Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson's Disease: Randomized Trial

Leena Subramanian, Monica Busse Morris, Meadhbh Brosnan, Duncan L Turner, Huw R Morris, David E J Linden, Leena Subramanian, Monica Busse Morris, Meadhbh Brosnan, Duncan L Turner, Huw R Morris, David E J Linden

Abstract

Objective: Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) uses feedback of the patient's own brain activity to self-regulate brain networks which in turn could lead to a change in behavior and clinical symptoms. The objective was to determine the effect of NF and motor training (MOT) alone on motor and non-motor functions in Parkinson's Disease (PD) in a 10-week small Phase I randomized controlled trial.

Methods: Thirty patients with Parkinson's disease (PD; Hoehn and Yahr I-III) and no significant comorbidity took part in the trial with random allocation to two groups. Group 1 (NF: 15 patients) received rt-fMRI-NF with MOT. Group 2 (MOT: 15 patients) received MOT alone. The primary outcome measure was the Movement Disorder Society-Unified PD Rating Scale-Motor scale (MDS-UPDRS-MS), administered pre- and post-intervention "off-medication". The secondary outcome measures were the "on-medication" MDS-UPDRS, the PD Questionnaire-39, and quantitative motor assessments after 4 and 10 weeks.

Results: Patients in the NF group were able to upregulate activity in the supplementary motor area (SMA) by using motor imagery. They improved by an average of 4.5 points on the MDS-UPDRS-MS in the "off-medication" state (95% confidence interval: -2.5 to -6.6), whereas the MOT group improved only by 1.9 points (95% confidence interval +3.2 to -6.8). The improvement in the intervention group meets the minimal clinically important difference which is also on par with other non-invasive therapies such as repetitive Transcranial Magnetic Stimulation (rTMS). However, the improvement did not differ significantly between the groups. No adverse events were reported in either group.

Interpretation: This Phase I study suggests that NF combined with MOT is safe and improves motor symptoms immediately after treatment, but larger trials are needed to explore its superiority over active control conditions.

Keywords: Parkinson’s disease; WiiFit; motor training; neurofeedback; real-time functional magnetic resonance imaging.

Figures

Figure 1
Figure 1
The CONSORT diagram shows the flow of patients through each stage of the randomized, controlled trial.
Figure 2
Figure 2
Flowchart of the study design with details of the interventions.
Figure 3
Figure 3
(A) “Off- medication” PRE- and POST-intervention mean scores of the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) motor subscale (MS) for both groups with higher scores indicating greater impairment; (B) “On-medication” mean scores of the MDS-UPDRS MS for the three assessment sessions for both groups with higher scores indicating greater impairment; (C) “On-medication” mean scores of the non-motor experience of daily living (NM-DL) sub scale of the MDS-UPDRS for the three assessment sessions for both groups; (D) “On-medication” mean scores of the motor-experience of daily living sub scale of the MDS-UPDRS for the three assessment sessions for both groups. * indicates significant difference.
Figure 4
Figure 4
(A) Mean beta values from the neurofeedback (NF) scans for the three different sessions in weeks 2, 6 and 12 of the NF intervention. Bars are standard errors; (B) Areas of significant activation across all NF sessions (whole brain based analysis). (C) Sagittal view of the brain showing a probabilistic map of the overlap across regions of interest (ROI’s) supplementary motor area (SMA) used for NF training across patients. PM, probabilistic map.

