A phase II study of preoperative capecitabine in women with operable hormone receptor positive breast cancer

Sara M Tolaney, Joon Jeong, Hao Guo, Jane Brock, Daniel Morganstern, Steven E Come, Mehra Golshan, Jennifer Bellon, Eric P Winer, Ian E Krop, Sara M Tolaney, Joon Jeong, Hao Guo, Jane Brock, Daniel Morganstern, Steven E Come, Mehra Golshan, Jennifer Bellon, Eric P Winer, Ian E Krop

Abstract

Conventional preoperative chemotherapy regimens have only limited efficacy in hormone receptor positive (HR+) breast cancer and new approaches are needed. We hypothesized that capecitabine, which is effective in metastatic breast cancer, may be an active preoperative treatment for HR+ breast cancer. Women with HR+, HER2-negative operable breast cancer received capecitabine, 2000 mg/m(2) daily in divided doses for 14 days, followed by a 7-day rest period. Treatment was repeated every 21 days for a total of four cycles. The primary endpoint of the study was to determine the rate of pathological complete response (pCR). Because of slow accrual, the study was closed after 24 patients were enrolled. Three patients had a complete clinical response, and eight patients had a partial clinical response, for an overall clinical response rate of 45.8%. There were no cases of pCR. Of the 22 patients who had pathological response assessment by the Miller-Payne grading system, there were six grade 3 responses, and no grade 4 or 5 responses. Toxicity was manageable: the only grade 3 toxicities observed were one case each of diarrhea, palmar plantar erythrodysesthesia, hypokalemia, and mucositis. There was no association between baseline levels, or change in level from baseline to cycle 1, or from baseline to time of surgery, of thymidine phosphorylase (TYMP), thymidylate synthase (TYMS), dihydropyrimidine dehydrogenase (DPYD), or Ki67 and pathological, clinical, or radiographic response. Preoperative capecitabine is a well-tolerated regimen, but appears not lead to pCR when used as monotherapy in HR+ breast cancer.

Keywords: Breast; cancer; capecitabine; chemotherapy; preoperative.

