Right Ventricular Strain Is Common in Intubated COVID-19 Patients and Does Not Reflect Severity of Respiratory Illness

Lauren E Gibson, Raffaele Di Fenza, Min Lang, Martin I Capriles, Matthew D Li, Jayashree Kalpathy-Cramer, Brent P Little, Pankaj Arora, Ariel L Mueller, Fumito Ichinose, Edward A Bittner, Lorenzo Berra, Marvin G Chang, Lauren E Gibson, Raffaele Di Fenza, Min Lang, Martin I Capriles, Matthew D Li, Jayashree Kalpathy-Cramer, Brent P Little, Pankaj Arora, Ariel L Mueller, Fumito Ichinose, Edward A Bittner, Lorenzo Berra, Marvin G Chang

Abstract

Background: Right ventricular (RV) dysfunction is common and associated with worse outcomes in patients with coronavirus disease 2019 (COVID-19). In non-COVID-19 acute respiratory distress syndrome, RV dysfunction develops due to pulmonary hypoxic vasoconstriction, inflammation, and alveolar overdistension or atelectasis. Although similar pathogenic mechanisms may induce RV dysfunction in COVID-19, other COVID-19-specific pathology, such as pulmonary endothelialitis, thrombosis, or myocarditis, may also affect RV function. We quantified RV dysfunction by echocardiographic strain analysis and investigated its correlation with disease severity, ventilatory parameters, biomarkers, and imaging findings in critically ill COVID-19 patients.

Methods: We determined RV free wall longitudinal strain (FWLS) in 32 patients receiving mechanical ventilation for COVID-19-associated respiratory failure. Demographics, comorbid conditions, ventilatory parameters, medications, and laboratory findings were extracted from the medical record. Chest imaging was assessed to determine the severity of lung disease and the presence of pulmonary embolism.

Results: Abnormal FWLS was present in 66% of mechanically ventilated COVID-19 patients and was associated with higher lung compliance (39.6 vs 29.4 mL/cmH2O, P = 0.016), lower airway plateau pressures (21 vs 24 cmH2O, P = 0.043), lower tidal volume ventilation (5.74 vs 6.17 cc/kg, P = 0.031), and reduced left ventricular function. FWLS correlated negatively with age (r = -0.414, P = 0.018) and with serum troponin (r = 0.402, P = 0.034). Patients with abnormal RV strain did not exhibit decreased oxygenation or increased disease severity based on inflammatory markers, vasopressor requirements, or chest imaging findings.

Conclusions: RV dysfunction is common among critically ill COVID-19 patients and is not related to abnormal lung mechanics or ventilatory pressures. Instead, patients with abnormal FWLS had more favorable lung compliance. RV dysfunction may be secondary to diffuse intravascular micro- and macro-thrombosis or direct myocardial damage.

Trial registration: National Institutes of Health #NCT04306393. Registered 10 March 2020, https://ichgcp.net/clinical-trials-registry/NCT04306393.

Keywords: COVID-19; acute respiratory distress syndrome; cardiac dysfunction; right ventricle; strain.

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: LB receives salary support from K23 HL128882/NHLBI NIH as principal investigator for his work on hemolysis and nitric oxide. LB receives technologies and devices from iNO Therapeutics LLC, Praxair Inc., Masimo Corp. LB receives funding from a Fast Grant for COVID-19 research at Mercatus Center of George Mason University and from iNO Therapeutics LLC. BPL is a textbook associate editor and author for Elsevier, Inc. and receives royalties. JKC reports grants from GE Healthcare, non-financial support from AWS, and grants from Genentech Foundation outside of the submitted work.

