Gene expression profiling in the synovium identifies a predictive signature of absence of response to adalimumab therapy in rheumatoid arthritis

Valérie Badot, Christine Galant, Adrien Nzeusseu Toukap, Ivan Theate, Anne-Lise Maudoux, Benoît J Van den Eynde, Patrick Durez, Frédéric A Houssiau, Bernard R Lauwerys, Valérie Badot, Christine Galant, Adrien Nzeusseu Toukap, Ivan Theate, Anne-Lise Maudoux, Benoît J Van den Eynde, Patrick Durez, Frédéric A Houssiau, Bernard R Lauwerys

Abstract

Introduction: To identify markers and mechanisms of resistance to adalimumab therapy, we studied global gene expression profiles in synovial tissue specimens obtained from severe rheumatoid arthritis (RA) patients before and after initiation of treatment.

Methods: Paired synovial biopsies were obtained from the affected knee of 25 DMARD (disease-modifying antirheumatic drug)-resistant RA patients at baseline (T0) and 12 weeks (T12) after initiation of adalimumab therapy. DAS28-CRP (disease activity score using 28 joint counts-C-reactive protein) scores were computed at the same time points, and patients were categorized as good, moderate, or poor responders according to European League Against Rheumatism criteria. Global gene expression profiles were performed in a subset of patients by means of GeneChip Human Genome U133 Plus 2.0 Arrays, and confirmatory immunohistochemistry experiments were performed on the entire cohort.

Results: Gene expression studies performed at baseline identified 439 genes associated with poor response to therapy. The majority (n = 411) of these genes were upregulated in poor responders and clustered into two specific pathways: cell division and regulation of immune responses (in particular, cytokines, chemokines, and their receptors). Immunohistochemistry experiments confirmed that high baseline synovial expression of interleukin-7 receptor alpha chain (IL-7R), chemokine (C-X-C motif) ligand 11 (CXCL11), IL-18, IL-18 receptor accessory (IL-18rap), and MKI67 is associated with poor response to adalimumab therapy. In vitro experiments indicated that genes overexpressed in poor responders could be induced in fibroblast-like synoviocytes (FLS) cultures by the addition of tumor necrosis factor-alpha (TNF-alpha) alone, IL-1beta alone, the combination of TNF-alpha and IL-17, and the combination of TNF-alpha and IL-1beta.

Conclusions: Gene expression studies of the RA synovium may be useful in the identification of early markers of response to TNF blockade. Genes significantly overexpressed at baseline in poor responders are induced by several cytokines in FLSs, thereby suggesting a role for these cytokines in the resistance to TNF blockade in RA.

