Use of integrated imaging and serum biomarker profiles to identify subclinical dysfunction in pediatric cancer patients treated with anthracyclines

Olga H Toro-Salazar, Ji Hyun Lee, Kia N Zellars, Paige E Perreault, Kathryn C Mason, Zhu Wang, Kan N Hor, Eileen Gillan, Caroline J Zeiss, Daniel M Gatti, Brooke T Davey, Shelby Kutty, Bruce T Liang, Francis G Spinale, Olga H Toro-Salazar, Ji Hyun Lee, Kia N Zellars, Paige E Perreault, Kathryn C Mason, Zhu Wang, Kan N Hor, Eileen Gillan, Caroline J Zeiss, Daniel M Gatti, Brooke T Davey, Shelby Kutty, Bruce T Liang, Francis G Spinale

Abstract

Background: Anthracycline induced cardiomyopathy is a major cause of mortality and morbidity among pediatric cancer survivors. It has been postulated that oxidative stress induction and inflammation may play a role in the pathogenesis of this process. Accordingly, the present study performed an assessment of biomarker profiles and functional imaging parameters focused upon potential early determinants of anthracycline induced cardiomyopathy.

Methods: Patients (10-22 years) were prospectively enrolled between January 2013 and November 2014. Thirteen subjects completed the study and underwent serial cardiac magnetic resonance imaging and plasma biomarker profiling performed 24-48 h after the first anthracycline dose and at set dose intervals. In addition, we collected plasma samples from 62 healthy controls to examine normal plasma biomarker profiles.

Results: Left ventricular ejection fraction (LVEF) decreased from 64.3 ± 6.2 at the first visit to 57.5 ± 3.3 (p = 0.004) 1 year after chemotherapy. A decline in longitudinal strain magnitude occurred at lower cumulative doses. A differential inflammatory/matrix signature emerged in anthracycline induced cardiomyopathy patients compared to normal including increased interleukin-8 and MMP levels. With longer periods of anthracycline dosing, MMP-7, a marker of macrophage proteolytic activation, increased by 165 ± 54% whereas interleukin-10 an anti-inflammatory marker decreased by 75 ± 13% (both p < 0.05). MMP7 correlated with time dependent changes in EF.

Conclusions: Asymptomatic pediatric patients exposed to anthracycline therapy develop abnormal strain parameters at lower cumulative doses when compared to changes in EF. A differential biomarker signature containing both inflammatory and matrix domains occur early in anthracycline treatment. Dynamic changes in these domains occur with increased anthracycline doses and progression to anthracycline induced cardiomyopathy. These findings provide potential prognostic and mechanistic insights into the natural history of anthracycline induced cardiomyopathy.

Trial registration number: NCT03211520 Date of Registration February 13, 2017, retrospectively registered.

Keywords: Anthracyclines; Cardiotoxicity; Global systolic function; Myocardial strain.

