Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense

Eliane Comoli, Plínio Das Neves Favaro, Nicolas Vautrelle, Mariana Leriche, Paul G Overton, Peter Redgrave, Eliane Comoli, Plínio Das Neves Favaro, Nicolas Vautrelle, Mariana Leriche, Paul G Overton, Peter Redgrave

Abstract

The superior colliculus (SC) is responsible for sensorimotor transformations required to direct gaze toward or away from unexpected, biologically salient events. Significant changes in the external world are signaled to SC through primary multisensory afferents, spatially organized according to a retinotopic topography. For animals, where an unexpected event could indicate the presence of either predator or prey, early decisions to approach or avoid are particularly important. Rodents' ecology dictates predators are most often detected initially as movements in upper visual field (mapped in medial SC), while appetitive stimuli are normally found in lower visual field (mapped in lateral SC). Our purpose was to exploit this functional segregation to reveal neural sites that can bias or modulate initial approach or avoidance responses. Small injections of Fluoro-Gold were made into medial or lateral sub-regions of intermediate and deep layers of SC (SCm/SCl). A remarkable segregation of input to these two functionally defined areas was found. (i) There were structures that projected only to SCm (e.g., specific cortical areas, lateral geniculate and suprageniculate thalamic nuclei, ventromedial and premammillary hypothalamic nuclei, and several brainstem areas) or SCl (e.g., primary somatosensory cortex representing upper body parts and vibrissae and parvicellular reticular nucleus in the brainstem). (ii) Other structures projected to both SCm and SCl but from topographically segregated populations of neurons (e.g., zona incerta and substantia nigra pars reticulata). (iii) There were a few brainstem areas in which retrogradely labeled neurons were spatially overlapping (e.g., pedunculopontine nucleus and locus coeruleus). These results indicate significantly more structures across the rat neuraxis are in a position to modulate defense responses evoked from SCm, and that neural mechanisms modulating SC-mediated defense or appetitive behavior are almost entirely segregated.

Keywords: approach; defense; segregated anatomical inputs; superior colliculus.

Figures

Figure 1
Figure 1
SC’s spacial maps. Illustration shows that predator movements in the upper visual field are detected in the medial sub-region of the rodent SC’s retinotopically organized map, which promotes defense-like responses. Whisker-related somatosensory stimuli associated with prey are detected in the lateral sub-region of the SC which evokes approach and appetitive behavior.
Figure 2
Figure 2
Sub-regions of the SC. On the left a photomicrograph of the SC’s cytoarchitecture (Nissl stained). Layers are identified in a reflected schematic (right). The medial/lateral sub-regions approximates the horizontal meridian in the collicular map of visual space.
Figure 3
Figure 3
Schematic representation of the FG injection sites into the medial and lateral sub-regions of SC. Lines indicate each injection site. Light gray represents the areas included in the population of all medial and lateral injection sites and dark gray shows the injection sites chosen as representative of the medial and lateral injection populations. Abbreviations: see list.
Figure 4
Figure 4
Photomicrographs of transverse sections of the rat brain showing representative cases with FG injection into the SCm (A) and SCl (B). Respective adjacent sections show the SC cytoarchitecture stained with Nissl stain (C,D). Abbreviations: see list.
Figure 5
Figure 5
Distribution of retrogradely labeled cells after a FG injection into SCm (left side-red dots) and SCl (right side-green dots). Open squares indicate which levels the pictures in Figures 6–8 were taken from. A photomicrograph of the injection sites is illustrated in Figure 4. Abbreviations: see list.
Figure 5
Figure 5
Distribution of retrogradely labeled cells after a FG injection into SCm (left side-red dots) and SCl (right side-green dots). Open squares indicate which levels the pictures in Figures 6–8 were taken from. A photomicrograph of the injection sites is illustrated in Figure 4. Abbreviations: see list.
Figure 5
Figure 5
Distribution of retrogradely labeled cells after a FG injection into SCm (left side-red dots) and SCl (right side-green dots). Open squares indicate which levels the pictures in Figures 6–8 were taken from. A photomicrograph of the injection sites is illustrated in Figure 4. Abbreviations: see list.
