Safety and tolerability of monthly galcanezumab injections in patients with migraine: integrated results from migraine clinical studies

Mark E Bangs, David Kudrow, Shufang Wang, Tina M Oakes, Gisela M Terwindt, Delphine Magis, Laura Yunes-Medina, Virginia L Stauffer, Mark E Bangs, David Kudrow, Shufang Wang, Tina M Oakes, Gisela M Terwindt, Delphine Magis, Laura Yunes-Medina, Virginia L Stauffer

Abstract

Background: Galcanezumab, a humanized monoclonal antibody that selectively binds to calcitonin gene-related peptide, has demonstrated a significant reduction in monthly migraine headache days in phase 2 and 3 trials. In these analyses, we aimed to evaluate the safety and tolerability of galcanezumab compared with placebo for prevention of episodic or chronic migraine.

Methods: Data were integrated from three double-blind clinical studies for the up to 6-month galcanezumab exposure group (N = 1435), and from five clinical studies for the up to 1-year all-galcanezumab exposure group (N = 2276). Patients received a monthly 120 mg subcutaneous injection of galcanezumab (with a 240 mg loading dose in month 1), 240 mg galcanezumab, or placebo. Outcomes measured were treatment-emergent adverse events (TEAEs), serious AEs (SAEs), and discontinuation due to AEs (DCAEs). Laboratory results, vital signs, electrocardiogram (ECG), suicidal ideation and behavior results were evaluated.

Results: TEAEs that occurred more frequently in galcanezumab-treated patients included injection site pain, injection site reactions excluding pain, constipation, vertigo, and pruritus. The proportion of DCAEs among galcanezumab-treated patients ranged between 1.8 and 3.0%, and differed from placebo group for galcanezumab 240 mg (P < 0.05). Fewer than 2.0% of patients in either galcanezumab dose-group compared with 1.0% of placebo-treated patients reported a SAE. There were no clinically meaningful differences between galcanezumab and placebo in laboratory measures, vital signs including blood pressure, ECGs, cardiovascular-related AEs, or suicidal ideation and behavior.

Conclusions: Galcanezumab demonstrated a favorable safety and tolerability profile for up to 1 year of treatment for the prevention of migraine.

Trial registration: Clinical Trials CGAB = NCT02163993, EVOLVE-1 = NCT02614183, EVOLVE-2 = NCT02614196, REGAIN = NCT02614261, and CGAJ = NCT02614287. All were first posted on 25 November 2015, except CGAB posted on 16 June 2014, and before enrolling the first patient.

Keywords: CGRP; Galcanezumab; Migraine; Safety; Tolerability.

Conflict of interest statement

MEB, SW, TMO, LY-M, and VLS are full-time employees of Eli Lilly and Company, and minor stockholders of the sponsor of the work, Eli Lilly and Company. DK has received consultant fees from Alder and Amgen; speaker fees from Teva; grants from Eli Lilly and Company, during the conduct of the study; and grants from Amgen, Teva, Alder, Biohaven, Roche, and VM Biopharma, outside the submitted work. GMT reports personal fees from Eli Lilly and Company, Teva Pharmaceuticals, and Novartis, during the conduct of the study and grants from Dutch Brain Foundation, Dutch Heart Foundation, and Netherlands Organization for Scientific Research (NWO), outside the submitted work. DM reports ad hoc advisory board fees from Novartis Belgium NV and Eli Lilly Benelux. DM is also a member of the editorial board of BMC Neurology and Cephalalgia. The authors received article support from Medtronic Europe and Cefaly Technology.

