Inhibition of PCSK9 does not improve lipopolysaccharide-induced mortality in mice

Jean-Mathieu Berger, Angel Loza Valdes, Jesper Gromada, Norma Anderson, Jay D Horton, Jean-Mathieu Berger, Angel Loza Valdes, Jesper Gromada, Norma Anderson, Jay D Horton

Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that targets LDL receptors (LDLRs) for degradation in liver. Blocking the interaction of PCSK9 with the LDLR potently reduces plasma LDL cholesterol levels and cardiovascular events. Recently, it has been suggested that inhibition of PCSK9 might also improve outcomes in mice and humans with sepsis, possibly by increasing LDLR-mediated clearance of endotoxins. Sepsis is a complication of a severe microbial infection that has shared pathways with lipid metabolism. Here, we tested whether anti-PCSK9 antibodies prevent death from lipopolysaccharide (LPS)-induced endotoxemia. Mice were administered PCSK9 antibodies prior to, or shortly after, injecting LPS. In both scenarios, the administration of PCSK9 antibodies did not alter endotoxemia-induced mortality. Afterward, we determined whether the complete absence of PCSK9 improved endotoxemia-induced mortality in mice with the germ-line deletion of Pcsk9 Similarly, PCSK9 knockout mice were not protected from LPS-induced death. To determine whether low LDLR expression increased LPS-induced mortality, Ldlr-/- mice and PCSK9 transgenic mice were studied after injection of LPS. Endotoxemia-induced mortality was not altered in either mouse model. In a human cohort, we observed no correlation between plasma inflammation markers with total cholesterol levels, LDL cholesterol, and PCSK9. Combined, our data demonstrate that PCSK9 inhibition provides no protection from LPS-induced mortality in mice.

Keywords: LDL; PCSK9; cholesterol; endotoxemia; lipopolysaccharide.

Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

Figures

Fig. 1.
Fig. 1.
Administration of an anti-PCSK9 antibody does not reduce LPS-induced mortality. Survival curves of C57Bl/6J wild-type mice injected with control antibody (REGN1932, 10 mg/kg, sc) or alirocumab (10 mg/kg, sc) after LPS administration (n = 8 per group). Antibodies are injected 2 h after LPS inoculation: 7.5 mg/kg, ip (A), and 15 mg/kg, ip (B) at time 0. Mice were monitored hourly for 72 h and time of death recorded. C: Plasma inflammation markers in C57Bl/6J wild-type mice (n = 8 per group) treated with control antibody (REGN1932, 10 mg/kg, sc) or alirocumab (10 mg/kg, sc) before and 6 h after LPS (7.5 or 15 mg/kg, ip). All values represent means ± SEM. ALI, alirocumab; NS, no significant difference.
Fig. 2.
Fig. 2.
Alirocumab administered at various times does not change LPS-induced mortality. A: Plasma cholesterol levels of C57Bl/6J wild-type mice (n = 10 per group) treated with control antibody (REGN1932, 50 mg/kg, iv) or alirocumab (10 or 50 mg/kg, iv) before and 6 h after LPS (20 mg/kg, ip). Both doses of alirocumab were injected 1 or 2 h after LPS inoculation. All values represent means ± SEM. *P < 0.05. B: Survival curves of C57Bl/6J wild-type mice (n = 10 per group) injected with control antibody (REGN1932, 50 mg/kg, iv) or alirocumab (10 or 50 mg/kg, iv) 1 or 2 h after LPS (20 mg/kg, ip, time 0). Mice were monitored hourly for 72 h, and time of death was recorded.
Fig. 3.
Fig. 3.
Pretreatment with an anti-PCSK9 antibody does not protect mice from LPS-induced death. A: Plasma cholesterol levels 48 h after administration of a control antibody (REGN1932, 15 mg/kg, sc) or alirocumab (15 or 50 mg/kg, sc) injected into C57Bl/6J mice (n = 10 per group). Values represent means ± SEM. **P < 0.01. B: Survival curves of C57Bl/6J mice injected with LPS (20 mg/kg, ip) 48 h after the administration of the control antibody (REGN1932, 15 mg/kg, sc) or alirocumab (15 or 50 mg/kg, sc) (n = 10 per group). Mice are checked hourly for 72 h and time of death recorded. C: Plasma cholesterol levels of C57Bl/6J mice injected with control antibody (REGN1932, 10 mg/kg, sc) or alirocumab (10 mg/kg, sc) every week for 4 weeks (n = 12 per group). All values represent means ± SEM. *P < 0.05. D: Survival curves of C57Bl/6J mice injected with control antibody (REGN1932, 10 mg/kg, sc) or alirocumab (10 mg/kg, sc). LPS (20 mg/kg, ip) was injected (time 0) 48 h after the last antibody injection. Mice were monitored hourly for 72 h, and time of death was recorded.
Fig. 4.
Fig. 4.
PCSK9 antibody directed against mouse PCSK9 fails to improve LPS-induced mortality. A: Plasma cholesterol levels in C57Bl/6J mice (n = 11 per group) 48 h after control antibody (IgG1 MAB002, R&D Systems; 100 µg/mouse, sc) or anti-PCSK9 antibody (71207, BPS Bioscience; 100 µg/mouse, sc) injection. All values represent means ± SEM. ***P < 0.001. B: Survival curves in C57Bl/6J mice (n = 11 per group) injected with control antibody (IgG1 MAB002, R&D Systems; 100 µg/mouse, sc) or anti-PCSK9 antibody (71207, BPS Bioscience, 100 µg/mouse, sc). Antibodies were injected 48 and 1 h prior to LPS (20 mg/kg, ip, time 0). Mice were checked hourly for 72 h, and time of death was recorded. C: Survival curves of C57Bl/6J mice (n = 12 per group) injected with control antibody (IgG1 MAB002, R&D Systems) or anti-PCSK9 antibody (71207, BPS Bioscience; 100 µg/d/mouse, sc, 6 h after LPS (20 mg/kg, ip, time 0). Mice were monitored hourly for 72 h, and time of death was recorded.
Fig. 5.
Fig. 5.
Altering LDLR levels does not change LPS-induced mortality. A, C, and E: Plasma cholesterol levels of C57Bl/6J, Pcsk9+/+, Pcsk9−/−, Ldlr−/−, and Tg-hPCSK9 mice before LPS injection (n = 10 per group). All values represent means ± SEM. ***P < 0.001. B, D, and F: Survival curves of C57Bl/6J, Pcsk9+/+, Pcsk9−/−, Ldlr−/−, and Tg-hPCSK9 mice (n = 10 per group) after LPS injection (20 mg/kg, ip, time 0). Mice were monitored hourly for 72 h, and time of death was recorded.
Fig. 6.
Fig. 6.
No correlation between plasma inflammation markers and PCSK9 LOF mutations in humans. Concentrations of plasma PCSK9 (A) and cytokine levels (B) in subjects with PCSK9 LOF mutations (n = 28; six Y142X, four C679X, one R97DEL, one Y142X/R97DEL, and 16 with no PCSK9 mutation). All values represent means ± SEM. NM, no mutation.