Figure 6
Figure 6
Photomicrographs of transverse sections of the rat brain showing some of the areas with exclusive FG-stained cells from a rat injected into the SCm (A–F) or into the SCl (G,H). Abbreviations: see list.
Figure 7
Figure 7
Photomicrographs of transverse sections of the rat brain showing some of the areas with differential topography of FG-stained cells from a rat injected into the SCm (A,C,E,G,I) or into the SCl (B,D,F,H,J). Abbreviations: see list.
Figure 8
Figure 8
Photomicrographs of transverse sections of the rat brain showing some of the areas with similar topography of FG-stained cells from a rat injected into the SCm (A,C) or into the SCl (B,D). Abbreviations: see list.
Figure 9
Figure 9
Summary of the functional inputs to sub-regions of the rat SC associated with approach and defense responses.

References

    1. Alloway K. D., Smith J. B., Beauchemin K. J. (2010). Quantitative analysis of the bilateral brainstem projections from the whisker and forepaw regions in rat primary motor cortex. J. Comp. Neurol. 518, 4546–456610.1002/cne.22477
    1. Appell P. P., Behan M. (1990). Sources of subcortical GABAergic projections to the superior colliculus in the cat. J. Comp. Neurol. 302, 143–15810.1002/cne.903020111
    1. Arnault P., Roger M. (1990). Ventral temporal cortex in the rat: connections of secondary auditory areas Te2 and Te3. J. Comp. Neurol. 302, 110–12310.1002/cne.903020109
    1. Aronoff R., Matyas F., Mateo C., Ciron C., Schneider B., Petersen C. C. H. (2010). Long-range connectivity of mouse primary somatosensory barrel cortex. Eur. J. Neurosci. 31, 2221–223310.1111/j.1460-9568.2010.07264.x
    1. Bajo V. M., Merchán M. A., Malmierca M. S., Nodal F. R., Bjaalie J. G. (1999). Topographic organization of the dorsal nucleus of the lateral lemniscus in the cat. J. Comp. Neurol. 407, 349–36610.1002/(SICI)1096-9861(19990510)407:3<349::AID-CNE4>;2-5
    1. Balatoni B., Detari L. (2003). EEG related neuronal activity in the pedunculopontine tegmental nucleus of urethane anaesthetized rats. Brain Res. 959, 304–31110.1016/S0006-8993(02)03768-X
    1. Bernard J. F., Besson J. M. (1990). The spino(trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol. 63, 473–490
    1. Bernard J. F., Huang G. F., Besson J. M. (1994). The parabrachial area: electrophysiological evidence for an involvement in visceral nociceptive processes. J. Neurophysiol. 71, 1646–1660
    1. Bester H., Menendez L., Besson J. M., Bernard J. F. (1995). Spino(trigemino) parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol. 73, 568–585
    1. Billington J., Wilkie R. M., Field D. T., Wann J. P. (2011). Neural processing of imminent collision in humans. Proc. Biol. Sci. 278, 1476–148110.1098/rspb.2010.1895
    1. Bon K., Lantéri-Minet M., de Pommery J., Michiels J. F., Menétrey D. (1996). Cyclophosphamide cystitis as a model of visceral pain in rats. A survey of hindbrain structures involved in visceroception and nociception using the expression of c-Fos and Krox-24 proteins. Exp. Brain Res. 108, 404–41610.1007/BF00227263
    1. Born G., Schmidt M. (2008). A reciprocal connection between the ventral lateral geniculate nucleus and the pretectal nuclear complex and the superior colliculus: an in vitro characterization in the rat. Vis. Neurosci. 25, 39–5110.1017/S0952523808080048
    1. Brog J. S., Salyapongse A., Deutch A. Y., Zahm D. S. (1993). The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J. Comp. Neurol. 338, 255–27810.1002/cne.903380209
    1. Buchanan S. L., Thompson R. H., Maxwell B. L., Powell D. A. (1994). Efferent connections of the medial prefrontal cortex in the rabbit. Exp. Brain Res. 100, 469–48310.1007/BF02738406
