Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system

Michael H Thaut, Gerald C McIntosh, Volker Hoemberg, Michael H Thaut, Gerald C McIntosh, Volker Hoemberg

Abstract

Entrainment is defined by a temporal locking process in which one system's motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy.

Keywords: auditory rhythm; entrainment; music; neurologic music therapy; rehabilitation.

References

    1. Abiru M., Mihara Y., Kikuchi Y. (2007). The effects of neurologic music therapy on hemispatial neglect in a hemiparetic stroke patient: a case study. Neurol. Med. 67 88–94.
    1. Altenmueller E., Marco-Pallares J., Muente T. F., Schneider S. (2009). Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Ann. N. Y. Acad. Sci. 1169 395–405 10.1111/j.1749-6632.2009.04580.x
    1. Altenmueller E., Schlaug G. (2013). Neurobiological aspects of neurologic music therapy. Music Med. 5 210–216 10.1177/1943862113505328
    1. Bodak R., Malhotra P., Bernardi N. F., Cocchini G., Stewart L. (2014). Reducing chronic visuo-spatial neglect following right hemisphere stroke through instrument playing. Front. Hum. Neurosci. 8:413 10.3389/fnhum.2014.00413
    1. Conway C. M., Pisoni D. B., Kronenberger W. G. (2009). The importance of sound for cognitive sequending abilities. Curr. Dir. Psychol. Sci. 18 275–279 10.1111/j.1467-8721.2009.01651.x
    1. deDreu M. J., van der Wilk A. S., Poppe E., Kwakkel G., van Wegen E. E. (2012). Rehabilitation, exercise therapy and music in patients with Parkinson’s disease: a meta-analysis of the effects of music-based movement therapy on walking ability, balance, and quality of life. Parkinsonism Relat. Disord. 18 114–119 10.1016/S1353-8020(11)70036-0
    1. de l’Etoile S. (2010). Neurologic music therapy: a scientific paradigm for clinical practice. Music Med. 2 78–84 10.1177/1943862110364232
    1. Felix R. A., Fridberger A., Leijon S., Berrebi A. S., Magnusson A. K. (2011). Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. J. Neurosci. 31 12566–12578 10.1523/JNEUROSCI.2450-11.2011
    1. Ford M., Wagenaar R., Newell K. (2007). The effects of auditory rhythms and instruction on walking patterns in individuals post stroke. Gait Posture 26 150–155 10.1016/j.gaitpost.2006.08.007
    1. Fujioka T., Trainor L. J., Large E. W., Ross B. (2012). Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J. Neurosci. 32 1791–1802 10.1523/JNEUROSCI.4107-11.2012
    1. Gardiner J. C., Thaut M. H. (2014). “Musical executive function training,” in“ Oxford Handbook of Neurologic Music Therapy, eds Thaut M. H., Hoemberg V. (Oxford: Oxford University Press; ), 279–293.
    1. Grahn J. A., Henry M. J., McAuley J. G. (2011). FMRI investigation of crossmodal interactions in beat perception: audition primes vision but not vice versa. Neuroimage 54 1231–1243 10.1016/j.neuroimage.2010.09.033
    1. Grau-Sanchez J., Armengual J. L., Rojo N., Vecian de Las heras M., Rubio F., Altenmueller E., et al. (2013). Plasticity in the sensorimotor cortex induced by music-supported therapy in stroke patients: a TMS-study. Front. Hum. Neurosci. 7:494 10.3389/fnhum.2013.00494
    1. Hegde S. (2014). Music-based cognitive remediation therapy for patients with traumatic brain injury. Front. Neurol. 5:34 10.3389/fneur.2014.00034
    1. Hommel M., Peres B., Pollak P., Memin B., Besson G., Gaio J. M., et al. (1990). Effects of passive tactile and auditory stimuli on left visual neglect. Arch. Neurol. 47 573–576 10.1001/archneur.1990.00530050097018
