Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo

Ioanna Gouni-Berthold, Heiner K Berthold, Joo Young Huh, Reena Berman, Nadine Spenrath, Wilhelm Krone, Christos S Mantzoros, Ioanna Gouni-Berthold, Heiner K Berthold, Joo Young Huh, Reena Berman, Nadine Spenrath, Wilhelm Krone, Christos S Mantzoros

Abstract

Context and objective: The myokine irisin has been proposed to regulate energy homeostasis. Little is known about its association with metabolic parameters and especially with parameters influencing pathways of lipid metabolism. In the context of a clinical trial, an exploratory post hoc analysis has been performed in healthy subjects to determine whether simvastatin and/or ezetimibe influence serum irisin levels. The direct effects of simvastatin on irisin were also examined in primary human skeletal muscle cells (HSKMCs).

Design and participants: A randomized, parallel 3-group study was performed in 72 men with mild hypercholesterolemia and without apparent cardiovascular disease. Each group of 24 subjects received a 14-day treatment with either simvastatin 40 mg, ezetimibe 10 mg, or their combination.

Results: Baseline irisin concentrations were not significantly correlated with age, BMI, estimated GFR, thyroid parameters, glucose, insulin, lipoproteins, non-cholesterol sterols, adipokines, inflammation markers and various molecular markers of cholesterol metabolism. Circulating irisin increased significantly in simvastatin-treated but not in ezetimibe-treated subjects. The changes were independent of changes in LDL-cholesterol and were not correlated with changes in creatine kinase levels. In HSKMCs, simvastatin significantly increased irisin secretion as well as mRNA expression of its parent peptide hormone FNDC5. Simvastatin significantly induced cellular reactive oxygen species levels along with expression of pro- and anti-oxidative genes such as Nox2, and MnSOD and catalase, respectively. Markers of cellular stress such as atrogin-1 mRNA and Bax protein expression were also induced by simvastatin. Decreased cell viability and increased irisin secretion by simvastatin was reversed by antioxidant mito-TEMPO, implying in part that irisin is secreted as a result of increased mitochondrial oxidative stress and subsequent myocyte damage.

Conclusions: Simvastatin increases irisin concentrations in vivo and in vitro. It remains to be determined whether this increase is a result of muscle damage or a protective mechanism against simvastatin-induced cellular stress.

Trial registration: ClinicalTrials.gov NCT00317993 NCT00317993.