References

    1. Avanzino L., Gueugneau N., Bisio A., Ruggeri P., Papaxanthis C., Bove M. (2015). Motor cortical plasticity induced by motor learning through mental practice. Front. Behav. Neurosci. 9:105. 10.3389/fnbeh.2015.00105
    1. Bai O., Huang D., Fei D. Y., Kunz R. (2014). Effect of real-time cortical feedback in motor imagery-based mental practice training. Neurorehabilitation 34, 355–363. 10.3233/nre-131039
    1. Barry G., Galna B., Rochester L. (2014). The role of exergaming in Parkinson’s disease rehabilitation: a systematic review of the evidence. J. Neuroeng. Rehabil. 11:33. 10.1186/1743-0003-11-33
    1. Beaulieu-Boire I., Lang A. E. (2015). Behavioural effects of levodopa. Mov. Disord. 30, 90–102. 10.1002/mds.26121
    1. Bezard E., Gross C. E., Brotchie J. M. (2003). Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci. 26, 215–221. 10.1016/s0166-2236(03)00038-9
    1. Birbaumer N., Ruiz S., Sitaram R. (2013). Learned regulation of brain metabolism. Trends Cogn. Sci. 17, 295–302. 10.1016/j.tics.2013.04.009
    1. Caria A., Sitaram R., Birbaumer N. (2012). Real-time fMRI: a tool for local brain regulation. Neuroscientist 18, 487–501. 10.1177/1073858411407205
    1. Chiew M., LaConte S. M., Graham S. J. (2012). Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery. Neuroimage 61, 21–31. 10.1016/j.neuroimage.2012.02.053
    1. Clarke C. E., Patel S., Woolley R., Ives N. J., Rick C. E., Dowling F., et al. (2014). PD REHAB: A large pragmatic randomised controlled trial of physiotherapy and occupational therapy versus no therapy in mild to moderate Parkinson’s disease [abstract]. Mov. Disord. 29:627 10.1186/isrctn17452402
    1. Connolly B. S., Lang A. E. (2014). Pharmacological treatment of parkinson disease. A Review. JAMA 311, 1670–1683. 10.1001/jama.2014.3654
    1. Dalrymple-Alford J. C., MacAskill M. R., Nakas C. T., Livingston L., Graham C., Crucian G. P., et al. . (2010). The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology 75, 1717–1725. 10.1212/wnl.0b013e3181fc29c9
    1. de Lau L. M. L., Breteler M. M. B. (2006). Epidemiology of Parkinson’s disease. Lancet. Neurol. 5, 525–535. 10.1016/S1474-4422(06)70471-9
    1. deCharms R. C. (2008). Applications of real-time fMRI. Nat. Rev. Neurosci. 9, 720–729. 10.1038/nrn2414
    1. deCharms R. C., Christoff K., Glover G. H., Pauly J. M., Whitfield S., Gabrieli J. D. E. (2004). Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage 21, 436–443. 10.1016/j.neuroimage.2003.08.041
    1. Dorsey E. R., Constantinescu R., Thompson J. P., Biglan K. M., Holloway R. G., Kieburtz K., et al. . (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 203. Neurology 68, 384–386. 10.1212/01.wnl.0000247740.47667.03
    1. Driskell J. E., Copper C., Moran A. (1994). Does mental practice enhance performance? J. Appl. Psychol. 79, 481–492. 10.1037/0021-9010.79.4.481
    1. Esmail S., Linden D. E. J. (2014). Neural networks and neurofeedback in parkinson’s disease. Neuroregulation 1, 240–272. 10.15540/nr.1.3-4.240
    1. Fenoy A. J., Simpson R. K. (2014). Risks of common complications in deep brain stimulation surgery: management and avoidance. J. Neurosurg. 120, 132–139. 10.3171/2013.10.jns131225
    1. Fregni F., Simon D. K., Wu A., Pascual-Leone A. (2005). Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature. J. Neurol. Neurosurg. Psychiatry 76, 1614–1623. 10.1136/jnnp.2005.069849
    1. Gerloff C., Corwell B., Chen R., Hallet M., Cohen L. G. (1997). Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain 120, 1587–1602. 10.1093/brain/120.9.1587
    1. Goetz C. G., Tilley B. C., Shaftman S. R., Stebbins G. T., Fahn S., Martinez-Martin P., et al. . (2008). Movement disorder society-sponsored revision of the unified parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 23, 2129–2170. 10.1002/mds.22340
    1. Gordon A. M., Lee J. H., Flament D., Uqurbil K., Ebner T. J. (1998). Functional magnetic resonance imaging of motor, sensory and posterior parietal cortical areas during performance of sequential typing movements. Exp. Brain Res. 121, 153–166. 10.1007/s002210050447
