Impact of a Gap Junction Protein Alpha 4 Variant on Clinical Disease Phenotype in F508del Homozygous Patients With Cystic Fibrosis

Tabea Horn, Michael Ludwig, Olaf Eickmeier, Anne H Neerinex, Anke H Maitland-van der Zee, Christina Smaczny, Thomas O F Wagner, Ralf Schubert, Stefan Zielen, Christof Majoor, Lieuwe D Bos, Sabina Schmitt-Grohé, Tabea Horn, Michael Ludwig, Olaf Eickmeier, Anne H Neerinex, Anke H Maitland-van der Zee, Christina Smaczny, Thomas O F Wagner, Ralf Schubert, Stefan Zielen, Christof Majoor, Lieuwe D Bos, Sabina Schmitt-Grohé

Abstract

Background: Lung disease phenotype varies widely even in the F508del (homozygous) genotype. Leukocyte-driven inflammation is important for pulmonary disease pathogenesis in cystic fibrosis (CF). Blood cytokines correlate negatively with pulmonary function in F508del homozygous patients, and gap junction proteins (GJA) might be related to the influx of blood cells into the lung and influence disease course. We aimed to assess the relationship between GJA1/GJA4 genotypes and the clinical disease phenotype.

Methods: One-hundred-and-sixteen homozygous F508del patients (mean age 27 years, m/f 66/50) were recruited from the CF centers of Bonn, Frankfurt, and Amsterdam. Sequence analysis was performed for GJA1 and GJA4. The clinical disease course was assessed over 3 years using pulmonary function tests, body mass index, Pseudomonas aeruginosa colonization, diabetes mellitus, survival to end-stage lung disease, blood and sputum inflammatory markers.

Results: Sequence analysis revealed one clinically relevant single nucleotide polymorphism. In this GJA4 variant (rs41266431), homozygous G variant carriers (n = 84/116; 72.4%) had poorer pulmonary function (FVC% pred: mean 78/86, p < 0.040) and survival to end-stage lung disease was lower (p < 0.029). The frequency of P. aeruginosa colonization was not influenced by the genotype, but in those chronically colonized, those with the G/G genotype had reduced pulmonary function (FVC% pred: mean 67/80, p < 0.049). Serum interleukin-8 (median: 12.4/6.7 pg/ml, p < 0.052) and sputum leukocytes (2305/437.5 pg/ml, p < 0.025) were higher for the G/G genotype.

Conclusions: In carriers of the A allele (27.6%) the GJA4 variant is associated with significantly better protection against end-stage lung disease and superior pulmonary function test results in F508del homozygous patients. This SNP has the potential of a modifier gene for phenotyping severity of CF lung disease, in addition to the CFTR genotype.

Clinical trial registration: The study was registered with ClinicalTrials.gov, number NCT04242420, retrospectively on January 24th, 2020.

Keywords: F508del homozygous; cystic fibrosis; gap junction protein alpha 4-genotype; inflammatory markers; lung disease phenotype; lung function; phenotype/genotype relation; precision medicine.

Copyright © 2020 Horn, Ludwig, Eickmeier, Neerinex, Maitland-van der Zee, Smaczny, Wagner, Schubert, Zielen, Majoor, Bos and Schmitt-Grohé.

Figures

FIGURE 1
FIGURE 1
Kaplan-Meier plot of survival of CF patients. Events are defined as death (n = 13) and lung transplantation (n = 2) (end stage CF). Red line indicates carriers of A allele, and blue line indicates G/G homozygous patients.