Conflict of interest statement

Competing Interests: The parent trial (1) was supported in part by an investigator-initiated grant from MSD Sharp & Dohme (Munich, Germany) and the Wilhelm-Doerenkamp Foundation (Cologne, Germany). Co-author Heiner K. Berthold is a PLOS ONE Editorial Board member. Ioanna Gouni-Berthold has received research grants from 28 Bayer Health Care and honoraria and travel expenses from Genzyme, MSD Sharp & Dohme, Novartis, Novo Nordisk, Pfizer, Ipsen, Bristol Myers Squibb, Amgen, and Otsuka. None of the other authors have relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Irisin and LDL cholesterol concentrations…
Figure 1. Irisin and LDL cholesterol concentrations at baseline and after 2 weeks of treatment.
(A) Frequency histogram and normal distribution of irisin baseline concentrations. Data of N = 70 subjects were available. Mean ± SD baseline concentrations were 265±102 ng/ml (range 85 to 518 ng/ml). (B) Percent change from baseline concentrations in LDL cholesterol (left) and irisin (right). (C) Individual changes from baseline to 2-weeks irisin concentrations in the 3 treatment groups. The graph on the right shows the combined data of the subjects receiving simvastatin (either alone or in combination with ezetimibe).
Figure 2. Increased irisin does not correlate…
Figure 2. Increased irisin does not correlate with circulating creatine kinase levels.
(A) Serum creatine kinase levels before and 2 weeks after simvastatin treatment. (B) Correlation between change in irisin levels and change in creatine kinase levels in simvastatin-treated subjects. Values are means ± SEM of N = 23 subjects.
Figure 3. Simvastatin increases irisin secretion and…
Figure 3. Simvastatin increases irisin secretion and FNDC5 mRNA expression in human skeletal muscle cells (HSKMCs).
Measurement of irisin in media (A) and lysate (B) at 24 and 48 hrs after 5 µM simvastatin treatment. FNDC5 mRNA levels were measured by real-time PCR after 5 µM simvastatin treatment for 6 and 24 hrs (C) or 1 and 5 µM for 24 hrs (D). mRNA levels of PGC-1α (E) and atrogin-1 (F) were also measured in simvastatin-treated HSKMCs (5 µM, 6 and 24 hrs). Values are means ± SEM of 4 individual experiments. *Pvs. control.
Figure 4. Simvastatin induces muscle damage, oxidative…
Figure 4. Simvastatin induces muscle damage, oxidative stress, and apoptosis in human skeletal muscle cells, and mito-TEMPO reverses simvastatin-induced cellular damage and irisin secretion.
(A) Differentiated HSKMCs were incubated with 5 µM simvastatin for 48 and 96 hrs and representative pictures were taken. Enlarged inset pictures are shown for better viewing. (B) The myotube diameter was measured in the images shown in (A) using Image J, as described in the methods. (C) Intracellular oxidative stress levels were measured with DCF-DA 48 hrs after 2 and 10 µM simvastatin treatment. (D–G) Expression of oxidative stress related genes, including Nox2, Nox4, MnSOD, and catalase were measured 24 hrs after 5 µM simvastatin treatment. (H–I) Protein levels of Bcl-2 and Bax after 24 and 48 hrs 5 µM simvastatin treatment and its quantification in HSKMCs. (J) Cell viability was measured by MTT assay after 5 µM simvastatin treatment for 48 hrs. (K) Irisin secretion in media was measured 48 hrs after 5 µM simvastatin treatment. For (J) and (K), 100 µM Mito-TEMPO was administered for 1 hr prior to simvastatin treatment. Values are means ± SEM of 4 individual experiments. RFU: relative fluorescence unit, Statin: simvastatin, TEMPO: mito-TEMPO. *Pvs. control, **P<0.05 vs.48 hr treated (B) or 2 µM simvastatin-treated (C) HSKMCs, †P<0.05 vs. simvastatin-treated HSKMCs.