    1. Hametner E., Seppi K., Poewe W. (2010). The clinical spectrum of levodopa-induced motor complications. J. Neurol. 257, S268–S275. 10.1007/s00415-010-5719-9
    1. Hlavaty L. E., Brown M. M., Jason L. A. (2011). The effect of homework compliance on treatment outcomes for participants with myalgic encephalomyelitis/chronic fatigue syndrome. Rehabil. Psychol. 56, 212–218. 10.1037/a0024118
    1. Hui M., Zhang H., Ge R., Yao L., Long Z. (2014). Modulation of functional network with real-time fMRI feedback training of right premotor cortex activity. Neuropsychologia 62, 111–123. 10.1016/j.neuropsychologia.2014.07.012
    1. Johnson K. A., Hartwell K., LeMatty T., Borckardt J., Morgan P. S., Govindarajan K., et al. . (2012). Intermittent “real-time” fMRI feedback is superior to continuous presentation for a motor imagery task: a pilot study. J. Neuroimaging 22, 58–66. 10.1111/j.1552-6569.2010.00529.x
    1. Johnston S. J., Boehm S. G., Healy D., Goebel R., Linden D. E. (2010). Neurofeedback: a promising tool for the self-regulation of emotion networks. Neuroimage 49, 1066–1072. 10.1016/j.neuroimage.2009.07.056
    1. Keynan J. N., Meir-Hasson Y., Gilam G., Cohen A., Jackont G., Kinreich K., et al. . (2016). Limbic activity modulation guided by functional magnetic resonance imaging-inspired electroencephalography improves implicit emotion regulation. Biol. Psychiatry [Epub ahead of print]. 10.1016/j.biopsych.2015.12.024
    1. Lee J. H., Ryu J., Jolesz F. A., Cho Z. H., Yoo S. S. (2009). Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm. Neurosci. Lett. 450, 1–6. 10.1016/j.neulet.2008.11.024
    1. Linden D. E. J., Habes I., Johnston S. J., Linden S., Tatineni R., Subramanian L., et al. . (2012). Real-time self-regulation of emotion networks in patients with depression. PLoS One 7:e38115. 10.1371/journal.pone.0038115
    1. Lindenbach D., Bishop C. (2013). Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson’s disease. Neurosci. Biobehav. Rev. 37, 2737–2750. 10.1016/j.neubiorev.2013.09.008
    1. Nachev P., Kennard C., Husain M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 9, 856–869. 10.1038/nrn2478
    1. Odekerken V. J., Laar T., Staal M. J., Mosch A., Hoffmann C. F., Nijssen P. C., et al. . (2013). Subthalamic nucleus versus globus pallidus bilateral Deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet. Neurol. 12, 37–44. 10.1016/S1474-4422(12)70264-8
    1. Park C. H., Chang W. H., Lee M., Kwon G. H., Kim L., Kim S. T., et al. . (2015). Which motor cortical region best predicts imagined movement? Neuroimage 113, 101–110. 10.1016/j.neuroimage.2015.03.033
    1. Peirce J. W. (2007). PsychoPy—psychophysics software in python. J. Neurosci. Methods 162, 8–13. 10.1016/j.jneumeth.2006.11.017
    1. Piasecki S. D., Jefferson J. W. (2004). Psychiatric complications of deep brain stimulation for Parkinson’s disease. J. Clin. Psychiatry 65, 845–849. 10.4088/jcp.v65n0617
    1. Pinter M. M., Pogarell O., Oertel W. H. (1999). Efficacy, safety and tolerance of the non-ergoline dopamine agonist pramipexole in the treatment of advanced Parkinson’s disease: a double blind, placebo controlled, randomised, multicentre study. J. Neurol. Neurosurg. Psychiatry 66, 436–441. 10.1136/jnnp.66.4.436
    1. Politis M. (2014). Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat. Rev. Neurol. 10, 708–722. 10.1038/nrneurol.2014.205
    1. Posse S., Binkofski F., Schneider F., Gembris D., Frings W., Habel U., et al. . (2001). A new approach to measure single-event related brain activity using real-time fMRI: Feasibility of sensory, motor and higher cognitive tasks. Hum. Brain Mapp. 12, 25–41. 10.1002/1097-0193(200101)12:125::;2-h
    1. Ros T., Munneke M., Ruge D., Gruzelier J., Rothwell J. C. (2010). Endogenous control of waking brain rhythms induces neuroplasticity in humans. Eur. J. Neurosci. 31, 770–778. 10.1111/j.1460-9568.2010.07100.x
    1. Rota G., Handjaras G., Sitaram R., Birbaumer N., Dogil G. (2011). Reorganization of functional and effective connectivity during real-time fMRI-BCI modulation of prosody processing. Brain Lang. 117, 123–132. 10.1016/j.bandl.2010.07.008