    1. Hurt C. P., Rice R. R., McIntosh G. C., Thaut M. H. (1998). Rhythmic auditory stimulation in gait training for patients with traumatic brain injury. J. Music Ther. 35 228–241 10.1093/jmt/35.4.228
    1. Konoike N., Kotozaki Y., Miyachi S., Miyauchi C. M., Yomogida Y., Akimoto Y., et al. (2012). Rhythm information represented in the fronto-parieto-cerebellar motor system. Neuroimage 63 328–338 10.1016/j.neuroimage.2012.07.002
    1. Koziol L. F., Budding D. E. (2009). Suncortical Structures and Cognition: Implications for Neuropsychological Assessment. New York: Springer; 10.1007/978-0-387-84868-6
    1. Kugler P. N., Turvey M. T. (1987). Information, Natural Law, and the Self-Assembly of Rhythmic Movement. Hillside, NJ: Lawrence Erlbaum Assoc. Inc.
    1. Large E. W., Jones M. R., Kelso J. A. S. (2002). Tracking simple and complex sequences. Psychol. Res. 66 3–17 10.1007/s004260100069
    1. Lim K., Kim Y., Lee H., Yoo J., Hwang J., Kim J., et al. (2013). The therapeutic effect of neurologic music therapy and speech language therapy in post-stroke aphasic patients. Ann. Rehabil. Med. 37 556–562 10.5535/arm.2013.37.4.556
    1. Luft A. R., McCombe-Waller S., Whitall J. (2004). Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA 292 1853–1861 10.1001/jama.292.15.1853
    1. Malcolm M. P., Massie C., Thaut M. H. (2009). Rhythmic auditory-motor entrainment improves hemiparetic arm kinematics during reaching movements. Top. Stroke Rehabil. 16 69–79 10.1310/tsr1601-69
    1. Massie C., Malcolm M., Greene D., Thaut M. H. (2009). Effects of constraint-induced therapy on kinematic outcomes and compensatory movement patterns: an exploratory study. Arch. Phys. Med. Rehabil. 90 571–579 10.1016/j.apmr.2008.09.574
    1. McCombe-Waller S., Harris-Love M., Liu W., Whitall J. (2006). Temporal coordination of the arms during bilateral simultaneous and sequential movements in patients with chronic hemiparesis. Exp. Brain Res. 168 450–454 10.1007/s00221-005-0235-3
    1. McIntosh G. C., Brown S. H., Rice R. R., Thaut M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 62 122–126 10.1136/jnnp.62.1.22
    1. Mertel K. (2014). “Auditory perception training,” in Oxford Handbook of Neurologic Music Therapy, eds Thaut M. H., Hoemberg V. (Oxford: Oxford University Press; ), 227–256.
    1. Moore B. C. J. (2003). Psychology of Hearing. New York: Elsevier.
    1. Natke U., Donath T. M., Kalveram K. T. (2003). Control of voice fundamental frequency in speaking versus singing. J. Acoust. Soc. Am. 113 1587–1593 10.1121/1.1543928
    1. Nozaradan S., Peretz I., Missal M., Mouraux A. (2011). Tagging the neuronal entrainment to beat and meter. J. Neurosci. 31 10234–10240 10.1523/JNEUROSCI.0411-11.2011
    1. Paltsev Y. I., Elner A. M. (1967). Change in functional state of the segmental apparatus of the spinal cord under the influence of sound stimuli and its role in voluntary movement. Biophysics 12 1219–1226.
    1. Pantaleone J. (2002). Synchronization of metronomes. Am. J. Phys. 70 992–1000 10.1119/1.1501118
    1. Peng Y., Lu T., Wang T., Chen Y., Liao H., Lin K., et al. (2010). Immediate effects of therapeutic music on loaded sit-to-stand movement in children with spastic diplegia. Gait Posture 33 274–278 10.1016/j.gaitpost.2010.11.020
    1. Pilon M., McIntosh K. W., Thaut M. H. (1998). Auditory versus visual timing cues as external rate control to enhance verbal intelligibility in mixed spastic-ataxia dysarthric speakers: a pilot study. Brain Inj. 12 793–803 10.1080/026990598122188