Figures

Figure 1
Figure 1
Evolution of disease activity score (DAS) (three variables) in 25 individual rheumatoid arthritis patients before (T0) and 12 weeks after (T12) initiation of adalimumab therapy. Patients are categorized into (good or moderate) responders or non-responders according to European League Against Rheumatism criteria.
Figure 2
Figure 2
Changes in immunohistochemistry parameters in the synovial biopsies of severe rheumatoid arthritis patients. Biopsies were collected prior to (T0) (n = 25) and 12 weeks after (T12) (n = 25) initiation of adalimumab therapy. (a) Characteristic images of the stained markers (sublining C68, CD3, CD20, and CD15) (original magnification × 400). (b) Ratio of surface staining to staining of the nuclei (S/N). Slides stained for CD68, CD3, CD15, and CD20 were analyzed using ImageJ with six digitalized pictures (magnification × 400) obtained for each sample. Open boxes refer to all patients, and closed boxes refer to responders. Results are the mean and standard error of the mean of S/N ratio. *P < 0.05; **P < 0.005 versus good and moderate responders using Wilcoxon matched-pairs signed rank tests.
Figure 3
Figure 3
Genes differentially expressed before (T0) and 12 weeks after (T12) start of adalimumab in synovial biopsy specimens of rheumatoid arthritis patients who responded to therapy. Paired Student t tests indicated that 632 (out of 54,675) genes displayed significant differences in expression between T0 and T12 in six synovial tissue samples obtained from RA patients who responded to adalimumab therapy. Pathway analyses indicated that a significant percentage of these genes clustered into two distinct pathways: genes involved in the regulation of immune responses (a) and genes involved in cell division (b). Fold-change values are the mean level of decreased expression at T12 as compared with T0. (c) Real-time reverse transcriptase-polymerase chain reaction studies of the expression of selected genes in rheumatoid arthritis synovial biopsy tissue before (T0) (n = 10) and 12 weeks after (T12) (n = 8) initiation of adalimumab therapy. Samples were loaded in triplicate, and results are the mean and standard error of the mean of gene expression, relative to the mean gene expression in a standard sample normalized to 1. *P < 0.05. CCL5, chemokine ligand 5; CTLA4, cytotoxic T-lymphocyte-associated antigen 4; LTB, lymphotoxin beta.
Figure 4
Figure 4
Genes differentially expressed at baseline between poor versus moderate and good responders to adalimumab therapy. Five hundred twenty-four genes were found to be differentially expressed among good, moderate, and poor responders at baseline by analysis of variance (P < 0.05). Post hoc (Student-Newman-Keuls) tests were used to discriminate genes that were specifically upregulated (n = 411) or downregulated (n = 28) in poor responders as compared with the two other groups. Pathway analyses indicated that these genes were significantly enriched in genes involved in the regulation of immune responses (a) and genes involved in cell division (b).
Figure 5
Figure 5
Baseline immunostaining for selected synovial markers of response to adalimumab therapy. Synovial samples of rheumatoid arthritis patients who responded or who did not respond to adalimumab therapy were stained at baseline with polyclonal antibodies directed at MKI67, interleukin-7 receptor α chain (IL-7R), interleukin-18 receptor accessory (IL-18rap), IL-18, and chemokine (C-X-C motif) ligand 11 (CXCL11). (a) Characteristic images of the stained markers are shown in responders (n = 20) versus non-responders (n = 5) (original magnification × 400). (b) Ratio of surface staining to staining of the nuclei (S/N). Slides were analyzed using ImageJ with six digitalized pictures (magnification × 400) obtained for each sample. Results are the mean and standard error of the mean of S/N ratio. *P < 0.05, **P < 0.005, ***P < 0.0005 using Wilcoxon matched-pairs signed rank tests.
Figure 6
Figure 6
Genes overexpressed at baseline in poor responders are significantly induced by the combination of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) in fibroblast-like synovial cells (FLSs). FLSs were cultured overnight in the presence of TNF-α (10 ng/mL), IL-1β (10 ng/mL), IL-6 (10 ng/mL), IL-7 (100 ng/mL), IL-17 (50 ng/mL), or combinations of several of these cytokines. RNA was extracted and real-time reverse transcriptase-polymerase chain reaction evaluation of IL-7R, IL-6, INDO, CDC2, GTSE1, and MKI67 was evaluated in at least four different experiments. Results are expressed as the mean fold change in gene expression and standard error of the mean, relative to the mean gene expression of the baseline condition normalized to 1. *P < 0.05, **P < 0.005, ***P < 0.0005 using Wilcoxon signed rank tests.