References

    1. Eftekhari S, Salvatore CA, Calamari A, et al. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience. 2010;169:683–696. doi: 10.1016/j.neuroscience.2010.05.016.
    1. Edvinsson L, Goadsby PJ. Neuropeptides in migraine and cluster headache. Cephalalgia. 1994;14:320–327. doi: 10.1046/j.1468-2982.1994.1405320.x.
    1. Bigal ME, Walter S, Rapoport AM. Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache. 2013;53:1230–1244. doi: 10.1111/head.12179.
    1. Edvinsson L, Haanes KA, Warfvinge K, et al. CGRP as the target of new migraine therapies - successful translation from bench to clinic. Nat Rev Neurol. 2018;14:338–350. doi: 10.1038/s41582-018-0003-1.
    1. Cady RJ, Glenn JR, Smith KM, et al. Calcitonin gene-related peptide promotes cellular changes in trigeminal neurons and glia implicated in peripheral and central sensitization. Mol Pain. 2017;7:94–105. doi: 10.1186/1744-8069-7-94.
    1. Hirsch S, Corradini L, Just S, et al. The CGRP receptor antagonist BIBN4096BS peripherally alleviates inflammatory pain in rats. Pain. 2013;154:700–707. doi: 10.1016/j.pain.2013.01.002.
    1. Russell FA, King R, Smillie S-J, et al. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94:1099–1142. doi: 10.1152/physrev.00034.2013.
    1. MaassenVanDenBrink A, Meijer J, Villalόn CM, et al. Wiping out CGRP: potential cardiovascular risks. Trends Pharmacol Sci. 2016;37:779–789. doi: 10.1016/j.tips.2016.06.002.
    1. Kurth T, Gaziano J, Cook NR, et al. Migraine and risk of cardiovascular disease in women. JAMA. 2006;296:283–291. doi: 10.1001/jama.296.3.283.
    1. Becker C, Brobert G, Almqvist PM, et al. Migraine and the risk of stroke, TIA, or death in the UK. Headache. 2007;47:1374–1384. doi: 10.1111/j.1526-4610.2007.00937.x.
    1. Le H, Tfelt-Hansen P, Russell MB, et al. Co-morbidity of migraine with somatic disease in a large population-based study. Cephalalgia. 2011;31:43–64. doi: 10.1177/0333102410373159.
    1. Chen YC, Tang CH, Ng K, et al. Comorbidity profiles of chronic migraine sufferers in a national database in Taiwan. J Headache Pain. 2012;13:311–319. doi: 10.1007/s10194-012-0447-4.
    1. Sacco S, Ornello R, Ripa P, et al. Migraine and risk of ischaemic heart disease: a systematic review and meta-analysis of observational studies. Eur J Neurol. 2015;22:1001–1011. doi: 10.1111/ene.12701.
    1. Peng KP, Chen YT, Fuh JL, et al. Migraine and incidence of ischemic stroke: a nationwide population-based study. Cephalalgia. 2017;37:327–335. doi: 10.1177/0333102416642602.
    1. Benschop RJ, Collins EC, Darling RJ, et al. Development of a novel antibody to calcitonin gene-related peptide for the treatment of osteoarthritis-related pain. Osteoarthr Cartil. 2014;22:578–585. doi: 10.1016/j.joca.2014.01.009.
    1. Oakes TM, Skljarevski V, Zhang Q, et al. Safety of galcanezumab in patients with episodic migraine: a randomized placebo-controlled dose-ranging phase 2b study. Cephalalgia. 2018;38:1015–1025. doi: 10.1177/0333102417747230.
    1. Dodick DW, Goadsby PJ, Spierings ELH, et al. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2014;13:885–892. doi: 10.1016/S1474-4422(14)70128-0.
    1. Skljarevski V, Oakes TM, Zhang Q, et al. Effect of different doses of galcanezumab vs placebo for episodic migraine prevention: a randomized clinical trial. JAMA Neurol. 2018;75:187–193. doi: 10.1001/jamaneurol.2017.3859.
    1. Stauffer VL, Dodick DW, Zhang Q, et al. Evaluation of galcanezumab for the prevention of episodic migraine: the EVOLVE-1 randomized clinical trial. JAMA Neurol. 2018;75:1080–1088. doi: 10.1001/jamaneurol.2018.1212.
    1. Skljarevski V, Matharu M, Millen BA, et al. Efficacy and safety of galcanezumab for the prevention of episodic migraine: results of the EVOLVE-2 phase 3 randomized controlled clinical trial. Cephalalgia. 2018;38:1442–1454. doi: 10.1177/0333102418779543.
    1. Detke HC, Goadsby PJ, Wang S, et al. Galcanezumab in chronic migraine: the randomized, double-blind, placebo-controlled REGAIN study. Neurology. 2018;91:e2211–e2221. doi: 10.1212/WNL.0000000000006640.
    1. Camporeale A, Kudrow D, Sides R, et al. A phase 3, long-term, open-label safety study of Galcanezumab in patients with migraine. BMC Neurol. 2018;18:188–199. doi: 10.1186/s12883-018-1193-2.