    1. Roerdink M., Bank P. J. M., Peper C., Beek P. J. (2011). Walking to the beat of different drums: practical implications for the use of acoustic rhythms in gait rehabilitation. Gait Posture 33 690–694 10.1016/j.gaitpost.2011.03.001
    1. Roerdink M., Lamoth C. J. C., Kwakkel G., van Wieringen P. C. W., Beek P. J. (2007). Gait coordination after stroke: benefits of acoustically paced treadmill walking. Phys. Ther. 87 1009–1022 10.2522/ptj.20050394
    1. Rossignol S., Melvill Jones G. (1976). Audiospinal influences in man studied by the H-reflex and its possible role in rhythmic movement synchronized to sound. Electroencephalogr. Clin. Neurophysiol. 41 83–92 10.1016/0013-4694(76)90217-0
    1. Schmahmann J. D., Pandya D. N. (2009). Fiber Pathways of the Brain. Oxford: Oxford University Press.
    1. Schneider S., Schoenle P. W., Altenmueller E., Muente T. (2007). Using musical instruments to improve motor skill recovery following stroke. J. Neurol. 254 1339–1346 10.1007/s00415-006-0523-2
    1. Shelton J., Kumar G. P. (2010). Comparison between auditory and visual single reaction time. Neurosci. Med. 1 30–32 10.4236/nm.2010.11004
    1. Snyder B. (2000). Music and Memory. Cambridge, MA: MIT Press.
    1. Soto D., Funes M. J., Guzmán-García A., Warbrick T., Rotshtein P., Humphreys G. W. (2009). Pleasant music overcomes the loss of awareness in patients with visual neglect. Proc. Natl. Acad. Sci. U.S.A. 106 6011–6016 10.1073/pnas.0811681106
    1. Spaulding J., Barber B., Colby M., Cormack B., Mick T., Jenkins M. E. (2013). Cueing and gait improvement among people with Parkinson’s disease: a meta-analysis. Arch. Phys. Med. Rehabil. 94 562–570 10.1016/j.apmr.2012.10.026
    1. Stahl B., Kotz S. A., Henseler I., Turner R., Geyer S. (2011). Rhythm in disguise: why singing may not hold the key to recovery from aphasia. Brain 134 3083–3093 10.1093/brain/awr240
    1. Stephan K. M., Thaut M. H., Wunderlich G., Schicks W., Tian B., Tellmann L., et al. (2002). Conscious and subconscious sensorimotor synchronization: prefrontal cortex and the influence of awareness. Neuroimage 15 345–352 10.1006/nimg.2001.0929
    1. Tecchio F., Salustri C., Thaut M. H., Pasqualetti P., Rossini P. M. (2000). Conscious vs unconscious adaptation: a MEG study of cerebral responses to rhythmic auditory stimuli. Exp. Brain Res. 135 222–220 10.1007/s002210000507
    1. Thaut M. H. (2005). Rhythm, Music, and the Brain: Scientific Foundations and Clinical Applications. New York: Routledge.
    1. Thaut M. H. (2010). Neurologic music therapy in cognitive rehabilitation. Music Percept. 27 281–285 10.1525/mp.2010.27.4.281
    1. Thaut M. H., Abiru M. (2010). Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Percept. 27 263–269 10.1525/mp.2010.27.4.263
    1. Thaut M. H., Bin T., Azimi-Sadjadi M. (1998a). Rhythmic finger-tapping sequences to cosine-wave modulated metronome sequences. Hum. Mov. Sci. 17 839–863 10.1016/S0167-9457(98)00031-1
    1. Thaut M. H., Miller R. A., Schauer L. M. (1998b). Multiple synchronization strategies in rhythmic sensorimotor tasks: phase vs. period adaptation. Biol. Cybern. 79 241–250 10.1007/s004220050474
    1. Thaut M. H., Gardiner J. C., Holmberg D., Horwitz J., Kent L., Andrews G., et al. (2009a). Neurologic music therapy improves executive function and emotional adjustment in traumatic brain injury rehabilitation. Ann. N. Y. Acad. Sci. 1169 406–416 10.1111/j.1749-6632.2009.04585.x