Figures

Figure 1.
Figure 1.
Correlations between right ventricular free wall longitudinal strain (FWLS) and patient characteristics. FWLS negatively correlated with age (A), high-sensitivity troponin level at the time of ICU admission (B) and left ventricular (LV) outflow tract velocity time integral (C), a marker for cardiac stroke volume. In terms of respiratory parameters, FWLS negatively correlated with (D) airway plateau pressure and (E) tidal volume, while FWLS positively correlated with (F) lung compliance.
Figure 2.
Figure 2.
Patients with normal and abnormal right ventricular free wall longitudinal strain (FWLS) had similar COVID-19 lung disease severity scores on chest radiographs (PXS score) and different rates of pulmonary embolism on CT imaging. A) Histogram comparing mean PXS scores ± standard deviation between patients with normal and abnormal FWLS. B) Patients with abnormal FWLS had a higher rate of pulmonary embolism detected on CT imaging. C) Illustrative examples above from a patient with normal FWLS (left panel) and abnormal FWLS (right panel) show patchy bilateral airspace opacities. The PXS scores of 8.0 and 8.4 reflect moderate radiographic disease severity.

References

    1. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802–810. doi:10.1001/jamacardio.2020.0950
    1. Deng Q, Hu B, Zhang Y, et al. Suspected myocardial injury in patients with COVID-19: evidence from front-line clinical observation in Wuhan, China. Int J Cardiol. 2020;311:116–121. doi:10.1016/j.ijcard.2020.03.087
    1. Argulian E, Sud K, Vogel B, et al. Right ventricular dilation in hospitalized patients with COVID-19 infection. JACC Cardiovasc Imaging. 2020;13(11):2459–2461. doi:10.1016/j.jcmg.2020.05.010
    1. Szekely Y, Lichter Y, Taieb P, et al. Spectrum of cardiac manifestations in COVID-19. Circulation. 2020;142(4):342–353. doi:10.1161/CIRCULATIONAHA.120.047971
    1. Zochios V, Parhar K, Tunnicliffe W, Roscoe A, Gao F. The right ventricle in ARDS. Chest. 2017;152(1):181–193. doi:10.1016/j.chest.2017.02.019
    1. Whittenberger JL, Mcgregor M, Berglund E, Borst HG. Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol. 1960;15:878–882. doi:10.1152/jappl.1960.15.5.878
    1. Zapol WM, Snider MT. Pulmonary hypertension in severe acute respiratory failure. N Engl J Med. 1977;296(9):476–480. doi:10.1056/NEJM197703032960903
    1. Greene R, Lind S, Jantsch H, et al. Pulmonary vascular obstruction in severe ARDS: angiographic alterations after I.V. fibrinolytic therapy. AJR Am J Roentgenol. 1987;148(3):501–508. doi:10.2214/ajr.148.3.501
    1. Lang M, Som A, Mendoza DP, et al. Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. Lancet Infect Dis. 2020;20(12):1365–1366. doi:10.1016/S1473-3099(20)30367-4
    1. Lang M, Som A, Carey D, et al. Pulmonary vascular manifestations of COVID-19 pneumonia. Radiol Cardiothorac Imaging. 2020;2(3):e200277. doi:10.1148/ryct.2020200277
    1. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–128. doi:10.1056/NEJMoa2015432
    1. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi:10.1016/S0140-6736(20)30937-5
    1. Lee J-H, Park J-H. Strain analysis of the right ventricle using two-dimensional echocardiography. J Cardiovasc Imaging. 2018;26(3):111–124. doi:10.4250/jcvi.2018.26.e11
    1. Li Y, Li H, Zhu S, et al. Prognostic value of right ventricular longitudinal strain in patients with COVID-19. JACC Cardiovasc Imaging. 2020;13(11):2287–2299. doi:10.1016/j.jcmg.2020.04.014
    1. Lei C, Su B, Dong H, et al. Protocol of a randomized controlled trial testing inhaled nitric oxide in mechanically ventilated patients with severe acute respiratory syndrome in COVID-19 (SARS-CoV-2). medRxiv. 2020. doi:10.1101/2020.03.09.20033530
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–829.