    1. Scharnowski F., Rosa M. J., Golestani N., Hutton C., Josephs O., Weiskopf N., et al. . (2014). Connectivity changes underlying neurofeedback training of visual cortex activity. PLoS One 9:e91090. 10.1371/journal.pone.0091090
    1. Schrag A., Sampaio C., Counsell N., Poewe W. (2006). Minimal clinically important change on the unified Parkinson’s disease rating scale. Mov Disord. 21, 1200–1207. 10.1002/mds.20914
    1. Shen X., Mak M. K. Y. (2015). Technology-assisted balance and gait training reduces falls in patients with Parkinson’s disease: A randomized controlled trial with 12-month follow-up. Neurorehabil. Neural Repair 29, 103–111. 10.1177/1545968314537559
    1. Shulman L. M., Gruber-Baldini A. L., Anderson K. E., Fishman P. S., Reich S. G., Weiner W. J. (2010). The Clinically important difference on the unified parkinson’s disease rating scale. Arch. Neurol. 67, 64–70. 10.1001/archneurol.2009.295
    1. Stack E., Roberts H., Ashburn A. (2012). The PIT: SToPP trial - a feasibility randomised controlled trial of home-based physiotherapy for people with Parkinson’s disease using video-based measures to preserve assessor blinding. Parkinsons Dis. 2012, 1–8. 10.1155/2012/360231
    1. Stocchi F., Arnold G., Onofrj M., Kwiecinski H., Szczudlik A., Thomas A., et al. . (2004). Improvement of motor function in early Parkinson disease by safinamide. Neurology 63, 746–748. 10.1212/01.wnl.0000134672.44217.f7
    1. Subramanian L., Hindle J. V., Johnston S., Roberts M. V., Husain M., Goebel R., et al. . (2011). Real-time functional magnetic resonance imaging neurofeedback for treatment of parkinson’s disease. J. Neurosci. 31, 16309–16317. 10.1523/jneurosci.3498-11.2011
    1. Sulzer J., Haller S., Scharnowski F., Weiskopf N., Birbaumer N., Blefari M. L., et al. . (2013). Real-time fMRI neurofeedback: Progress and challenges. Neuroimage 76, 386–399. 10.1016/j.neuroimage.2013.03.033
    1. Talairach J., Tournoux P. (1998). Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System an approach to Cerebral Imaging. New York, NY: Thieme.
    1. Tamir R., Dickstein R., Huberman M. (2007). Integration of motor imagery and physical practice in group treatment applied to subjects with Parkinson’s disease. Neurorehabil. Neural Repair 21, 68–75. 10.1177/1545968306292608
    1. Tomlinson C. L., Stowe R., Patel S., Rick C., Gray R., Clarke C. E. (2010). Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 25, 2649–2685. 10.1002/mds.23429
    1. Uhrbrand A., Stenager E., Pedersen M. S., Dalgas U. (2015). Parkinson’s disease and intensive exercise therapy - a systematic review and meta-analysis of randomized controlled trials. J. Neurol. Sci. 353, 9–19. 10.1016/j.jns.2015.04.004
    1. Weiskopf N. (2012). Real-time fMRI and its application to neurofeedback. Neuroimage 62, 682–692. 10.1016/j.neuroimage.2011.10.009
    1. Wetten A. A., Batterham M., Tan S. Y., Tapsell L. (2014). Relative validity of 3 accelerometer models for estimating energy expenditure during light activity. J. Phys. Act. Health 11, 638–647. 10.1123/jpah.2011-0167
    1. Xie F., Xu L., Long Z., Yao L., Wu X. (2015). Functional connectivity alteration after real-time fMRI motor imagery training through self-regulation of activities of the right premotor cortex. BMC Neurosci. 16:29. 10.1186/s12868-015-0167-1
    1. Yoo S. S., Jolesz F. A. (2002). Functional MRI for neurofeedback: feasibility study on a hand motor task. Neuroreport 13, 1377–1381. 10.1097/00001756-200208070-00005
    1. Yoo S. S., Lee J. H., O’Leary H., Panych L. P., Jolesz F. A. (2008). Neurofeedback fMRI-mediated learning and consolidation of regional brain activation during motor imagery. Int. J. Imaging Syst. Technol. 18, 69–78. 10.1002/ima.20139
    1. Zich C., Debener S., Kranczioch C., Bleichner M. G., Gutberlet I., De Vos M. (2015). Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery. Neuroimage 114, 438–447. 10.1016/j.neuroimage.2015.04.020

Source: PubMed

3
Subskrybuj