    1. Thaut M. H., Stephan K. M., Wunderlich G., Schicks W., Tellmann L., Herzog H., et al. (2009b). Distinct cortico-cerebellar activations in rhythmic auditory motor synchronization. Cortex 45 44–53 10.1016/j.cortex.2007.09.009
    1. Thaut M. H., Hoemberg V. (2014). Oxford Handbook of Neurologic Music Therapy. Oxford: Oxford University Press.
    1. Thaut M. H., Hurt C. P., Dragan D., McIntosh G. C. (1998). Rhythmic entrainment of gait patterns in children with cerebral palsy. Dev. Med. Child Neurol 40 15.
    1. Thaut M. H., Kenyon G. P. (2003). Rapid motor adaptations to subliminal frequency shifts in syncopated rhythmic sensorimotor synchronization. Hum. Mov. Sci. 22 321–338 10.1016/S0167-9457(03)00048-4
    1. Thaut M. H., Kenyon G. P., Hurt C. P., McIntosh G. C., Hoemberg V. (2002). Kinematic optimization of spatiotemporal patterns in paretic arm training with stroke patients. Neuropsychologia 40 1073–1081 10.1016/S0028-3932(01)00141-5
    1. Thaut M. H., Kenyon G. P., Schauer M. L., McIntosh G. C. (1999). The connection between rhythmicity and brain function. IEEE Eng. Med. Biol. 18 101–108 10.1109/51.752991
    1. Thaut M. H., Leins A., Rice R. R., Kenyon G. P., Argstatter H., Fetter M., et al. (2007). Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near ambulatory patients early post stroke: a single-blind randomized control trial. Neurorehabil. Neural Repair 21 455–459 10.1177/1545968307300523
    1. Thaut M. H., McIntosh G. C. (2014). Neurologic music therapy in stroke rehabilitation. Curr. Phys. Med. Rehabil. Rep. 2 106–113 10.1007/s40141-014-0049-y
    1. Thaut M. H., McIntosh G. C., McIntosh K. W., Hoemberg V. (2001). Auditory rhythmicity enhances movement and speech motor control in patients with Parkinson’s disease. Funct. Neurol. 16 163–172.
    1. Thaut M. H., McIntosh G. C., Prassas S. G., Rice R. R. (1993). The effect of auditory rhythmic cuing on temporal stride and EMG patterns in hemiparetic gait of stroke patients. Neurorehabil. Neural Repair 7 9–16 10.1177/136140969300700103
    1. Thaut M. H., McIntosh G. C., Rice R. R. (1997). Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J. Neurol. Sci. 151 207–212 10.1016/S0022-510X(97)00146-9
    1. Thaut M. H., McIntosh G. C., Rice R. R., Miller R. A., Rathbun J., Brault J. M. (1996). Rhythmic auditory stimulation in gait training with Parkinson’s disease patients. Mov. Disord. 11 193–200 10.1002/mds.870110213
    1. Tierney A., Kraus N. (2013). The ability to move to a beat is linked to the consistency of neural responses to sound. J. Neurosci. 33 14981–14988 10.1523/JNEUROSCI.0612-13.2013
    1. Wallace W. T. (1994). Memory for music – effect of melody on recall of text. J. Exp. Psychol. Learn. Mem. Cogn. 20 1471–1485 10.1037/0278-7393.20.6.1471
    1. Wambaugh J. L., Martinez A. L. (2000). Effects of rate and rhythm control treatment on consonant production accuracy in apraxia of speech. Aphasiology 14 851–871 10.1080/026870300412232
    1. Wang T. H., Peng Y. C., Chen Y. L., Lu T. W., Liao H. F., Tang P. F., et al. (2013). A home-based program using patterned sensory enhancement improves resistance exercise effects for children with cerebral palsy: a randomized controlled trial. Neurorehabil. Neural Repair 10.1177/11545968313491001
    1. Whitall J., McCombe Waller S., Silver K. H., Macko R. F. (2000). Repetitive bilateral arm training with rhythmic auditory cuing improves motor function in chronic hemiparetic stroke. Stroke 31, 2390–2395 10.1161/01.STR.31.10.2390

Source: PubMed

3
Subskrybuj