Regression of target organ damage in children and adolescents with primary hypertension

Mieczyslaw Litwin, Anna Niemirska, Joanna Sladowska-Kozlowska, Aldona Wierzbicka, Roman Janas, Zbigniew T Wawer, Andrzej Wisniewski, Janusz Feber, Mieczyslaw Litwin, Anna Niemirska, Joanna Sladowska-Kozlowska, Aldona Wierzbicka, Roman Janas, Zbigniew T Wawer, Andrzej Wisniewski, Janusz Feber

Abstract

We assessed the effects of 12 months of non-pharmacological and pharmacological therapy on 24-h ambulatory blood pressure, regression of target organ damage (TOD) and metabolic abnormalities in 86 children (14.1 ± 2.4 years) with primary hypertension. Twenty-four hour systolic and diastolic blood pressure (BP) decreased (130 ± 8 vs 126 ± 8, 73 ± 7 vs 70 ± 7, p = 0.0001 and 0.004 respectively). Body mass index (BMI) did not change, but waist-to-hip (0.85 ± 0.07 vs 0.83 ± 0.05, p = 0.01) and waist-to-height ratio (WHtR; 0.49 ± 0.07 vs 0.48 ± 0.05, p = 0.008) decreased. Left ventricular mass index (LVMi; 38.5 ± 10.7 vs 35.2 ± 7.5 g/m(2.7), p = 0.0001), prevalence of left ventricular hypertrophy (46.5% vs 31.4%; p = 0.0001), carotid intima-media thickness (cIMT; 0.44 ± 0.05 vs 0.42 ± 0.04 mm, p = 0.0001), wall cross sectional area (WCSA; 7.5 ± 1.3 vs 6.9 ± 1.2 mm(2), p = 0.002), hsCRP (1.1 ± 1.0 vs 0.7 ± 0.7 mg/l, p = 0.002), and LDL-cholesterol (115 ± 33 vs 107 ± 26 mg/dl, p = 0.001) decreased. Patients who had lowered BP had a lower cIMT at the second examination (0.41 ± 0.04 vs 0.43 ± 0.04 mm, p = 0.04) and lower initial hsCRP values (0.9 ± 0.7 vs 1.5 ± 1.3 mg/l, p = 0.04) in comparison to non-responders. Regression analysis revealed that the main predictor of LVMi decrease was a decrease in abdominal fat expressed as a decrease in waist circumference (WC) (R (2) = 0.280, β = 0.558, p = 0.005), for WCSA-SDS a decrease in WC (R (2) = 0.332, β = 0.611, p = 0.009) and for a cIMT-SDS decrease the main predictor was a decrease in hsCRP concentrations (R (2) = 0.137, β = 0.412, p = 0.03). Standard antihypertensive treatment lowered BP and led to regression of TOD in hypertensive children. Lean body mass increase and decrease in abdominal obesity correlated with TOD regression.

Figures

Fig. 1
Fig. 1
Scheme of the study design
Fig. 2
Fig. 2
Linear correlation between decrease in waist-to-height ratio (WHtR) and decrease in left ventricular mass (LVMi): r = 0.263, p = 0.03)
Fig. 3
Fig. 3
Linear regression of correlation between the change in the WHtR and the change in wall cross-sectional area (WCSA): r = 0.528, p = 0.002