References

    1. Roberts MD, Bayless DS (2013) Company JM, Jenkins NT, Padilla J, et al (2013) Elevated skeletal muscle irisin precursor FNDC5 mRNA in obese OLETF rats. Metabolism 62: 1052–1056.
    1. Swick AG, Orena S, O'Connor A (2013) Irisin levels correlate with energy expenditure in a subgroup of humans with energy expenditure greater than predicted by fat free mass. Metabolism 62: 1070–1073.
    1. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, et al. (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481: 463–468.
    1. Ishibashi J, Seale P (2010) Medicine. Beige can be slimming. Science 328: 1113–1114.
    1. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, et al. (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285: 7153–7164.
    1. Castillo-Quan JI (2012) From white to brown fat through the PGC-1alpha-dependent myokine irisin: implications for diabetes and obesity. Dis Model Mech 5: 293–295.
    1. Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, et al. (2012) FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61: 1725–1738.
    1. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, et al. (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366: 1267–1278.
    1. Kokkinos PF, Faselis C, Myers J, Panagiotakos D, Doumas M (2013) Interactive effects of fitness and statin treatment on mortality risk in veterans with dyslipidaemia: a cohort study. Lancet 381: 394–399.
    1. Berneis K, Rizzo M, Berthold HK, Spinas GA, Krone W, et al. (2010) Ezetimibe alone or in combination with simvastatin increases small dense low-density lipoproteins in healthy men: a randomized trial. Eur Heart J 31: 1633–1639.
    1. Berthold HK, Laaksonen R, Lehtimaki T, Gylling H, Krone W, et al. (2008) SREBP-1c gene polymorphism is associated with increased inhibition of cholesterol-absorption in response to ezetimibe treatment. Exp Clin Endocrinol Diabetes 116: 262–267.
    1. Gouni-Berthold I, Berthold HK, Gylling H, Hallikainen M, Giannakidou E, et al. (2008) Effects of ezetimibe and/or simvastatin on LDL receptor protein expression and on LDL receptor and HMG-CoA reductase gene expression: a randomized trial in healthy men. Atherosclerosis 198: 198–207.
    1. Gouni-Berthold I, Berthold HK, Chamberland JP, Krone W, Mantzoros CS (2008) Short-term treatment with ezetimibe, simvastatin or their combination does not alter circulating adiponectin, resistin or leptin levels in healthy men. Clin Endocrinol (Oxf) 68: 536–541.
    1. Berthold HK, Naini A, Di Mauro S, Hallikainen M, Gylling H, et al. (2006) Effect of ezetimibe and/or simvastatin on coenzyme Q10 levels in plasma: a randomised trial. Drug Saf 29: 703–712.
    1. Chan JL, Mietus JE, Raciti PM, Goldberger AL, Mantzoros CS (2007) Short-term fasting-induced autonomic activation and changes in catecholamine levels are not mediated by changes in leptin levels in healthy humans. Clin Endocrinol (Oxf) 66: 49–57.
    1. Mantzoros CS, Li T, Manson JE, Meigs JB, Hu FB (2005) Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes. J Clin Endocrinol Metab 90: 4542–4548.
    1. Shetty GK, Economides PA, Horton ES, Mantzoros CS, Veves A (2004) Circulating adiponectin and resistin levels in relation to metabolic factors, inflammatory markers, and vascular reactivity in diabetic patients and subjects at risk for diabetes. Diabetes Care 27: 2450–2457.
    1. Bluher M, Brennan AM, Kelesidis T, Kratzsch J, Fasshauer M, et al. (2007) Total and high-molecular weight adiponectin in relation to metabolic variables at baseline and in response to an exercise treatment program: comparative evaluation of three assays. Diabetes Care 30: 280–285.
    1. Kwak HB, Thalacker-Mercer A, Anderson EJ, Lin CT, Kane DA, et al. (2012) Simvastatin impairs ADP-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes. Free Radic Biol Med 52: 198–207.
    1. Baer AN, Wortmann RL (2007) Myotoxicity associated with lipid-lowering drugs. Curr Opin Rheumatol 19: 67–73.
    1. Bellosta S, Paoletti R, Corsini A (2004) Safety of statins: focus on clinical pharmacokinetics and drug interactions. Circulation 109: III50–III57.
    1. Cao P, Hanai J, Tanksale P, Imamura S, Sukhatme VP, et al. (2009) Statin-induced muscle damage and atrogin-1 induction is the result of a geranylgeranylation defect. FASEB J 23: 2844–2854.