Conflict of interest statement

Competing interests The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study Cohort and Diagram. CMRI: cardiac magnetic resonance imaging; ALL: acute lymphocytic leukemia; AML: acute myeloid leukemia. Twenty patients (10–22 years) were prospectively enrolled between January 2013 and November 2014. Seventeen subjects completed visit 1 (30–60 mg/m2) and thirteen completed the remaining study visits (125–175 mg/m2, 200–250 mg/m2, 275–325 mg/m2, after max AC dose and 1 year after max AC dose)
Fig. 2
Fig. 2
Schematic diagram demonstrating the three dimensional circumferential-radial-longitudinal coordinate system used for strain calculation. ERR; Peak mid radial strain magnitude; ECC: Peak global circumferential strain magnitude; ELL: Peak global longitudinal strain magnitude. Each element of strain is, simply, a measurement of the fractional or the percent change of length in a specific direction where Lo is the original fiber length before tag deformation and L is the current length
Fig. 3
Fig. 3
Plasma profiling for specific determinants of inflammation and signaling. a Plasma profiling for specific determinants of inflammation and ECM remodeling were examined in referent normal subjects and those undergoing initial AC treatment, designated here as Visit 1 in tabular format. The plasma TIMP-1 and 2 levels at this AC treatment time point were not different from referent controls, and while IL-10 and IL-8/IL-10 ratios fell in the AC treatment group at Visit 1, these did not reach statistical significance. b Due to the high incidence of plasma TIMP-3 and TIMP-4 levels were fell below analytical detection limits, a categorical analysis was performed using a Chi Square analysis. A significant shift in the proportion of detectable TIMP-3 and TIMP-4 in plasma samples taken from the initial AC treatment time point occurred (*p < 0.05). c In contrast to the analyte shown in Table A, significant shifts in plasma MMP-2, − 7 and − 9 occurred at AC treatment Visit 1 when compared to referent control values (*p < 0.05)
Fig. 4
Fig. 4
Plasma profiling for specific determinants of inflammation and signaling. A number of inflammatory signaling pathways were profiled in plasma samples taken from age matched referent normal subjects and at the initial visit following AC treatment- identified as Visit 1. While robust signals for the soluble IL, TNF and VEGF receptors were detected in both referent normal and Visit 1 samples many soluble receptor analytes were similar between groups and summarized in Table A. On the other hand, specific soluble receptors/pathways were significantly different from referent control values and are shown in Figure 2-2B. These included the soluble receptors for IL-1, -2, and -4. A relative reduction in sRage and sVEGFR3 occurred in Visit 1 samples with an increase in Sgp130. (*p < 0.05 vs Visit 1 values). Normal: referent normal; MMP-2: Matrix metallopeptidase 2; MMP-7: Matrix metallopeptidase 7; MMP-9: Matrix metallopeptidase 9; IL-8: Interleukin 8; sVEGFR3: Fms-related tyrosine kinase 4; sgp130: Interleukin 6 signal transducer; sIL-1RII: Interleukin 1 receptor, type II; sIL-2Ra: Interleukin 2 receptor, alpha; sIL-4R: Interleukin 4 receptor
Fig. 5
Fig. 5
Plasma profiling changes from Visit 1 to last available visit in AC treated patients. The relative change in ECM and inflammatory pathways were computed as a function of Visit 1 and the final visit in the AC treated patients. Those with a significant shift from Visit 1 are shown here and identify that continued shifts in determinants of inflammatory signaling and ECM remodeling occurred at later AC treatment time points. (*p < 0.05 vs Visit 1 values)