References

    1. Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, Teoh LA, Fischkoff SA, Chartash EK. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 2003;48:35–45. doi: 10.1002/art.10697.
    1. Burmester GR, Mariette X, Montecucco C, Monteagudo-Saez I, Malaise M, Tzioufas AG, Bijlsma JW, Unnebrink K, Kary S, Kupper H. Adalimumab alone and in combination with disease-modifying antirheumatic drugs for the treatment of rheumatoid arthritis in clinical practice: the Research in Active Rheumatoid Arthritis (ReAct) trial. Ann Rheum Dis. 2007;66:732–739. doi: 10.1136/ard.2006.066761.
    1. Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, Jackson CG, Lange M, Burge DJ. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med. 1999;340:253–259. doi: 10.1056/NEJM199901283400401.
    1. Elliott MJ, Maini RN, Feldmann M, Kalden JR, Antoni C, Smolen JS, Leeb B, Breedveld FC, Macfarlane JD, Bijl H, Woody JN. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet. 1994;344:1105–1110. doi: 10.1016/S0140-6736(94)90628-9.
    1. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD, Antoni C, Leeb B, Elliott MJ, Woody JN, Schaible TF, Feldmann M. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 1998;41:1552–1563. doi: 10.1002/1529-0131(199809)41:9<1552::AID-ART5>;2-W.
    1. Ulfgren AK, Andersson U, Engstrom M, Klareskog L, Maini RN, Taylor PC. Systemic anti-tumor necrosis factor alpha therapy in rheumatoid arthritis down-regulates synovial tumor necrosis factor alpha synthesis. Arthritis Rheum. 2000;43:2391–2396. doi: 10.1002/1529-0131(200011)43:11<2391::AID-ANR3>;2-F.
    1. Barrera P, Joosten LA, den Broeder AA, Putte LB van de, van Riel PL, Berg WB van den. Effects of treatment with a fully human anti-tumour necrosis factor alpha monoclonal antibody on the local and systemic homeostasis of interleukin-1 and TNF-alpha in patients with rheumatoid arthritis. Ann Rheum Dis. 2001;60:660–669. doi: 10.1136/ard.60.7.660.
    1. Taylor PC, Peters AM, Paleolog E, Chapman PT, Elliott MJ, McCloskey R, Feldmann M, Maini RN. Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor alpha blockade in patients with rheumatoid arthritis. Arthritis Rheum. 2000;43:38–47. doi: 10.1002/1529-0131(200001)43:1<38::AID-ANR6>;2-L.
    1. Catrina AI, af Klint E, Ernestam S, Catrina SB, Makrygiannakis D, Botusan IR, Klareskog L, Ulfgren AK. Anti-tumor necrosis factor therapy increases synovial osteoprotegerin expression in rheumatoid arthritis. Arthritis Rheum. 2006;54:76–81. doi: 10.1002/art.21528.
    1. Ballara S, Taylor PC, Reusch P, Marme D, Feldmann M, Maini RN, Paleolog EM. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum. 2001;44:2055–2064. doi: 10.1002/1529-0131(200109)44:9<2055::AID-ART355>;2-2.
    1. Paleolog EM, Hunt M, Elliott MJ, Feldmann M, Maini RN, Woody JN. Deactivation of vascular endothelium by monoclonal anti-tumor necrosis factor alpha antibody in rheumatoid arthritis. Arthritis Rheum. 1996;39:1082–1091. doi: 10.1002/art.1780390703.
    1. Tak PP, Taylor PC, Breedveld FC, Smeets TJ, Daha MR, Kluin PM, Meinders AE, Maini RN. Decrease in cellularity and expression of adhesion molecules by anti-tumor necrosis factor alpha monoclonal antibody treatment in patients with rheumatoid arthritis. Arthritis Rheum. 1996;39:1077–1081. doi: 10.1002/art.1780390702.
    1. Smeets TJ, Kraan MC, van Loon ME, Tak PP. Tumor necrosis factor alpha blockade reduces the synovial cell infiltrate early after initiation of treatment, but apparently not by induction of apoptosis in synovial tissue. Arthritis Rheum. 2003;48:2155–2162. doi: 10.1002/art.11098.
    1. Catrina AI, Trollmo C, af Klint E, Engstrom M, Lampa J, Hermansson Y, Klareskog L, Ulfgren AK. Evidence that anti-tumor necrosis factor therapy with both etanercept and infliximab induces apoptosis in macrophages, but not lymphocytes, in rheumatoid arthritis joints: extended report. Arthritis Rheum. 2005;52:61–72. doi: 10.1002/art.20764.
    1. Catrina AI, Lampa J, Ernestam S, af Klint E, Bratt J, Klareskog L, Ulfgren AK. Anti-tumour necrosis factor (TNF)-alpha therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology (Oxford) 2002;41:484–489. doi: 10.1093/rheumatology/41.5.484.