References

    1. Lagace T. A., Curtis D. E., Garuti R., McNutt M. C., Park S. W., Prather H. B., Anderson N. N., Ho Y. K., Hammer R. E., and Horton J. D.. 2006. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. J. Clin. Invest. 116: 2995–3005.
    1. Grefhorst A., McNutt M. C., Lagace T. A., and Horton J. D.. 2008. Plasma PCSK9 preferentially reduces liver LDL receptors in mice. J. Lipid Res. 49: 1303–1311.
    1. Chen S. N., Ballantyne C. M., Gotto A. M. Jr., Tan Y., Willerson J. T., and Marian A. J.. 2005. A common PCSK9 haplotype, encompassing the E670G coding single nucleotide polymorphism, is a novel genetic marker for plasma low-density lipoprotein cholesterol levels and severity of coronary atherosclerosis. J. Am. Coll. Cardiol. 45: 1611–1619.
    1. Cohen J., Pertsemlidis A., Kotowski I. K., Graham R., Garcia C. K., and Hobbs H. H.. 2005. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37: 161–165.
    1. McKenney J. M., Koren M. J., Kereiakes D. J., Hanotin C., Ferrand A-C., and Stein E. A.. 2012. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J. Am. Coll. Cardiol. 59: 2344–2353.
    1. Stein E. A., Gipe D., Bergeron J., Gaudet D., Weiss R., Dufour R., Wu R., and Pordy R.. 2012. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet. 380: 29–36.
    1. Roth E. M., McKenney J. M., Hanotin C., Asset G., and Stein E. A.. 2012. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N. Engl. J. Med. 367: 1891–1900.
    1. Sullivan D., Olsson A. G., Scott R., Kim J. B., Xue A., Gebski V., Wasserman S. M., and Stein E. A.. 2012. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA. 308: 2497–2506.
    1. Roth E. M., Moriarty P. M., Bergeron J., Langslet G., Manvelian G., Zhao J., Baccara-Dinet M. T., and Rader D. J.. 2016. A phase III randomized trial evaluating alirocumab 300 mg every 4 weeks as monotherapy or add-on to statin: ODYSSEY CHOICE I. Atherosclerosis. 254: 254–262.
    1. Ridker P. M., Revkin J., Amarenco P., Brunell R., Curto M., Civeira F., Flather M., Glynn R. J., Gregoire J., Jukema J. W., et al. . 2017. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N. Engl. J. Med. 376: 1527–1539.
    1. Sabatine M. S., Giugliano R. P., Keech A. C., Honarpour N., Wiviott S. D., Murphy S. A., Kuder J. F., Wang H., Liu T., Wasserman S. M., et al. . 2017. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376: 1713–1722.
    1. Horton J. D., Cohen J. C., and Hobbs H. H.. 2007. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem. Sci. 32: 71–77.
    1. Walley K. R., Thain K. R., Russell J. A., Reilly M. P., Meyer N. J., Ferguson J. F., Christie J. D., Nakada T., Fjell C. D., Thair S. A., et al. . 2014. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci. Transl. Med. 6: 258ra143.
    1. Boyd J. H., Fjell C. D., Russell J. A., Sirounis D., Cirstea M. S., and Walley K. R.. 2016. Increased plasma PCSK9 levels are associated with reduced endotoxin clearance and the development of acute organ failures during sepsis. J. Innate Immun. 8: 211–220.
    1. Dwivedi D. J., Grin P. M., Khan M., Prat A., Zhou J., Fox-Robichaud A. E., Seidah N. G., and Liaw P. C.. 2016. Differential expression of PCSK9 modulates infection, inflammation and coagulation in a murine model of sepsis. Shock. 46: 672–680.
    1. Feingold K. R., Moser A. H., Shigenaga J. K., Patzek S. M., and Grunfeld C.. 2008. Inflammation stimulates the expression of PCSK9. Biochem. Biophys. Res. Commun. 374: 341–344.
    1. Angus D. C., and van der Poll T.. 2013. Severe sepsis and septic shock. N. Engl. J. Med. 369: 840–851.
    1. Feingold K. R., and Grunfeld C.. 2010. The acute phase response inhibits reverse cholesterol transport. J. Lipid Res. 51: 682–684.
    1. Tateda K., Matsumoto T., Miyazaki S., and Yamaguchi K.. 1996. Lipopolysaccharide-induced lethality and cytokine production in aged mice. Infect. Immun. 64: 769–774.
    1. Gautier T., and Lagrost L.. 2011. Plasma PLTP (phospholipid-transfer protein): an emerging role in ‘reverse lipopolysaccharide transport’ and innate immunity. Biochem. Soc. Trans. 39: 984–988.
    1. Levels J. H. M., Marquart J. A., Abraham P. R., van den Ende A. E., Molhuizen H. O. F., van Deventer S. J. H., and Meijers J. C. M.. 2005. Lipopolysaccharide is transferred from high-density to low-density lipoproteins by lipopolysaccharide-binding protein and phospholipid transfer protein. Infect. Immun. 73: 2321–2326.