References

    1. Ferrans VJ, Clark JR, Zhang J, Yu ZX, Herman EH. Pathogenesis and prevention of doxorubicin cardiomyopathy. Tsitologiia. 1997;39(10):928–937.
    1. Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. NEnglJMed. 1991;324(12):808–815. doi: 10.1056/NEJM199103213241205.
    1. Toro-Salazar OH, Gillan E, Ferranti J, Orsey A, Rubin K, Upadhyay S, Mazur W, Hor KN. Effect of myocardial dysfunction in cardiac morbidity and all cause mortality in childhood cancer subjects treated with anthracycline therapy. Cardio Oncol. 2015;1(1):1–9. doi: 10.1186/s40959-015-0005-8.
    1. Tukenova M, Guibout C, Oberlin O, Doyon F, Mousannif A, Haddy N, Guerin S, Pacquement H, Aouba A, Hawkins M, et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. JClinOncol. 2010;28(8):1308–1315. doi: 10.1200/JCO.2008.20.2267.
    1. Alvarez JA, Scully RE, Miller TL, Armstrong FD, Constine LS, Friedman DL, Lipshultz SE. Long-term effects of treatments for childhood cancers. CurrOpinPediatr. 2007;19(1):23–31.
    1. Franco VI, Henkel JM, Miller TL, Lipshultz SE. Cardiovascular effects in childhood cancer survivors treated with anthracyclines. CardiolResPract. 2011;2011:134679.
    1. Krischer JP, Epstein S, Cuthbertson DD, Goorin AM, Epstein ML, Lipshultz SE. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the pediatric oncology group experience. JClinOncol. 1997;15(4):1544–1552. doi: 10.1200/JCO.1997.15.4.1544.
    1. Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB. Anthracycline cardiotoxicity: from bench to bedside. JClinOncol. 2008;26(22):3777–3784. doi: 10.1200/JCO.2007.14.9401.
    1. Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science. 1977;197(4299):165–167. doi: 10.1126/science.877547.
    1. Swift L, McHowat J, Sarvazyan N. Anthracycline-induced phospholipase A2 inhibition. Cardiovasc Toxicol. 2007;7(2):86–91. doi: 10.1007/s12012-007-0012-6.
    1. Kang YJ. Antioxidant defense against anthracycline cardiotoxicity by metallothionein. Cardiovasc Toxicol. 2007;7(2):95–100. doi: 10.1007/s12012-007-0007-3.
    1. Mordente A, Meucci E, Martorana GE, Giardina B, Minotti G. Human heart cytosolic reductases and anthracycline cardiotoxicity. IUBMBLife. 2001;52(1–2):83–88.
    1. De AA, Piegari E, Cappetta D, Marino L, Filippelli A, Berrino L, Ferreira-Martins J, Zheng H, Hosoda T, Rota M, et al. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation. 2010;121(2):276–292. doi: 10.1161/CIRCULATIONAHA.109.895771.
    1. Simunek T, Sterba M, Popelova O, Adamcova M, Hrdina R, Gersl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Reports. 2009;61(1):154–171. doi: 10.1016/S1734-1140(09)70018-0.
    1. Deavall DG, Martin EA, Horner JM, Roberts R. Drug-induced oxidative stress and toxicity. J Toxicol. 2012;2012:645460. doi: 10.1155/2012/645460.
    1. Semsei AF, Erdelyi DJ, Ungvari I, Csagoly E, Hegyi MZ, Kiszel PS, Lautner-Csorba O, Szabolcs J, Masat P, Fekete G, et al. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol Int. 2012;36(1):79–86. doi: 10.1042/CBI20110264.
    1. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cellular Molecul Life Sci. 2014;71(4):549–574. doi: 10.1007/s00018-013-1349-6.
    1. Bernaba BN, Chan JB, Lai CK, Fishbein MC. Pathology of late-onset anthracycline cardiomyopathy. Cardiovasc Pathol. 2010;19(5):308–311. doi: 10.1016/j.carpath.2009.07.004.
    1. Caulfield JB, Bittner V. Cardiac matrix alterations induced by adriamycin. AmJPathol. 1988;133(2):298–305.
    1. Toro-Salazar OH, Gillan E, O'Loughlin M, Burke GS, Ferranti J, Stainsby J, Liang B, Mazur W, Raman S, Hor K. Occult cardiotoxicity in childhood Cancer survivors exposed to anthracycline therapy. Circ Cardiovasc Imaging. 2013;6:873–80.
    1. Adamcova M, Potacova A, Popelova O, Sterba M, Mazurova Y, Aupperle H, Gersl V. Cardiac remodeling and MMPs on the model of chronic daunorubicin-induced cardiomyopathy in rabbits. Physiol Res. 2010;59(5):831–836.
    1. Lopez B, Gonzalez A, Diez J. Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation. 2010;121(14):1645–1654. doi: 10.1161/CIRCULATIONAHA.109.912774.
    1. Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res. 1998;82(4):482–495. doi: 10.1161/01.RES.82.4.482.
    1. Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol. 2001;280(1):C53–C60. doi: 10.1152/ajpcell.2001.280.1.C53.
    1. Siwik DA, Colucci WS. Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev. 2004;9(1):43–51. doi: 10.1023/B:HREV.0000011393.40674.13.