    1. Cadusseau J., Roger M. (1985). Afferent projections to the superior colliculus in the rat, with special attention to the deep layers. J. Hirnforsch. 26, 667–681
    1. Canteras N. S., Goto M. (1999). Connections of the precommissural nucleus. J. Comp. Neurol. 408, 23–4510.1002/(SICI)1096-9861(19990524)408:1<23::AID-CNE3>;2-J
    1. Canteras N. S., Simerly R. B., Swanson L. W. (1994). Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J. Comp. Neurol. 348, 41–7910.1002/cne.903480103
    1. Canteras N. S., Swanson L. W. (1992). The dorsal premammillary nucleus: an unusual component of the mammillary body. Proc. Natl. Acad. Sci. U.S.A. 89, 10089–1009310.1073/pnas.89.21.10089
    1. Carlson J. D., Iacono R. P., Maeda G. (2004). Nociceptive excited and inhibited neurons within the pedunculopontine tegmental nucleus and cuneiform nucleus. Brain Res. 1013, 182–18710.1016/j.brainres.2004.03.069
    1. Carvalho-Netto E. F., Markham C., Blanchard D. C., Nunes-de-Souza R. L., Blanchard R. J. (2006). Physical environment modulates the behavioral responses induced by chemical stimulation of dorsal periaqueductal gray in mice. Pharmacol. Biochem. Behav. 85, 140–14710.1016/j.pbb.2006.07.022
    1. Chubb M. C., Fuchs A. F. (1982). Contribution of y group of vestibular nuclei and dentate nucleus of cerebellum to generation of vertical smooth eye movements. J. Neurophysiol. 48, 75–99
    1. Coizet V., Dommett E. J., Redgrave P., Overton P. G. (2006). Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat. Neuroscience 139, 1479–149310.1016/j.neuroscience.2006.01.030
    1. Coizet V., Graham J. H., Moss J., Bolam J. P., Savasta M., McHaffie J. G., Redgrave P., Overton P. G. (2007). Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci. 29, 5701–570910.1523/JNEUROSCI.0247-09.2009
    1. Comoli E., Favaro P. D. N., Mercez P. L. C. (2010). “Superior colliculus: an important neural site involved in motivated behaviors,” in Proceedings of the 40th Annual Meeting of the Society for Neuroscience, abstr. 813.17, San Diego, CA
    1. Cornwall J., Cooper J. D., Phillipson O. T. (1990). Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res. Bull. 25, 271–28410.1016/0361-9230(90)90072-8
    1. Corvisier J., Hardy O. (1993). Distribution of synaptic terminals from prepositus neurones on the collicular maps. Neuroreport 4, 511–51410.1097/00001756-199305000-00012
    1. Dean P., Redgrave P., Sahibzada N., Tsuji K. (1986). Head and body movements produced by electrical stimulation of superior colliculus in rats: effects of interruption of crossed tectoreticulospinal pathway. Neuroscience 19, 367–38010.1016/0306-4522(86)90267-8
    1. Dean P., Redgrave P., Westby G. W. M. (1989). Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci. 12, 137–14710.1016/0166-2236(89)90052-0
    1. Dillon L. S. (1962). Comparative notes on the cerebellum of the monotremes. I. Contribution toward a phylogeny of the monotremes. I. Contribution toward a phylogeny of the mammalian brain. J. Comp. Neurol. 118, 343–35310.1002/cne.901180305
    1. Druga R., Syka J. (1984). Projections from auditory structures to the superior colliculus in the rat. Neurosci. Lett. 45, 247–25210.1016/0304-3940(84)90234-9
    1. Favaro P. D. N., Gouvea T. S., De Oliveira S. R., Vautrelle N., Redgrave P., Comoli E. (2011). The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture. Neuroscience 176, 318–32710.1016/j.neuroscience.2010.12.009
    1. Ficalora A. S., Mize R. R. (1989). The neurons of the substantia nigra and zona incerta which project to the superior colliculus are GABA immunoreactive: a double-label study using GABA imunocytochemistry and lectin retrograde transport. Neuroscience 29, 567–58110.1016/0306-4522(89)90131-0