References

    1. Daniels SR, Loggie JM, Khoury P, Kimball TR. Left ventricular geometry and severe left ventricular hypertrophy in children and adolescents with essential hypertension. Circulation. 1998;97:1907–1911.
    1. Sorof J, Alexandrov AV, Garami Z, Turner JL, Grafe RE, Lai DL. Carotid ultrasonography for detection of vascular abnormalities in hypertensive children. Pediatr Nephrol. 2003;18:1020–1024. doi: 10.1007/s00467-003-1187-0.
    1. Hanevold C, Waller J, Daniels S, Portman R, Sorof J, International Pediatric Hypertension Association The effects of obesity, gender and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics. 2004;113:328–333. doi: 10.1542/peds.113.2.328.
    1. Bots ML, Dijk JM, Oren A, Grobbee E. Carotid intima-media thickness, arterial stiffness and risk of cardiovascular disease: current evidence. J Hypertens. 2002;20:2317–2325. doi: 10.1097/00004872-200212000-00002.
    1. Litwin M, Trelewicz J, Wawer ZT, Antoniewicz J, Wierzbicka A, Grenda R. Intima-media thickness and functional properties of arterial wall in elastic and muscular type arteries in children and adolescents with arterial hypertension: controlled study. Pediatr Nephrol. 2004;19:767–774. doi: 10.1007/s00467-004-1480-6.
    1. Seeman T, Gilik J, Vondrak K, Simkova E, Flogelova M, Janda J. Regression of left ventricular hypertrophy in children and adolescents with hypertension during ramipril monotherapy. Am J Hypertens. 2007;20:990–996. doi: 10.1016/j.amjhyper.2007.03.009.
    1. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents The fourth report on diagnosis, evaluation and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–576. doi: 10.1542/peds.114.2.S2.555.
    1. Wuhl E, Witte K, Soergel M, Mehls O, Shaeffer F, German Working Group on Pediatric Hypertension Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens. 2002;20:1995–2007. doi: 10.1097/00004872-200210000-00019.
    1. Urbina E, Alpert B, Flynn J, Hayman L, Harshfield GA, Jacobson M, Mahoney L, McCrindle B, Mietus-Snyder M, Steinberger J, Daniels S. Ambulatory blood pressure monitoring in children and adolescents: recommendations for standard assessment: a scientific statement from the American Heart Association Atherosclerosis, Hypertension and Obesity in Youth Committee of the Council on Cardiovascular Disease in the Young and the Council for High Blood Pressure Research. Hypertension. 2008;52:433–451. doi: 10.1161/HYPERTENSIONAHA.108.190329.
    1. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international study. BMJ. 2000;320:1240–1243. doi: 10.1136/bmj.320.7244.1240.
    1. Jourdan C, Wuehl E, Litwin M, Fahr K, Trelewicz J, Jobs K, Schenk JP, Grenda R, Mehls O, Troeger J, Schaefer F. Normative values of intima-media thickness and distensibility of large arteries in healthy adolescents. J Hypertens. 2005;23:1707–1715. doi: 10.1097/01.hjh.0000178834.26353.d5.
    1. Daniels SR, Kimball TR, Morrison JA, Khoury P, Meyer RA. Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease. Am J Cardiol. 1995;76:699–701. doi: 10.1016/S0002-9149(99)80200-8.
    1. de Simone G, Deveraux RB, Daniels SR, Koren MJ, Meyer RA, Laragh JH. Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol. 1995;25:1056–1062. doi: 10.1016/0735-1097(94)00540-7.
    1. Daniels SR, Meyer RA, Liang Y, Bove KE. Echocardiographically determined left ventricular mass index in normal children, adolescents and young adults. J Am Coll Cardiol. 1998;12:703–708.
    1. Khoury PR, Mitsnefes MS, Daniels SR, Kimball TR. Age specific reference intervals for indexed left ventricular mass index in children. J Am Soc Echocardiogr. 2009;22:709–714. doi: 10.1016/j.echo.2009.03.003.
    1. Gutt M, Davis CL, Spitzer SB, Llabre MM, Kumar M, Czarnecki EM, Schneiderman N, Skyler JS, Marks JB. Validation of the insulin sensitivity index (ISI (0, 120)): comparison with other measures. Diabetes Res Clin Pract. 2000;47:1777–1784. doi: 10.1016/S0168-8227(99)00116-3.