    1. Förderreuther S, Zhang Q, Stauffer VL, et al. Preventive effects of galcanezumab in adult patients with episodic or chronic migraine are persistent: data from the phase 3, randomized, double-blind, placebo-controlled EVOLVE-1, EVOLVE-2, and REGAIN studies. J Headache Pain. 2018;19:121. doi: 10.1186/s10194-018-0951-2.
    1. Silberstein SD, Stauffer VL, Day KA, et al. Galcanezumab in episodic migraine: subgroup analyses of efficacy by high versus low frequency of migraine headaches in phase 3 studies (EVOLVE-1 & EVOLVE-2) J Headache Pain. 2019;20:75. doi: 10.1186/s10194-019-1024-x.
    1. Xu D, Chen D, Zhu LN, et al. Safety and tolerability of calcitonin-gene-related peptide binding monoclonal antibodies for the prevention of episodic migraine - a meta-analysis of randomized controlled trials. Cephalalgia. 2019;39:1164–1179. doi: 10.1177/0333102419829007.
    1. Posner K, Brown GK, Stanley B, et al. The Columbia-suicide severity rating scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am J Psychiatry. 2011;168:1266–1277. doi: 10.1176/appi.ajp.2011.10111704.
    1. Buse DC, Rupnow MFT, Lipton RB. Assessing and managing all aspects of migraine: migraine attacks, migraine-related functional impairment, common comorbidities, and quality of life. Mayo Clin Proc. 2009;84:422–435. doi: 10.1016/S0025-6196(11)60561-2.
    1. Dodick DW, Ashina M, Brandes JL, et al. ARISE: a phase 3 randomized trial of erenumab for episodic migraine. Cephalalgia. 2018;38:1026–1037. doi: 10.1177/0333102418759786.
    1. Goadsby PJ, Reuter U, Hallstrom Y, et al. A controlled trial of erenumab for episodic migraine. N Engl J Med. 2017;377:2123–2132. doi: 10.1056/NEJMoa1705848.
    1. Tepper SJ, Ashina M, Reuter U, et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2017;16:425–434. doi: 10.1016/S1474-4422(17)30083-2.
    1. Aimovig™ (Erenumab-aooe) injection. Amgen Inc. and Novartis Pharmaceuticals Corporation. . Accessed 4 Aug 2019.
    1. Dodick DW, Silberstein SD, Bigal ME, et al. Effect of fremanezumab compared with placebo for prevention of episodic migraine: a randomized clinical trial. JAMA. 2018;319:1999–2008. doi: 10.1001/jama.2018.4853.
    1. Silberstein SD, Aycardi E, Bigal ME, et al. Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med. 2017;377:2113–2122. doi: 10.1056/NEJMoa1709038.
    1. Ajovy™ (fremanezumab-vfrm) injection. Teva Pharmaceuticals USA, Inc. . Accessed 10 Jan 2018.
    1. Silberstein SD, McAllister P, Ning X, et al. Safety and tolerability of fremanezumab for the prevention of migraine: a pooled analysis of phases 2b and 3 clinical trials. Headache. 2019;59:880–890. doi: 10.1111/head.13534.
    1. Sacco S, Bendtsen L, Ashina M, et al. European headache federation guideline on the use of monoclonal antibodies acting on the calcitonin gene related peptide or its receptor for migraine prevention. J Headache Pain. 2019;20(6). 10.1186/s10194-018-0955-y Erratum in: J Headache Pain. 2019;20:58.
    1. Kaiser EA, Rea BL, Kuburas A, et al. Anti-CGRP antibodies block CGRP-induced diarrhea in mice. Neuropeptides. 2017;64:95–99. doi: 10.1016/j.npep.2016.11.004.
    1. Lempert T, Neuhauser H. Epidemiology of vertigo, migraine and vestibular migraine. J Neurol. 2009;256:333–338. doi: 10.1007/s00415-009-0149-2.
    1. Dash AK, Panda N, Khandelwal G, et al. Migraine and audiovestibular dysfunction: is there a correlation? Otolaryngol Head Neck Surg. 2008;29:295–299. doi: 10.1016/j.amjoto.2007.09.004.
    1. Kong WJ, Scholtz AW, Kammen-Jolly K, et al. Ultrastructural evaluation of calcitonin gene-related peptide immunoreactivity in the human cochlea and vestibular endorgans. Eur J Neurosci. 2002;15:487–497. doi: 10.1046/j.0953-816x.2001.01880.x.
    1. Schrott-Fischer A, Kammen-Jolly K, Scholtz A, et al. Efferent neurotransmitters in the human cochlea and vestibule. Acta Otolaryngol. 2007;127:13–19. doi: 10.1080/00016480600652123.
    1. Regev A, Camporeale A, Skljarevski V, et al. Hepatic safety of galcanezumab in patients with migraine: results of three phase 2 double-blind placebo-controlled trials. Neurology. 2017;88(Suppl):164–168.
    1. Hepp Z, Dodick D, Varon SF, et al. Adherence to oral migraine-preventive medications among patients with chronic migraine. Cephalalgia. 2015;35:478–488. doi: 10.1177/0333102414547138.
    1. Loder EW, Rizzoli P. Tolerance and loss of beneficial effect during migraine prophylaxis: clinical considerations. Headache. 2011;51:1336–1345. doi: 10.1111/j.1526-4610.2011.01986.x.

Source: PubMed

3
Subskrybuj