© 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

References

    1. Berry DA, Cirrincione C, Henderson IC, Citron ML, Budman DR, Goldstein LJ, et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA. 2006;295:1658–67.
    1. Gianni L, Baselga J, Eiermann W, Guillem Porta V, Semiglazov V, Lluch A, et al. Feasibility and tolerability of sequential doxorubicin/paclitaxel followed by cyclophosphamide, methotrexate, and fluorouracil and its effects on tumor response as preoperative therapy. Clin. Cancer Res. 2005;11:8715–21.
    1. Colleoni M, Viale G, Zahrieh D, Pruneri G, Gentilini O, Veronesi P, et al. Chemotherapy is more effective in patients with breast cancer not expressing steroid hormone receptors: a study of preoperative treatment. Clin. Cancer Res. 2004;10:6622–8.
    1. von Minckwitz G, Untch M, Nuesch E, Loibl S, Kaufmann M, Kummel S, et al. Impact of treatment characteristics on response of different breast cancer phenotypes: pooled analysis of the German neo-adjuvant chemotherapy trials. Breast Cancer Res. Treat. 2011;125:145–56.
    1. von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 2012;30:1796–804.
    1. Blum JL, Jones SE, Buzdar AU, LoRusso PM, Kuter I, Vogel C, et al. Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J. Clin. Oncol. 1999;17:485–93.
    1. Oshaughnessy JA, Blum J, Moiseyenko V, Jones SE, Miles D, Bell D, et al. Randomized, open-label, phase II trial of oral capecitabine (Xeloda) vs. a reference arm of intravenous CMF (cyclophosphamide, methotrexate and 5-fluorouracil) as first-line therapy for advanced/metastatic breast cancer. Ann. Oncol. 2001;12:1247–54.
    1. Ishikawa T, Sekiguchi F, Fukase Y, Sawada N, Ishitsuka H. Positive correlation between the efficacy of capecitabine and doxifluridine and the ratio of thymidine phosphorylase to dihydropyrimidine dehydrogenase activities in tumors in human cancer xenografts. Cancer Res. 1998;58:685–90.
    1. Tominaga T, Toi M, Ohashi Y, Abe O. Prognostic and predictive value of thymidine phosphorylase activity in early-stage breast cancer patients. Clin. Breast Cancer. 2002;3:55–64.
    1. Bronckaers A, Gago F, Balzarini J, Liekens S. The dual role of thymidine phosphorylase in cancer development and chemotherapy. Med. Res. Rev. 2009;29:903–53.
    1. Wilson EB. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 1927;22:209–12.
    1. Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, Smith I, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast. 2003;12:320–7.
    1. Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J. Clin. Oncol. 1998;16:2672–85.
    1. Bear HD, Anderson S, Smith RE, Geyer CE, Jr, Mamounas EP, Fisher B, et al. Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer:National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J. Clin. Oncol. 2006;24:2019–27.
    1. Muss HB, Berry DA, Cirrincione CT, Theodoulou M, Mauer AM, Kornblith AB, et al. Adjuvant chemotherapy in older women with early-stage breast cancer. N. Engl. J. Med. 2009;360:2055–65.
    1. Bear HD, Tang G, Rastogi P, Geyer CE, Jr, Robidoux A, Atkins JN, et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N. Engl. J. Med. 2012;366:310–20.
    1. Layman RM, Thomas DG, Griffith KA, Smerage JB, Helvie MA, Roubidoux MA, et al. Neoadjuvant docetaxel and capecitabine and the use of thymidine phosphorylase as a predictive biomarker in breast cancer. Clin. Cancer Res. 2007;13:4092–7.
    1. Chiorean EG, Sanghani S, Schiel MA, Yu M, Burns M, Tong Y, et al. Phase II and gene expression analysis trial of neoadjuvant capecitabine plus irinotecan followed by capecitabine-based chemoradiotherapy for locally advanced rectal cancer: Hoosier Oncology Group GI03-53. Cancer Chemother. Pharmacol. 2012;70:25–32.
    1. Meropol NJ, Gold PJ, Diasio RB, Andria M, Dhami M, Godfrey T, et al. Thymidine phosphorylase expression is associated with response to capecitabine plus irinotecan in patients with metastatic colorectal cancer. J. Clin. Oncol. 2006;24:4069–77.
    1. Puglisi F, Cardellino GG, Crivellari D, Di Loreto C, Magri MD, Minisini AM, et al. Thymidine phosphorylase expression is associated with time to progression in patients receiving low-dose, docetaxel-modulated capecitabine for metastatic breast cancer. Ann. Oncol. 2008;19:1541–6.
    1. Andreetta C, Puppin C, Minisini A, Valent F, Pegolo E, Damante G, et al. Thymidine phosphorylase expression and benefit from capecitabine in patients with advanced breast cancer. Ann. Oncol. 2009;20:265–71.
    1. Kurosumi M, Tabei T, Suemasu K, Inoue K, Kusawake T, Sugamata N, et al. Enhancement of immunohistochemical reactivity for thymidine phosphorylase in breast carcinoma cells after administration of docetaxel as a neoadjuvant chemotherapy in advanced breast cancer patients. Oncol. Rep. 2000;7:945–8.
    1. Toi M, Bando H, Horiguchi S, Takada M, Kataoka A, Ueno T, et al. Modulation of thymidine phosphorylase by neoadjuvant chemotherapy in primary breast cancer. Br. J. Cancer. 2004;90:2338–43.
    1. Puglisi F, Andreetta C, Valent F, Minisini AM, Rijavec E, Russo S, et al. Anthracyclines and taxanes induce the upregulation of thymidine phosphorylase in breast cancer cells. Anticancer Drugs. 2007;18:883–8.
    1. Ruckhaberle E, Karn T, Engels K, Turley H, Hanker L, Muller V, et al. Prognostic impact of thymidine phosphorylase expression in breast cancer–comparison of microarray and immunohistochemical data. Eur. J. Cancer. 2010;46:549–57.

Source: PubMed

3
Subskrybuj