middle temporal gyrus pole (MTG_pole; region 7 and 8), inferior temporal gyrus (ITG; region 9 and 10), fusiform gyrus (FG; region 11 and 12), and cerebellum (region 13 and 14).

References

    1. Baillieux H., De Smet H. J., Dobbeleir A., Paquier P. F., De Deyn P. P., Mariën P. (2010). Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex 46, 869–879. 10.1016/j.cortex.2009.09.002
    1. Baker J. M., Rorden C., Fridriksson J. (2010). Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke 41, 1229–1236. 10.1161/STROKEAHA.109.576785
    1. Behzadi Y., Restom K., Liau J., Liu T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101. 10.1016/j.neuroimage.2007.04.042
    1. Boehringer A., Macher K., Dukart J., Villringer A., Pleger B. (2013). Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 6, 649–653. 10.1016/j.brs.2012.10.001
    1. Brady M. C., Kelly H., Godwin J., Enderby P. (2016). Speech and language therapy for aphasia following stroke. Cochrane Database Syst. Rev. CD000425. 10.1002/14651858.CD000425.pub3
    1. Datta A., Bansal V., Diaz J., Patel J., Reato D., Bikson M. (2009). Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2, 201–207. 10.1016/j.brs.2009.03.005
    1. de Aguiar V., Paolazzi C. L., Miceli G. (2015). tDCS in post-stroke aphasia: the role of stimulation parameters, behavioral treatment and patient characteristics. Cortex 63, 296–316. 10.1016/j.cortex.2014.08.015
    1. De Smet H. J., Paquier P., Verhoeven J., Mariën P. (2013). The cerebellum: its role in language and related cognitive and affective functions. Brain Lang. 127, 334–342. 10.1016/j.bandl.2012.11.001
    1. Fabbro F., Tavano A., Corti S., Bresolin N., De Fabritiis P., Borgatti R. (2004). Long-term neuropsychological deficits after cerebellar infarctions in two young adult twins. Neuropsychologia 42, 536–545. 10.1016/j.neuropsychologia.2003.09.006
    1. Ferrucci R., Brunoni A. R., Parazzini M., Vergari M., Rossi E., Fumagalli M., et al. . (2013). Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum 12, 485–492. 10.1007/s12311-012-0436-9
    1. Fiori V., Coccia M., Marinelli C. V., Vecchi V., Bonifazi S., Ceravolo M. G., et al. . (2011). Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J. Cogn. Neurosci. 23, 2309–2323. 10.1162/jocn.2010.21579
    1. Fridriksson J., Richardson J. D., Baker J. M., Rorden C. (2011). Transcranial direct current stimulation improves naming reaction time in fluent aphasia a double-blind, sham-controlled study. Stroke 42, 819–821. 10.1161/STROKEAHA.110.600288
    1. Fritsch B., Reis J., Martinowich K., Schambra H. M., Ji Y., Cohen L. G., et al. . (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66, 198–204. 10.1016/j.neuron.2010.03.035
    1. Galea J. M., Vazquez A., Pasricha N., de Xivry J. J., Celnik P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb. Cortex 21, 1761–1770. 10.1093/cercor/bhq246
    1. Gandiga P. C., Hummel F. C., Cohen L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 117, 845–850. 10.1016/j.clinph.2005.12.003
    1. Gómez Beldarrain M., Garcia-Monco J. C., Quintana J. M., Llorens V., Rodeno E. (1997). Diaschisis and neuropsychological performance after cerebellar stroke. Eur. Neurol. 37, 82–89. 10.1159/000117415
    1. Goodman R. A., Caramazza A. (1985). The Johns Hopkins University Dysgraphia Battery. Baltimore, MD: Johns Hopkins University.
    1. Grimaldi G., Argyropoulos G. P., Bastian A., Cortes M., Davis N. J., Edwards D. J., et al. . (2016). Cerebellar Transcranial Direct Current Stimulation (ctDCS) a novel approach to understanding cerebellar function in health and disease. Neuroscientist 22, 83–97. 10.1177/1073858414559409
    1. Hassid E. I. (1995). A case of language dysfunction associated with cerebellar infarction. Neurorehabil. Neural Repair 9, 157–160. 10.1177/154596839500900304
    1. Helm-Estabrooks N. (1992). Aphasia Diagnostic Profiles. Austin, TX: Pro Ed Inc.
    1. Keren-Happuch E., Chen S. H. A., Ho M. H. R., Desmond J. E. (2014). A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum. Brain Mapp. 35, 593–615. 10.1002/hbm.22194
    1. Leiner H. C., Leiner A. L., Dow R. S. (1989). Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav. Neurosci. 103:998. 10.1037/0735-7044.103.5.998