    1. Distefano G. Molecular pathogenetic mechanisms and new therapeutic perspectives in anthracycline-induced cardiomyopathy. ItalJPediatr. 2009;35(1):37.
    1. Lushnikova EL, Klinnikova MG, Molodykh OP, Nepomnyashchikh LM. Morphological manifestations of heart remodeling in anthracycline-induced dilated cardiomyopathy. Bull Exp Biol Med. 2004;138(6):607–612. doi: 10.1007/s10517-005-0138-0.
    1. Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis. 2007;49(5):330–352. doi: 10.1016/j.pcad.2006.10.002.
    1. Thavendiranathan P, Wintersperger BJ, Flamm SD, Marwick TH. Cardiac MRI in the assessment of cardiac injury and toxicity from cancer chemotherapy: a systematic review. Circ Cardiovasc Imaging. 2013;6(6):1080–1091. doi: 10.1161/CIRCIMAGING.113.000899.
    1. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, Ganame J, Sebag IA, Agler DA, Badano LP, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–1093. doi: 10.1093/ehjci/jeu192.
    1. Drafts BC, Twomley KM, D’Agostino R, Jr, Lawrence J, Avis N, Ellis LR, Thohan V, Jordan J, Melin SA, Torti FM, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6(8):877–885. doi: 10.1016/j.jcmg.2012.11.017.
    1. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, Pennell DJ. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29–34. doi: 10.1016/S0002-9149(02)02381-0.
    1. Billingham ME, Mason JW, Bristow MR, Daniels JR. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer TreatRep. 1978;62(6):865–872.
    1. Osman NF, Kerwin WS, McVeigh ER, Prince JL. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn ResonMed. 1999;42(6):1048–1060. doi: 10.1002/(SICI)1522-2594(199912)42:6<1048::AID-MRM9>;2-M.
    1. Castillo E, Lima JA, Bluemke DA. Regional myocardial function: advances in MR imaging and analysis. Radiographics. 2003;23 Spec No:S127–S140. doi: 10.1148/rg.23si035512.
    1. Lopez B, Gonzalez A, Querejeta R, Larman M, Diez J. Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. JAmCollCardiol. 2006;48(1):89–96.
    1. Goetzenich A, Hatam N, Zernecke A, Weber C, Czarnotta T, Autschbach R, Christiansen S. Alteration of matrix metalloproteinases in selective left ventricular adriamycin-induced cardiomyopathy in the pig. JHeart Lung Transplant. 2009;28(10):1087–1093. doi: 10.1016/j.healun.2009.06.025.
    1. Spallarossa P, Altieri P, Garibaldi S, Ghigliotti G, Barisione C, Manca V, Fabbi P, Ballestrero A, Brunelli C, Barsotti A. Matrix metalloproteinase-2 and -9 are induced differently by doxorubicin in H9c2 cells: the role of MAP kinases and NAD(P)H oxidase. CardiovascRes. 2006;69(3):736–745. doi: 10.1016/j.cardiores.2005.08.009.
    1. Mehra VC, Ramgolam VS, Bender JR. Cytokines and cardiovascular disease. J Leukoc Biol. 2005;78(4):805–818. doi: 10.1189/jlb.0405182.
    1. Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res. 2002;91(11):988–998. doi: 10.1161/01.RES.0000043825.01705.1B.
    1. Kapadia SR. Cytokines and heart failure. Cardiol Rev. 1999;7(4):196–206. doi: 10.1097/00045415-199907000-00011.
    1. Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, Tian G, Kirkpatrick ID, Singal PK, Krahn M, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57(22):2263–2270. doi: 10.1016/j.jacc.2010.11.063.
    1. Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiography. 2013;26(5):493–498. doi: 10.1016/j.echo.2013.02.008.
    1. Olson RD, Mushlin PS. Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J. 1990;4(13):3076–3086. doi: 10.1096/fasebj.4.13.2210154.
    1. Allegra A, Alonci A, Russo S, Cannavo A, Penna G, D'Angelo A, Bellomo G, Musolino C. Cardiac involvement in patients with hematologic malignancies. J Investig Med. 2010;58(7):859–874. doi: 10.2310/JIM.0b013e3181efbc4e.
    1. Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL. Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation. 1997;95(5):1247–1252. doi: 10.1161/01.CIR.95.5.1247.
    1. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res. 1997;81(4):627–635. doi: 10.1161/01.RES.81.4.627.
    1. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest. 1996;98(12):2854–2865. doi: 10.1172/JCI119114.
    1. Gullestad L, Ueland T, Vinge LE, Finsen A, Yndestad A, Aukrust P. Inflammatory cytokines in heart failure: mediators and markers. Cardiology. 2012;122(1):23–35. doi: 10.1159/000338166.