References

    1. Cantin A. M., Hartl D., Konstan M. W., Chmiel J. F. (2015). Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J. Cyst. Fibros. 14 419–430. 10.1016/j.jcf.2015.03.003
    1. Carbone A., Zefferino R., Beccia E., Casavola V., Castellani S., Di Gioia S., et al. (2018). Gap junctions are involved in the rescue of CFTR-dependent chloride efflux by amniotic mesenchymal stem cells in coculture with cystic fibrosis CFBE41o- cells. Stem Cells Int. 2018:1203717. 10.1155/2018/1203717
    1. Cartegni L., Wang J., Zhu Z., Zhang M., Krainer A. R. (2003). ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acid Res. 31 3568–3571. 10.1093/nar/gkg616
    1. Corvol H., Blackman S. M., Boëlle P. Y., Gallins P. J., Pace R. G., Stonebraker J. R., et al. (2015). Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nat. Commun. 6:8382. 10.1038/ncomms9382
    1. Cutting G. R. (2015). Cystic fibrosis genetics: from molecular understanding to clinical application. Nat. Rev. Genet. 16 45–56. 10.1155/2018/1203717
    1. Cystic Fibrosis Genotype-Phenotype Consortium (1993). Correlation between genotype and phenotype in patients with cystic fibrosis. N. Engl. J. Med. 329 1308–1313. 10.1056/NEJM199310283291804
    1. Desmet F. O., Hamroun D., Lalande M., Collod-Béroud G., Claustres M., Béroud C. (2009). Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 37:e67. 10.1093/nar/gkp215
    1. Drumm M. L., Konstan M. W., Schluchter M. D., Handler A., Pace R., Zou F., et al. (2005). Genetic modifiers of lung disease in cystic fibrosis. N. Engl. J. Med. 353 1443–1453.
    1. Eickmeier O., Boom L. V. D., Schreiner F., Lentze M. J., NGampolo D., Schubert R., et al. (2013). Transforming growth factor ß1 genotypes in relation to TGFß1, interleukin-8, and tumor necrosis factor alpha in induced sputum and blood in cystic fibrosis. Mediators Inflamm. 2013:913135. 10.1155/2013/913135
    1. Eickmeier O., Huebner M., Herrmann E., Zissler U., Rosewich M., Baer P. C., et al. (2010). Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function. Cytokine 50 152–157. 10.1016/j.cyto.2010.02.004
    1. ESE Finder (2003). Release 3.0 Available online at: .
    1. Freund-Michel V., Muller B., Marthan R., Savineau J. P., Guibert C. (2016). Expression and role of connexin-based gap junctions in pulmonary inflammatory diseases. Pharmacol. Ther. 164 105–119. 10.1016/j.pharmthera.2016.04.004
    1. Garred P., Pressler T., Madsen H. O., Frederiksen B., Svejgaard A., Høiby N., et al. (1999). Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J. Clin. Invest. 104 431–437. 10.1172/JCI6861
    1. Human Splicing Finder (2009). Human Splicing Finder version 3.1. Available online at:
    1. Johansen H. K., Nir M., Hoiby N., Koch C., Schwartz M. (1991). Severity of cystic fibrosis in patients homozygous and heterozygous for F508del mutation. Lancet 337 631–634.
    1. Krutovskihh V., Mironov N., Yamasaki H. (1996). Human connexin 37 is polymorphic but not mutated in tumors. Carcinogenesis 17 1761–1763. 10.1093/carcin/17.8.1761
    1. Kumari S. S., Varadaraj K., Valiunas V., Ramanan S. V., Christensen E. A., Beyer E. C., et al. (2000). Functional expression and biophysical properties of polymorphic variants of the human gap junction protein connexin 37. Biochem. Biophys. Res. Commun. 274 216–222. 10.1006/bbrc.2000.3054
    1. Lee T. W. R., Brownlee K. G., Conway S. P., Denton M., Littlewood J. M. (2003). Evaluation of a new definition for chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. J. Cyst. Fibros. 2 29–34.
    1. Losa D., Chanson M. (2015). The lung communication network. Cell Mol. Life 72 2793–2808.
    1. McKinnon R. L., Bolon M. L., Wang H. X., Swarbreck S., Kidder G. M., Simon A. M., et al. (2009). Reduction of electrical coupling between microvascular endothelial cells by NO depends on connexin 37. Am. J. Physiol. Heart Circ. Physiol. 297 H93–H101. 10.1152/ajpheart.01148.2008
    1. McKone E. F., Goss C. H., Aitken M. L. (2006). CFTR genotype as a predictor of prognosis in cystic fibrosis. Chest 130 1441–1447. 10.1378/chest.130.5.1441
    1. Miller M. R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., et al. (2005). Standardisation of spirometry. Eur. Respir. J. 26 319–338.
    1. Molina S. A., Stauffer B., Moriarty H. K., Kim A. H., McCarty N. A., Koval M. (2015). Junctional abnormalities in human airway epithelial cells expressing F508del CFTR. Am. J. Physiol. Lung Cell. Mol. Physiol. 309 L475–L487. 10.1152/ajplung.00060.2015
    1. Ohno K., Takeda J. I., Masuda A. (2018). Rules and tools to predict the splicing effects of exonic and intronic mutations. Wiley Interdiscip. Rev. RNA 9:e1451. 10.1002/wrna.1451
    1. Paz I., Akerman M., Dror I., Kosti I., Mandel-Gutfreund Y. (2010). SFmap: a web server for motif analysis and prediction of splicing factor binding sites. Nucleic Acids Res. 38 W281–W285.
    1. Saab J. B., Losa D., Chanson M., Ruez R. (2014). Connexins in respiratory and gastro-intestinal mucosal immunity. FEBS Lett. 588 1288–1296. 10.1016/j.febslet.2014.02.059
    1. Sáez P. J., Shoji K. F., Aguirre A., Sáez J. C. (2014). Regulation of hemichannels and gap junctions by cytokines in an antigen-presenting cells. Mediators Inflamm. 2014:742734. 10.1155/2014/742734
    1. Schmitt-Grohé S., Naujoks C., Bargon J., Wagner T. O., Schubert R., Hippe V., et al. (2005). Interleukin-8 in whole blood and clinical status in cystic fibrosis. Cytokine 29 18–23. 10.1016/j.cyto.2004.09.004
    1. SFmap (2010). SFmap version 1.8. Available online at:
    1. Tyml K. (2011). Role of connexins in microvascular dysfunction during inflammation. Can. J. Physiol. Pharmacol. 89 1–12. 10.1139/y10-099
    1. Valdebenito S., Barreto A., Eugenin E. A. (2018). The role of connexin and pannexin containing channels in the innate and acquired immune response. Biochim. Biophys. Acta Biomembr. 1860 154–165.

Source: PubMed

3
Subskrybuj