    1. Furigo I. C., De Oliveira W. F., De Oliveira A. R., Comoli E., Baldo M. V., Mota-Ortiz S. R., Canteras N. S. (2010). The role of the superior colliculus in predatory hunting. Neuroscience 165, 1–1510.1016/j.neuroscience.2009.10.004
    1. Gaither N. S., Stein B. E. (1979). Reptiles and mammals use similar sensory organizations in the midbrain. Science 205, 595–59710.1126/science.451623
    1. Garcia Del Caño G., Gerrikagoitia I., Martínez-Millán L. (2000). Morphology and topographical organization of the retrospleniocollicular connection: a pathway to relay contextual information from the environment to the superior colliculus. J. Comp. Neurol. 425, 393–40810.1002/1096-9861(20000925)425:3<393::AID-CNE5>;2-G
    1. Gauriau C., Bernard J. F. (2002). Pain pathway and parabrachial circuits in the rat. Exp. Physiol. 87, 251–25810.1113/eph8702357
    1. Glickstein M. (2003). Subcortical projections of the parietal lobes. Adv. Neurol. 93, 43–55
    1. Gruart A., Delgado-García J. M. (1994). Signalling properties of identified deep cerebellar nuclear neurons related to eye and head movements in the alert cat. J. Physiol. 478(Pt 1), 37–54
    1. Harting J. K., Updyke B. V., Van Lieshout D. P. (1992). Corticotectal projections in the cat: anterograde transport studies of twenty-five cortical areas. J. Comp. Neurol. 324, 379–41410.1002/cne.903240308
    1. Harvey A. R., Worthington D. R. (1990). The projection from different visual cortical areas to the rat superior colliculus. J. Comp. Neurol. 298, 281–29210.1002/cne.902980303
    1. Henkel C. K., Schneiderman A. (1988). Nucleus sagulum: projections of a lateral tegmental area to the inferior colliculus in the cat. J. Comp. Neurol. 271, 577–58810.1002/cne.902710408
    1. Hoffer Z. S., Arantes H. B., Roth R. L. Alloway, K. D. (2005). Functional circuits mediating sensorimotor integration: quantitative comparisons of projections from rodent barrel cortex to primary motor cortex, neostriatum, superior colliculus, and the pons. J. Comp. Neurol. 488, 82–10010.1002/cne.20579
    1. Huerta M. F., Frankfurter A., Harting J. K. (1983). Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive, and cerebellum. J. Comp. Neurol. 220, 147–16710.1002/cne.902200204
    1. Huerta M. F., Harting J. K. (1982). The projection from the nucleus of the posterior commissure to the superior colliculus of the cat: patch-like endings within the intermediate and deep grey layers. Brain Res. 238, 426–43210.1016/0006-8993(82)90118-4
    1. Hurley K. M., Herbert H., Moga M. M., Saper C. B. (1991). Efferent projections of the infralimbic cortex of the rat. J. Comp. Neurol. 308, 249–27610.1002/cne.903080210
    1. Itoh K., Konishi A., Nomura S., Mizuno N., Nakamura Y., Sugimoto T. (1979). Application of coupled oxidation reaction to electron microscopic demonstration of horseradish peroxidase: cobalt-glucose oxidase method. Brain Res. 175, 341–34610.1016/0006-8993(79)91013-8
    1. Kass J. H. (1995). The evolution of isocortex. Brain Behav. Evol. 46, 187–19610.1159/000113273
    1. Kass J. H. (2004). Evolution of somatosensory and motor cortex in primates. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 281A, 1148–115610.1002/ar.a.20120
    1. Kass J. H. (2011). Neocortex in early mammals and its subsequent variations. Ann. N. Y. Acad. Sci. 1225, 28–3610.1111/j.1749-6632.2011.05981.x
    1. Kawakura S., Hattori S., Higo S., Matsuyama T. (1982). The cerebellar projections to the superior colliculus and pretectum in the cat: an autoradiographic and horseradish study. Neuroscience 7, 1675–1689