    1. Benedict CR, Weiner DH, Johnstone DE, Bourassa MG, Ghali JK, Nicklas J, Kirlin P, Greenberg B, Quinones MA, Yusuf S. Comparative neurohormonal responses in patients with preserved and impaired left ventricular ejection fraction: results of the studies of left ventricular dysfunction (SOLVD) registry. The SOLVD investigators. J Am Coll Cardiol. 1993;22(4 Suppl A):146A–153A. doi: 10.1016/0735-1097(93)90480-O.
    1. Trofimov ES, Poskrebysheva AS. Study on activity of inflammatory factors in patients with chronic heart failure depending on the stage of the disease and NYHA class. Bull Exp Biol Med. 2015;158(5):614–616. doi: 10.1007/s10517-015-2819-7.
    1. Correia GD, Wooi Ng K, Wijeyesekera A, Gala-Peralta S, Williams R, MacCarthy-Morrogh S, Jimenez B, Inwald D, Macrae D, Frost G, et al. Metabolic profiling of children undergoing surgery for congenital heart disease. Crit Care Med. 2015;43(7):1467–1476. doi: 10.1097/CCM.0000000000000982.
    1. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363(14):1324–1334. doi: 10.1056/NEJMoa0911123.
    1. Schwartz RN, Stover L, Dutcher JP. Managing toxicities of high-dose interleukin-2. Oncology. 2002;16(11 Suppl 13):11–20.
    1. Abraham D, Hofbauer R, Schafer R, Blumer R, Paulus P, Miksovsky A, Traxler H, Kocher A, Aharinejad S. Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ Res. 2000;87(8):644–647. doi: 10.1161/01.RES.87.8.644.
    1. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69(Suppl 3):4–10. doi: 10.1159/000088478.
    1. Spinale FG, Coker ML, Krombach SR, Mukherjee R, Hallak H, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT, et al. Matrix metalloproteinase inhibition during the development of congestive heart failure : effects on left ventricular dimensions and function. Circ Res. 1999;85(4):364–376. doi: 10.1161/01.RES.85.4.364.
    1. Li YY, Feldman AM, Sun Y, McTiernan CF. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation. 1998;98(17):1728–1734. doi: 10.1161/01.CIR.98.17.1728.
    1. Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, Goldberg AT, Zellner JL, Crumbley AJ. A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation. 2000;102(16):1944–1949. doi: 10.1161/01.CIR.102.16.1944.
    1. Deschamps AM, Spinale FG. Pathways of matrix metalloproteinase induction in heart failure: bioactive molecules and transcriptional regulation. CardiovascRes. 2006;69(3):666–676. doi: 10.1016/j.cardiores.2005.10.004.
    1. Ahmed SH, Clark LL, Pennington WR, Webb CS, Bonnema DD, Leonardi AH, McClure CD, Spinale FG, Zile MR. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation. 2006;113(17):2089–2096. doi: 10.1161/CIRCULATIONAHA.105.573865.
    1. Webb CS, Bonnema DD, Ahmed SH, Leonardi AH, McClure CD, Clark LL, Stroud RE, Corn WC, Finklea L, Zile MR, et al. Specific temporal profile of matrix metalloproteinase release occurs in patients after myocardial infarction: relation to left ventricular remodeling. Circulation. 2006;114(10):1020–1027. doi: 10.1161/CIRCULATIONAHA.105.600353.
    1. Deardorff R, Spinale FG. Cytokines and matrix metalloproteinases as potential biomarkers in chronic heart failure. BiomarkMed. 2009;3(5):513–523.
    1. Gombozhapova A, Rogovskaya Y, Shurupov V, Rebenkova M, Kzhyshkowska J, Popov SV, Karpov RS, Ryabov V. Macrophage activation and polarization in post-infarction cardiac remodeling. J Biomed Sci. 2017;24(1):13. doi: 10.1186/s12929-017-0322-3.
    1. Martos R, Baugh J, Ledwidge M, O'Loughlin C, Conlon C, Patle A, Donnelly SC, McDonald K. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation. 2007;115(7):888–895. doi: 10.1161/CIRCULATIONAHA.106.638569.
    1. Segura AM, Radovancevic R, Demirozu ZT, Frazier OH, Buja LM. Anthracycline treatment and ventricular remodeling in left ventricular assist device patients. Tex Heart Inst J. 2015;42(2):124–130. doi: 10.14503/THIJ-14-4509.
    1. Shehata ML, Cheng S, Osman NF, Bluemke DA, Lima JA. Myocardial tissue tagging with cardiovascular magnetic resonance. JCardiovascMagn Reson. 2009;11(1):55.
    1. Lima JA, Jeremy R, Guier W, Bouton S, Zerhouni EA, McVeigh E, Buchalter MB, Weisfeldt ML, Shapiro EP, Weiss JL. Accurate systolic wall thickening by nuclear magnetic resonance imaging with tissue tagging: correlation with sonomicrometers in normal and ischemic myocardium. J Am Coll Cardiol. 1993;21(7):1741–1751. doi: 10.1016/0735-1097(93)90397-J.
    1. Yeon SB, Reichek N, Tallant BA, Lima JA, Calhoun LP, Clark NR, Hoffman EA, Ho KK, Axel L. Validation of in vivo myocardial strain measurement by magnetic resonance tagging with sonomicrometry. J Am Coll Cardiol. 2001;38(2):555–561. doi: 10.1016/S0735-1097(01)01397-3.

Source: PubMed

3
Subskrybuj