    1. Vincent J-L, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure: On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine (see contributors to the project in the appendix). Intensive Care Med. 1996;22(7):707–710. doi:10.1007/BF01709751
    1. Kara İ, Sargin M, Bayraktar YŞ, Eyiol H, Duman I, Çelik JB. The use of Vasoactive-Inotropic Score in Adult Patients with Septic Shock in Intensive Care. Yoğun Bakım Derg. 2019;10(1):23–30. doi:10.33381/DCBYBD.2019.2057
    1. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713; quiz 786-788. doi:10.1016/j.echo.2010.05.010
    1. Forfia PR, Fisher MR, Mathai SC, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034–1041. doi:10.1164/rccm.200604-547OC
    1. Park J-H, Marwick TH. Use and Limitations of E/e’ to assess left ventricular filling pressure by echocardiography. J Cardiovasc Ultrasound. 2011;19(4):169–173. doi:10.4250/jcu.2011.19.4.169
    1. Badano LP, Kolias TJ, Muraru D, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2018;19(6):591–600. doi:10.1093/ehjci/jey042
    1. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2015;28(1):1–39.e14. doi:10.1016/j.echo.2014.10.003
    1. Li MD, Arun NT, Gidwani M, et al. Automated assessment and tracking of COVID-19 pulmonary disease severity on chest radiographs using convolutional siamese neural networks. Radiol Artif Intell. 2020;2(4):e200079. doi:10.1148/ryai.2020200079
    1. Li MD, Arun NT, Aggarwal M, et al. Improvement and multi-population generalizability of a deep learning-based chest radiograph severity score for COVID-19. medRxiv. 2020. doi:10.1101/2020.09.15.20195453
    1. Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590–592. doi:10.1056/NEJMc2011400
    1. White-Dzuro G, Gibson LE, Zazzeron L, et al. Multisystem effects of COVID-19: a concise review for practitioners. Postgrad Med. 2020;133(1):20–27. doi:10.1080/00325481.2020.1823094
    1. Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA, et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J Thromb Haemost. 2020;18(6):1517–1519. doi:10.1111/jth.14844
    1. Lai PS, Mita C, Thompson BT. What is the clinical significance of pulmonary hypertension in acute respiratory distress syndrome? A review. Minerva Anestesiol. 2014;80(5):574–585.
    1. Monreal M, Lafoz E, Casals A, Ruíz J, Arias A. Platelet count and venous thromboembolism. A useful test for suspected pulmonary embolism. Chest. 1991;100(6):1493–1496. doi:10.1378/chest.100.6.1493
    1. Chung T, Connor D, Joseph J, et al. Platelet activation in acute pulmonary embolism. J Thromb Haemost. 2007;5(5):918–924. doi:10.1111/j.1538-7836.2007.02461.x
    1. Fisher MR, Forfia PR, Chamera E, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179(7):615–621. doi:10.1164/rccm.200811-1691OC
    1. Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest. 2011;139(5):988–993. doi:10.1378/chest.10-1269
    1. Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618–625. doi:10.1111/j.1365-2362.2009.02153.x
    1. Lindner D, Fitzek A, Bräuninger H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5(11):1281–1285. doi:10.1001/jamacardio.2020.3551
    1. Sharma A, Garcia G, Arumugaswami V, Svendsen CN. Human iPSC-Derived Cardiomyocytes are Susceptible to SARS-CoV-2 Infection. bioRxiv. 2020;1(4):100052. doi:10.1101/2020.04.21.051912
    1. Amà R, Leather HA, Segers P, Vandermeersch E, Wouters PF. Acute pulmonary hypertension causes depression of left ventricular contractility and relaxation. Eur J Anaesthesiol. 2006;23(10):824–831. doi:10.1017/S0265021506000317
    1. Gibson LE, Di Fenza R, Berra L, Bittner EA, Chang MG. Transthoracic echocardiography in prone patients with acute respiratory distress syndrome: a feasibility study. Crit Care Explor. 2020;2(8):e0179. doi:10.1097/CCE.0000000000000179
    1. Focardi M, Cameli M, Carbone SF, et al. Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging. 2015;16(1):47–52. doi:10.1093/ehjci/jeu156

Source: PubMed

3
Subskrybuj