    1. Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children and adolescents. Pediatr Clin North Am. 1987;34:571–590.
    1. Litwin M, Sladowska J, Antoniewicz J, Niemirska A, Wierzbicka A, Daszkowska J, Wawer ZT, Janas R, Grenda R. Metabolic abnormalities, insulin resistance and metabolic syndrome in children with primary hypertension. Am J Hypertens. 2007;20:875–882. doi: 10.1016/j.amjhyper.2007.03.005.
    1. Sorof JM, Cardwell G, Franco K, Portman RJ. Ambulatory blood pressure and left ventricular mass in hypertensive children. Hypertension. 2002;39:903–908. doi: 10.1161/01.HYP.0000013266.40320.3B.
    1. Richey PA, Disessa TG, Hastings MC, Somes GW, Akpert BS, Jones DP. Ambulatory blood pressure and increased left ventricular mass in children at risk for hypertension. J Pediatr. 2008;152:343–348. doi: 10.1016/j.jpeds.2007.07.014.
    1. McNiece KL, Gupta-Malhorta M, Samuels J, Bell C, Garcia K, Pottenberger T, Sorof JM, Portman RJ. Left ventricular hypertrophy in hypertensive adolescents. Analysis of risk by 2004 National High Blood Pressure Education Program Working Group criteria. Hypertension. 2007;50:392–395. doi: 10.1161/HYPERTENSIONAHA.107.092197.
    1. Brady TM, Fivush B, Flynn JT, Parekh R. Ability of blood pressure to predict left ventricular hypertrophy in children with primary hypertension. J Pediatr. 2008;152:73–78. doi: 10.1016/j.jpeds.2007.05.053.
    1. Flynn JT, Alderman MH. Characteristics of children with primary hypertension seen at a referral center. Pediatr Nephrol. 2005;20:961–966. doi: 10.1007/s00467-005-1855-3.
    1. Litwin M, Niemirska A, Sladowska J, Antoniewicz J, Daszkowska J, Wierzbicka A, Wawer ZT, Grenda R. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr Nephrol. 2006;21:811–819. doi: 10.1007/s00467-006-0068-8.
    1. Lande MB, Carson NL, Roy J, Meagher CC. Effects of childhood primary hypertension on carotid intima media thickness: a matched controlled study. Hypertension. 2006;48:40–44. doi: 10.1161/01.HYP.0000227029.10536.e8.
    1. Lurbe E, Cifkova R, Cruickshank JK, Dillon MJ, Ferreira I, Invitti C, Kuznetsova T, Laurent S, Mancia G, Morales-Olivas F, Rascher W, Redon J, Schaefer F, Seeman T, Stergiou G, Wuhl E, Zanchetti A. Management of high blood pressure in children and adolescents: recommendations of the European Society of Hypertension. J Hypertens. 2009;27:1719–1742. doi: 10.1097/HJH.0b013e32832f4f6b.
    1. Laurent S. Arterial wall hypertrophy and stiffness in essential hypertensive patients. Hypertension. 1995;26:355–362.
    1. Litwin M, Michalkiewicz J, Niemirska A, Gockowska L, Kubiszewska I, Wierzbicka A, Wawer ZT, Janas R. Inflammatory activity in children with primary hypertension. Pediatr Nephrol. 2010;25:1711–1718. doi: 10.1007/s00467-010-1548-4.
    1. Black HR, Davis B, Barzilay J. Metabolic and clinical outcomes in nondiabetic individuals with the metabolic syndrome assigned to chlorthalidone, amlodipine, or lisinopril as initial treatment for hypertension: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) Diabetes Care. 2008;31:353–360. doi: 10.2337/dc07-1452.
    1. Benson SC, Pershadsingh HA, Ho CI. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARγ-modulating activity. Hypertension. 2004;43:993–1002. doi: 10.1161/01.HYP.0000123072.34629.57.
    1. Eriksson JW, Jansson PA, Carlberg B. Hydrochlorothiazide, but not candesartan, aggravates insulin resistance and causes visceral and hepatic fat accumulation: the mechanisms for the diabetes preventing effect of candesartan (MEDICA) study. Hypertension. 2008;52:1030–1037. doi: 10.1161/HYPERTENSIONAHA.108.119404.
    1. Julius S, Nesbitt SD, Egan BM, Weber BM, Michelson EL, Kacirotti N, Black HR, Grimm RH, Jr, Messerli FH, Oparil S, Schork MA, Trial of Preventing Hypertension (Trophy) Study investigators Feasibility of treating prehypertension with an angiotensin receptor blocker. N Eng J Med. 2006;354:1685–1697. doi: 10.1056/NEJMoa060838.

Source: PubMed

3
Subskrybuj