    1. Foletta VC, White LJ, Larsen AE, Leger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461: 325–335.
    1. Cao P, Hanai J, Tanksale P, Imamura S, Sukhatme VP, et al. (2009) Statin-induced muscle damage and atrogin-1 induction is the result of a geranylgeranylation defect. FASEB J 23: 2844–2854.
    1. Rizzo M, Rini GB, Spinas GA, Berneis K (2009) The effects of ezetimibe on LDL-cholesterol: quantitative or qualitative changes? Atherosclerosis 204: 330–333.
    1. Gouni-Berthold I, Mikhailidis DP, Rizzo M (2012) Clinical benefits of ezetimibe use: is absence of proof, proof of absence? Expert Opin Pharmacother 13: 1985–1988.
    1. Sathasivam S (2012) Statin induced myotoxicity. Eur J Intern Med 23: 317–324.
    1. Bouitbir J, Charles AL, Echaniz-Laguna A, Kindo M, Daussin F, et al. (2012) Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a 'mitohormesis' mechanism involving reactive oxygen species and PGC-1. Eur Heart J 33: 1397–1407.
    1. Rallidis LS, Fountoulaki K, Anastasiou-Nana M (2012) Managing the underestimated risk of statin-associated myopathy. Int J Cardiol 159: 169–176.
    1. Eckel RH (2010) Approach to the patient who is intolerant of statin therapy. J Clin Endocrinol Metab 95: 2015–2022.
    1. Galtier F, Mura T, Raynaud de Mauverger E, Chevassus H, Farret A, et al. (2012) Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers. Toxicol Appl Pharmacol 263: 281–286.
    1. Mikus CR, Boyle LJ, Borengasser SJ, Oberlin DJ, Naples SP, et al... (2013) Simvastatin impairs exercise training adaptations. J Am Coll Cardiol.
    1. Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, et al. (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376: 1670–1681.
    1. Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45: 89–118.
    1. Kelly DP (2012) Medicine. Irisin, light my fire. Science 336: 42–43.
    1. Boaz M, Lisy L, Zandman-Goddard G, Wainstein J (2009) The effect of anti-inflammatory (aspirin and/or statin) therapy on body weight in Type 2 diabetic individuals: EAT, a retrospective study. Diabet Med 26: 708–713.
    1. Becker DJ, Gordon RY, Morris PB, Yorko J, Gordon YJ, et al. (2008) Simvastatin vs therapeutic lifestyle changes and supplements: randomized primary prevention trial. Mayo Clin Proc 83: 758–764.
    1. Goodpaster BH (2013) Mitochondrial deficiency is associated with insulin resistance. Diabetes 62: 1032–1035.
    1. Liu JJ, Wong MD, Toy WC, Tan CS, Liu S, et al... (2013) Lower circulating irisin is associated with type 2 diabetes mellitus. J Diabetes Complications.
    1. Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, et al. (2013) Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 98: E769–E778.
    1. Wang LJ, Song BL (2012) Niemann-Pick C1-Like 1 and cholesterol uptake. Biochim Biophys Acta 1821: 964–972.
    1. Howles PN, Hui DY (2012) Physiological role of hepatic NPC1L1 in human cholesterol and lipoprotein metabolism: New perspectives and open questions. J Lipid Res 53: 2253–2255.
    1. Labonte ED, Camarota LM, Rojas JC, Jandacek RJ, Gilham DE, et al. (2008) Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc1l1-/- mice. Am J Physiol Gastrointest Liver Physiol 295: G776–G783.
    1. Liu W, Singh R, Choi CS, Lee HY, Keramati AR, et al. (2012) Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J Biol Chem 287: 7213–7223.
    1. Jeong JH, Cho S, Pak YK (2009) Sterol-independent repression of low density lipoprotein receptor promoter by peroxisome proliferator activated receptor gamma coactivator-1alpha (PGC-1alpha). Exp Mol Med 41: 406–416.
    1. Iwayanagi Y, Takada T, Tomura F, Yamanashi Y, Terada T, et al. (2011) Human NPC1L1 expression is positively regulated by PPARalpha. Pharm Res 28: 405–412.
    1. Danaei G, Rodriguez LA, Cantero OF, Hernan MA (2012) Statins and Risk of Diabetes: An analysis of electronic medical records to evaluate possible bias due to differential survival. Diabetes Care.
    1. Axsom K, Berger JS, Schwartzbard AZ (2013) Statins and diabetes: the good, the bad, and the unknown. Curr Atheroscler Rep 15: 299.
    1. Choi YK, Kim MK, Bae KH, Seo HA, Jeong JY, et al... (2013) Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pract.
    1. Castillo-Quan JI (2012) From white to brown fat through the PGC-1alpha-dependent myokine irisin: implications for diabetes and obesity. Dis Model Mech 5: 293–295.

Source: PubMed

3
Subskrybuj