    1. Kelly J. B., Buckthought A. D., Kidd S. A. (1998). Monaural and binaural response properties of single neurons in the rat’s dorsal nucleus of the lateral lemniscus. Hear. Res. 122, 25–4010.1016/S0378-5955(98)00082-3
    1. Kelly J. B., Van Del B. A., Ito M. (2009). Anatomical projections of the nuclei of the lateral lemniscus in the albino aat (Rattus norvegicus). J. Comp. Neurol. 512, 573–59310.1002/cne.21929
    1. Killackey H. P., Erzurumlu R. S. (1981). Trigeminal projections to the superior colliculus of the rat. J. Comp. Neurol. 201, 221–24210.1002/cne.902010207
    1. Kimura A., Donishi T., Okamoto K., Tamai Y. (2004). Efferent connections of posterodorsal auditory area in the rat cortex: implications for auditory spatial processing. Neuroscience 128, 399–41910.1016/j.neuroscience.2004.07.010
    1. King S. M., Shehab S., Dean P., Redgrave P. (1996). Differential expression of fos-like immunoreactivity in the descending projections of superior colliculus after electrical stimulation in the rat. Behav. Brain Res. 78, 131–14510.1016/0166-4328(95)00241-3
    1. Klooster J., Vrensen G. F. J. M., Miiller L. J., van der Want J. J. L. (1995). Efferent projections of the olivary pretectal nucleus in the albino rat subserving the pupillary light reflex and related reflexes. A light microscopic tracing study. Brain Res. 688, 34–4610.1016/0006-8993(95)00498-F
    1. Klop E. M., Mouton L. J., Ehling T., Holstege G. (2005). Two parts of the nucleus hypoglossi project to two different subdivisions of the dorsolateral periaqueductal gray in cat. J. Comp. Neurol. 492, 303–32210.1002/cne.20728
    1. Kolmac C. I., Power B. D., Mitrofanis J. (1998). Patterns of connections between zona incerta and brainstem in rats. J. Comp. Neurol. 396, 544–55510.1002/(SICI)1096-9861(19980713)396:4<531::AID-CNE9>;2-2
    1. Krauthamer G. M., Grunwerg B. S., Krein H. (1995). Putative cholinergic neurons of the pedunculopontine tegmental nucleus projecting to the superior colliculus consist of sensory responsive and unresponsive populations which are functionally distinct from other mesopontine neurons. Neuroscience 69, 507–51710.1016/0306-4522(95)00265-K
    1. Lee T., Kim U. (2012). Descending projections from the dysgranular zone of rat primary somatosensory cortex processing deep somatic input. J. Comp. Neurol. 520, 1021–104610.1002/cne.22767
    1. Leichnetz G. R., Gonzalo-Ruiz A. (1987). Collateralization of frontal eye field (medial precentral/anterior cingulate) neurons projecting to the paraoculomotor region, superior colliculus, and medial pontine reticular formation in the rat: a fluorescent double-labeling study. Exp. Brain Res. 68, 355–36410.1007/BF00248801
    1. Li Y. Q., Takada M., Kaneko T., Mizuno N. (1995). Premotor neurons for trigeminal motor nucleus neurons innervating the jaw-closing and jaw-opening muscles: differential distribution in the lower brainstem of the rat. J. Comp. Neurol. 356, 563–57910.1002/cne.903560407
    1. Li Y. Q., Takada M., Kaneko T., Mizuno N. (1996). GABAergic and glycinergic neurons projecting to the trigeminal motor nucleus: a double labeling study in the rat. J. Comp. Neurol. 373, 498–51010.1002/(SICI)1096-9861(19960930)373:4<498::AID-CNE3>;2-X
    1. Liu Y. J., Wang Q., Li B. (2011). Neuronal responses to looming objects in the superior colliculus of the cat. Brain Behav. Evol. 77, 193–20510.1159/000327045
    1. Lynch J. C., Graybiel A. M., Lobeck L. J. (1985). The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J. Comp. Neurol. 235, 241–25410.1002/cne.902350207