    1. Azzam K. M., and Fessler M. B.. 2012. Crosstalk between reverse cholesterol transport and innate immunity. Trends Endocrinol. Metab. 23: 169–178.
    1. Almog Y., Shefer A., Novack V., Maimon N., Barski L., Eizinger M., Friger M., Zeller L., and Danon A.. 2004. Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation. 110: 880–885.
    1. Rothberg M. B., Bigelow C., Pekow P. S., and Lindenauer P. K.. 2012. Association between statins given in hospital and mortality in pneumonia patients. J. Gen. Intern. Med. 27: 280–286.
    1. Donnino M. W., Cocchi M. N., Howell M., Clardy P., Talmor D., Cataldo L., Chase M., Al-Marshad A., Ngo L., and Shapiro N. I.. 2009. Statin therapy is associated with decreased mortality in patients with infection. Acad. Emerg. Med. 16: 230–234.
    1. Mortensen E. M., Restrepo M. I., Copeland L. A., Pugh J. A., Anzueto A., Cornell J. E., and Pugh M. J. V.. 2007. Impact of previous statin and angiotensin II receptor blocker use on mortality in patients hospitalized with sepsis. Pharmacotherapy. 27: 1619–1626.
    1. Kruger P., Fitzsimmons K., Cook D., Jones M., and Nimmo G.. 2006. Statin therapy is associated with fewer deaths in patients with bacteraemia. Intensive Care Med. 32: 75–79.
    1. Kruger P. S., Harward M. L., Jones M. A., Joyce C. J., Kostner K. M., Roberts M. S., and Venkatesh B.. 2011. Continuation of statin therapy in patients with presumed infection. Am. J. Respir. Crit. Care Med. 183: 774–781.
    1. Kruger P., Bailey M., Bellomo R., Cooper D. J., Harward M., Higgins A., Howe B., Jones D., Joyce C., Kostner K., et al. . 2013. A multicenter randomized trial of atorvastatin therapy in intensive care patients with severe sepsis. Am. J. Respir. Crit. Care Med. 187: 743–750.
    1. Patel J. M., Snaith C., Thickett D. R., Linhartova L., Melody T., Hawkey P., Barnett A. H., Jones A., Hong T., Cooke M. W., et al. . 2012. Randomized double-blind placebo-controlled trial of 40 mg/day of atorvastatin in reducing the severity of sepsis in ward patients (ASEPSIS Trial). Crit. Care. 16: R231.
    1. Papazian L., Roch A., Charles P-E., Penot-Ragon C., Perrin G., Roulier P., Goutorbe P., Lefrant J-Y., Wiramus S., Jung B., et al. . 2013. Effect of statin therapy on mortality in patients with ventilator-associated pneumonia: a randomized clinical trial. JAMA. 310: 1692–1700.
    1. Wan Y-D., Sun T-W., Kan Q-C., Guan F-X., and Zhang S-G.. 2014. Effect of statin therapy on mortality from infection and sepsis: a meta-analysis of randomized and observational studies. Crit. Care. 18: R71.
    1. van den Hoek H. L., Bos W. J. W., de Boer A., and van de Garde E. M. W.. 2011. Statins and prevention of infections: systematic review and meta-analysis of data from large randomised placebo controlled trials. BMJ. 343: d7281.
    1. Thomas G., Hraiech S., Loundou A., Truwit J., Kruger P., Mcauley D. F., Papazian L., and Roch A.. 2015. Statin therapy in critically-ill patients with severe sepsis: a review and meta-analysis of randomized clinical trials. Minerva Anestesiol. 81: 921–930.
    1. Stein E. A., Mellis S., Yancopoulos G. D., Stahl N., Logan D., Smith W. B., Lisbon E., Gutierrez M., Webb C., Wu R., et al. . 2012. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med. 366: 1108–1118.
    1. Rashid S., Curtis D. E., Garuti R., Anderson N. N., Bashmakov Y., Ho Y. K., Hammer R. E., Moon Y-A., and Horton J. D.. 2005. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl. Acad. Sci. USA. 102: 5374–5379.
    1. Hernandez M., Wright S. D., and Cai T-Q.. 2007. Critical role of cholesterol ester transfer protein in nicotinic acid-mediated HDL elevation in mice. Biochem. Biophys. Res. Commun. 355: 1075–1080.
    1. Kozlitina J., Smagris E., Stender S., Nordestgaard B. G., Zhou H. H., Tybjærg-Hansen A., Vogt T. F., Hobbs H. H., and Cohen J. C.. 2014. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46: 352–356.
    1. Lakoski S. G., Lagace T. A., Cohen J. C., Horton J. D., and Hobbs H. H.. 2009. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab. 94: 2537–2543.
    1. Laubach V. E., Shesely E. G., Smithies O., and Sherman P. A.. 1995. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc. Natl. Acad. Sci. USA. 92: 10688–10692.

Source: PubMed

3
Subskrybuj