    1. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, Medsger TA, Jr, Mitchell DM, Neustadt DH, Pinals RS, Schaller JG, Sharp JT, Wilder RL, Hunder GG. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–324. doi: 10.1002/art.1780310302.
    1. van Gestel AM, Prevoo ML, van 't Hof MA, van Rijswijk MH, Putte LB van de, van Riel PL. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis. Comparison with the preliminary American College of Rheumatology and the World Health Organization/International League Against Rheumatism Criteria. Arthritis Rheum. 1996;39:34–40. doi: 10.1002/art.1780390105.
    1. De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44:1928–1942. doi: 10.1002/1529-0131(200108)44:8<1928::AID-ART331>;2-P.
    1. Gene expression omnibus
    1. ImageJ: Image processing and analysis in Java
    1. Haringman JJ, Vinkenoog M, Gerlag DM, Smeets TJ, Zwinderman AH, Tak PP. Reliability of computerized image analysis for the evaluation of serial synovial biopsies in randomized controlled trials in rheumatoid arthritis. Arthritis Res Ther. 2005;7:R862–R867. doi: 10.1186/ar1757.
    1. TIGR Multiexperiment Viewer
    1. GOStat
    1. Beissbarth T, Speed TP. Gostat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics. 2004;20:1464–1465. doi: 10.1093/bioinformatics/bth088.
    1. DAVID
    1. Sekiguchi N, Kawauchi S, Furuya T, Inaba N, Matsuda K, Ando S, Ogasawara M, Aburatani H, Kameda H, Amano K, Abe T, Ito S, Takeuchi T. Messenger ribonucleic acid expression profile in peripheral blood cells from RA patients following treatment with an anti-TNF-alpha monoclonal antibody, infliximab. Rheumatology (Oxford) 2008;47:780–788. doi: 10.1093/rheumatology/ken083.
    1. Lequerré T, Gauthier-Jauneau AC, Bansard C, Derambure C, Hiron M, Vittecoq O, Daveau M, Mejjad O, Daragon A, Tron F, Le Loët X, Salier JP. Gene profiling in white blood cells predicts infliximab responsiveness in rheumatoid arthritis. Arthritis Res Ther. 2006;8:R105. doi: 10.1186/ar1924.
    1. Nzeusseu Toukap A, Galant C, Theate I, Maudoux AL, Lories RJ, Houssiau FA, Lauwerys BR. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum. 2007;56:1579–1588. doi: 10.1002/art.22578.
    1. Lindberg J, af Klint E, Catrina AI, Nilsson P, Klareskog L, Ulfgren AK, Lundeberg J. Effect of infliximab on mRNA expression profiles in synovial tissue of rheumatoid arthritis patients. Arthritis Res Ther. 2006;8:R179. doi: 10.1186/ar2090.
    1. Pouw Kraan TC van der, Wijbrandts CA, van Baarsen LG, Rustenburg F, Baggen JM, Verweij CL, Tak PP. Responsiveness to anti-tumour necrosis factor alpha therapy is related to pre-treatment tissue inflammation levels in rheumatoid arthritis patients. Ann Rheum Dis. 2008;67:563–566. doi: 10.1136/ard.2007.081950.
    1. Imamura F, Aono H, Hasunuma T, Sumida T, Tateishi H, Maruo S, Nishioka K. Monoclonal expansion of synoviocytes in rheumatoid arthritis. Arthritis Rheum. 1998;41:1979–1986. doi: 10.1002/1529-0131(199811)41:11<1979::AID-ART13>;2-C.
    1. Watanabe N, Ando K, Yoshida S, Inuzuka S, Kobayashi M, Matsui N, Okamoto T. Gene expression profile analysis of rheumatoid synovial fibroblast cultures revealing the overexpression of genes responsible for tumor-like growth of rheumatoid synovium. Biochem Biophys Res Commun. 2002;294:1121–1129. doi: 10.1016/S0006-291X(02)00608-3.
    1. Wijbrandts CA, Dijkgraaf MG, Kraan MC, Vinkenoog M, Smeets TJ, Dinant H, Vos K, Lems WF, Wolbink GJ, Sijpkens D, Dijkmans BA, Tak PP. The clinical response to infliximab in rheumatoid arthritis is in part dependent on pretreatment tumour necrosis factor alpha expression in the synovium. Ann Rheum Dis. 2008;67:1139–1144. doi: 10.1136/ard.2007.080440.
    1. Buch MH, Reece RJ, Quinn MA, English A, Cunnane G, Henshaw K, Bingham SJ, Bejarano V, Isaacs J, Emery P. The value of synovial cytokine expression in predicting the clinical response to TNF antagonist therapy (infliximab) Rheumatology (Oxford) 2008;47:1469–1475. doi: 10.1093/rheumatology/ken261.

Source: PubMed

3
Subskrybuj