    1. Manger P. R., Restrepo C. E., Innocenti G. M. (2010). The superior colliculus of the ferret: cortical afferents and efferent connections to dorsal thalamus. Brain Res. 1353, 74–8510.1016/j.brainres.2010.07.085
    1. May P. J. (2006). The mammalian superior colliculus: laminar structure and connections. Prog. Brain Res. 151, 321–37810.1016/S0079-6123(05)51011-2
    1. May P. J., Sun W., Hall W. C. (1997). Reciprocal connections between the zona incerta and the pretectum and superior colliculus of the cat. Neuroscience 77, 1091–111410.1016/S0306-4522(96)00535-0
    1. McIntyre D. C., Kelly M. E., Staines W. A. (1996). Efferent projections of the anterior perirhinal cortex in the rat. J. Comp. Neurol. 369, 302–31810.1002/(SICI)1096-9861(19960527)369:2<302::AID-CNE10>;2-J
    1. Menendez L., Bester H., Besson J. M., Bernard J. F. (1996). Parabrachial area: electrophysiological evidence for an involvement in cold nociception. J. Neurophysiol. 75, 2099–2115
    1. Meredith M. A., Clemo R. H. (1989). Auditory cortical projection from the anterior ectosylvian sulcus (field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study. J. Comp. Neurol. 289, 687–70710.1002/cne.902890412
    1. Montagnini A., Treves A. (2003). The evolution of mammalian cortex, from lamination to arealization. Brain Res. Bull. 60, 387–39310.1016/S0361-9230(03)00057-1
    1. Moore R. Y., Weis R., Moga M. M. (2000). Efferent projections of the intergeniculate leaflet and the ventral lateral geniculate nucleus in the rat. J. Comp. Neurol. 420, 398–41810.1002/(SICI)1096-9861(20000508)420:3<398::AID-CNE9>;2-9
    1. Nagata T., Hayashi Y. (1984). The visual field representation of the rat ventral lateral geniculate nucleus. J. Comp. Neurol. 227, 582–58810.1002/cne.902270409
    1. Ndiaye A., Pinganaud G., Buisseret-Delmas C., Buisseret P., Vandewerf F. (2002). Organization of trigeminocollicular connections and their relations to the sensory innervation of the eyelids in the rat. J. Comp. Neurol. 448, 373–38710.1002/cne.10269
    1. Nicolelis M. A., Chapin J. K., Lin R. C. (1992). Somatotopic maps within the zona incerta relay parallel GABAergic somatosensory pathways to the neocortex, superior colliculus, and brainstem. Brain Res. 577, 134–14110.1016/0006-8993(92)90546-L
    1. Ohtsuki H., Tokunaga A., Ono K., Hasebe S., Tadokoro Y. (1992). Distribution of efferent neurons projecting to the tectum and cerebellum in the rat prepositus hypoglossi nucleus. Invest. Ophthalmol. Vis. Sci. 33, 2567–2574
    1. Olucha-Bordonau F. E., Tervel V., Bracia-González J., Ruiz-Torner A., Valverde-Navarro A. A., Martínez-Soriano F. (2003). Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J. Comp. Neurol. 464, 62–9710.1002/cne.10774
    1. Páli J., Baldauf Z. A., Szentpétery Z., Szabó Z., Herczeg L., Görcs T. J. (2002). Chemoanatomical separation of vibrissal trigeminal primary afferents in the rat: a special central representation of supraorbital vibrissae. Somatosens. Mot. Res. 19, 245–25410.1080/0899022021000009170
    1. Paxinos G., Watson C. (2007). The Rat Brain in Steretaxic Coordinates, 6th Edn San Diego: Elsevier
    1. Pieribone V. A., Aston-Jones G. (1988). The iontophoretic application of fluoro-gold for the study of afferents to deep brain nuclei. Brain Res. 475, 259–27110.1016/0006-8993(88)90614-2
    1. Redgrave P., Marrow L., Dean P. (1992). Topographical organization of the nigrotectal projection in rat: evidence for segregated channels. Neuroscience 50, 571–59510.1016/0306-4522(92)90448-B
    1. Redgrave P., Prescott T. J., Gurney K. (1999). The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–102310.1016/S0306-4522(98)00319-4