    1. Li Y., Ceritoglu C., Jiang H., Kolsany A. E., Brown T. J. A., Tang X., et al. (2015). BrainGPS: a cloud-based platform for neuroimage analysis and neuroradiological studies, Paper Presented at the 23th ISMRM Meeting (Toronto, ON: ).
    1. Macher K., Böhringer A., Villringer A., Pleger B. (2014). Cerebellar-parietal connections underpin phonological storage. J. Neurosci. 34, 5029–5037. 10.1523/JNEUROSCI.0106-14.2014
    1. Manenti R., Petesi M., Brambilla M., Rosini S., Miozzo A., Padovani A., et al. . (2015). Efficacy of semantic–phonological treatment combined with tDCS for verb retrieval in a patient with aphasia. Neurocase 21, 109–119. 10.1080/13554794.2013.873062
    1. Marangolo M., Fiori V., Gelfo F., Shofany J., Razzano C., Caltagirone C., et al. . (2014). Bihemispheric tDCS enhances language recovery but does not alter BDNF levels in chronic aphasic patients. Restor. Neurol. Neurosci. 32, 367–379. 10.3233/RNN-130323
    1. Marien P., Ackermann H., Adamaszek M., Barwood C. H., Beaton A., Desmond J., et al. . (2014). Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum 13, 386–410. 10.1007/s12311-013-0540-5
    1. Marien P., Engelborghs S., Pickut B. A., De Deyn P. P. (2000). Aphasia following cerebellar damage: fact or fallacy? J. Neurolinguist. 13, 145–171. 10.1016/S0911-6044(00)00009-9
    1. Marien P., Saerens J., Nanhoe R., Moens E., Nagels G., Pickut B. A., et al. . (1996). Cerebellar induced aphasia: case report of cerebellar induced prefrontal aphasic language phenomena supported by SPECT findings. J. Neurol. Sci. 144, 34–43. 10.1016/S0022-510X(96)00059-7
    1. Middleton F. A., Strick P. L. (1994). Anatomical evidence for cerebellar and basal ganglia nvolvement in higher cognitive function. Science 266, 458–461. 10.1126/science.7939688
    1. Morton S. M., Bastian A. J. (2006). Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J. Neurosci. 26, 9107–9116. 10.1523/JNEUROSCI.2622-06.2006
    1. Murdoch B. E. (2010). The cerebellum and language: historical perspective and review. Cortex 46, 858–868. 10.1016/j.cortex.2009.07.018
    1. Pope P. A., Miall R. C. (2012). Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 5, 84–94. 10.1016/j.brs.2012.03.006
    1. Roach A., Schwartz M. F., Martin N., Grewal R. S., Brecher A. (1996). The Philadelphia naming test: scoring and rationale. Clin. Aphasiol. 24, 121–134.
    1. Schmahmann J. D. (1991). An emerging concept: the cerebellar contribution to higher function. Arch. Neurol. 48, 1178–1187. 10.1001/archneur.1991.00530230086029
    1. Schmahmann J. D. (2001). The cerebrocerebellar system: anatomic substrates of the cerebellar contribution to cognition and emotion. Int. Rev. Psychiatry 13, 247–260. 10.1080/09540260120082092
    1. Sebastian R., Long C., Purcell J. J., Faria A. V., Lindquist M., Jarso S., et al. . (2016a). Imaging network level language recovery after left PCA stroke. Restor. Neurol. Neurosci. 34, 473–489. 10.3233/RNN-150621
    1. Sebastian R., Tsapkini K., Tippett D. C. (2016b). Transcranial direct current stimulation in post stroke aphasia and primary progressive aphasia: current knowledge and future clinical applications. Neurorehabilitation 39, 141–152. 10.3233/NRE-161346
    1. Stoodley C. J., Schmahmann J. D. (2009). Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44, 489–501. 10.1016/j.neuroimage.2008.08.039
    1. Stoodley C. J., Valera E. M., Schmahmann J. D. (2012). Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59, 1560–1570. 10.1016/j.neuroimage.2011.08.065
    1. Tsapkini K., Frangakis C., Gomez Y., Davis C., Hillis A. E. (2014). Augmentation of spelling therapy with transcranial direct current stimulation in primary progressive aphasia: preliminary results and challenges. Aphasiology 28, 1112–1130. 10.1080/02687038.2014.930410
    1. Turkeltaub P. E., Swears M. K., D'Mello A. M., Stoodley C. J. (2016). Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restor. Neurol. Neurosci. 34, 491–505. 10.3233/RNN-150633
    1. Vestito L., Rosellini S., Mantero M., Bandini F. (2014). Long-term effects of transcranial direct-current stimulation in chronic post-stroke aphasia: a pilot study. Front. Hum. Neurosci. 8:785. 10.3389/fnhum.2014.00785

Source: PubMed

3
Subskrybuj