    1. Reep R. L., Corwin J. V., Hashimoto A., Watson R. T. (1987). Efferent connections of the rostral portion of medial agranular cortex in rats. Brain. Res. Bull. 19, 203–22110.1016/0361-9230(87)90086-4
    1. Rhoades R. W., Fish S. E., Chiaia N. L., Bennett-Clarke C., Mooney R. D. (1989). Organization of the projections from the trigeminal brainstem complex to the superior colliculus in the rat and hamster: anterograde tracing with Phaseolus vulgaris leucoagglutinin and intra-axonal injection. J. Comp. Neurol. 289, 641–65610.1002/cne.902890409
    1. Ricardo J. A. (1981). Efferent connections of the subthalamic region in the rat. II. The zona incerta. Brain Res. 214, 43–6010.1016/0006-8993(81)90437-6
    1. Roldán M., Reinoso-Suárez F. (1981). The cerebellar projections to the superior colliculus in the cat. J. Neurosci. 8, 827–834
    1. Room P., Russchen F. T., Groemewegen H. J., Lohman A. H. M. (1985). Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: an anterograde tracing study in the cat. J. Comp. Neurol. 242, 40–5510.1002/cne.902420104
    1. Sahibzada N., Dean P., Redgrave P. (1986). Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J. Neurosci. 6, 723–733
    1. Saitoh K., Ménard A., Griller S. (2007). Tectal control of locomotion, steering, and eye movements in lamprey. J. Neurophysiol. 97, 3093–310810.1152/jn.00639.2006
    1. Satoh K., Fibiger H. C. (1986). Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections. J. Comp. Neurol. 253, 277–30210.1002/cne.902530302
    1. Scarnati E., Florio T. (1997). The pedunculopontine nucleus and related structures. Functional organization. Adv. Neurol. 74, 97–110
    1. Schmued L. C., Fallon J. H. (1986). Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res. 377, 147–15410.1016/0006-8993(86)91199-6
    1. Sefton A. J., Dreher B., Harvey A. (2004). “Visual system,” in The Rat Nervous System, 3rd Edn, ed. Paxinos G. (Amsterdam: Elsevier; ), 1082–1202
    1. Sesack S. R., Deutch A. Y., Roth R. H., Bunney B. S. (1989). Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol. 290, 213–24210.1002/cne.902900205
    1. Shammah-Lagnado S. J., Costa M. S., Ricardo J. A. (1992). Afferent connections of the parvocellular reticular formation: a horseradish peroxidase study in the rat. Neuroscience 50, 403–42510.1016/0306-4522(92)90433-3
    1. Shehab S., Alzigali L., Madathil M., Redgrave P. (2007). Pharmacological evidence for an anticonvulsant relay in the rat ventromedial medulla. Eur. J. Neurosci. 26, 2585–259410.1111/j.1460-9568.2007.05851.x
    1. Simpson K., Wang Y., Lin R. C. (2008). Patterns of convergence in rat zona incerta from the trigeminal nuclear complex: light and electron microscopic study. J. Comp. Neurol. 507, 1521–154110.1002/cne.21624
    1. Sokov A. Y., Lyubashina O. A., Panteleev S. S. (2011). Spinal trigeminal neurons demonstrate an increase in responses to dural electrical stimulation in the orofacial formalin test. J. Headache Pain 13, 75–8210.1007/s10194-011-0404-7
    1. Sparks D. L. (1986). Translation of sensory signals into commands for control of saccadic eye movements: role of the primate superior colliculus. Physiol. Rev. 66, 118–171
    1. Stein B. E. (1981). Organization of the rodent superior colliculus: some comparisons with other mammals. Behav. Brain Res. 3, 175–18810.1016/0166-4328(81)90046-2
    1. Stein B. E. (1984). Development of the superior colliculus. Annu. Rev. Neurosci. 7, 95–12510.1146/annurev.ne.07.030184.000523
    1. Stein B. E., Meredith M. A. (1993). The Merging of the Senses. Cambridge, MA: The MIT Press
    1. Stephenson-Jones M., Samuelsson E., Ericsson J., Brita R., Grillner S. (2011). Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr. Biol. 21, 1081–109110.1016/j.cub.2011.05.001
    1. Swanson L. W. (2004). Brain Maps III: Structure of the Rat Brain. London: Elsevier
    1. Swanson L. W., Cowan W. M., Jones E. G. (1974). An autoradiographic study of the efferent connections of in the ventral lateral geniculate nucleus the albino rat and the cat. J. Comp. Neurol. 156, 143–16310.1002/cne.901560203
    1. Takahashi L. K., Chan M. M., Mark L., Pilar M. L. (2008). Predator odor fear conditioning: current perspectives and new directions. Neurosci. Biobehav. Rev. 32, 1218–122710.1016/j.neubiorev.2008.06.001
    1. Tanaka K., Otani K., Tokunaga A., Sugita S. (1985). The reciprocal connections of the suprageniculate nucleus and the superior colliculus in the rat. Neurosci. Res. 3, 79–8510.1016/0168-0102(85)90357-8
    1. Telford S., Wang S., Redgrave P. (1986). Analysis of nociceptive neurones in the rat superior colliculus using c-fos immunohistochemistry. J. Comp. Neurol. 375, 601–61710.1002/(SICI)1096-9861(19961125)375:4<601::AID-CNE4>;2-5
    1. Trejo L. J., Cicerone C. M. (1984). Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat. Brain Res. 300, 49–6210.1016/0006-8993(84)91340-4
    1. Updyke B. V. (1977). Topographic organization of the projections from cortical areas 17, 18, and 19 onto the thalamus, pretectum and superior colliculus in the cat. J. Comp. Neurol. 173, 81–12210.1002/cne.901730106
    1. Van Groen T., Wyss J. M. (1992). Connections of the retrosplenial dysgranular cortex in the rat. J. Comp. Neurol. 315, 200–21610.1002/cne.903150207
    1. Vaudano E., Legg C. R., Glickstein M. (1991). Afferent and efferent connections of temporal association cortex in the rat: a horseradish peroxidase study. Eur. J. Neurosci. 3, 317–33010.1111/j.1460-9568.1991.tb00818.x
    1. Vertes R. P., Martin G. F. (1988). Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J. Comp. Neurol. 275, 11–4110.1002/cne.902750404
    1. Vertes R. P., Martin G. F., Waltzer R. (1986). An autoradiographic analysis of ascending projections from the medullary reticular formation in the rat. Neuroscience 19, 873–39810.1016/0306-4522(86)90305-2
    1. Wang S., Redgrave P. (1997). Microinjections of muscimol into lateral superior colliculus disrupt orienting and oral movements in the formalin model of pain. Neuroscience 81, 967–98810.1016/S0306-4522(97)00253-4
    1. Waterhouse B. D., Border B., Wahl L., Mihailoff G. A. (1993). Topographic organization of rat locus coeruleus and dorsal raphe nuclei: distribution of cells projecting to visual system structures. J. Comp. Neurol. 336, 345–36110.1002/cne.903360304
    1. Westby G. W., Keay K. A., Redgrave P., Dean P., Bannister M. (1990). Output pathways from the rat superior colliculus mediating approach and avoidance have different sensory properties. Exp. Brain Res. 81, 626–63810.1007/BF02423513
    1. Wiberg M. (1992). Reciprocal connections between the periaqueductal gray matter and other somatosensory regions of the cat midbrain: a possible mechanism of pain inhibition. Ups. J. Med. Sci. 97, 37–4710.3109/03009739209179280
    1. Wise S. P., Jones E. G. (1977). Somatotopic and columnar organization in the corticotectal projection of the rat somatic sensory cortex. Brain Res. 133, 223–23510.1016/0006-8993(77)90760-0
    1. Wurtz R. H., Albano J. E. (1980). Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci. 3, 189–22610.1146/annurev.ne.03.030180.001201
    1. Wyss J. M., Sripanidkulchai K. (2003). The topography of the mesencephalic and pontine projections from the cingulate cortex of the rat. Brain Res. 293, 1–1510.1016/0006-8993(84)91448-3

Source: PubMed

3
Subskrybuj