Changes in the lung microbiome following lung transplantation include the emergence of two distinct Pseudomonas species with distinct clinical associations

Robert P Dickson, John R Erb-Downward, Christine M Freeman, Natalie Walker, Brittan S Scales, James M Beck, Fernando J Martinez, Jeffrey L Curtis, Vibha N Lama, Gary B Huffnagle, Robert P Dickson, John R Erb-Downward, Christine M Freeman, Natalie Walker, Brittan S Scales, James M Beck, Fernando J Martinez, Jeffrey L Curtis, Vibha N Lama, Gary B Huffnagle

Abstract

Background: Multiple independent culture-based studies have identified the presence of Pseudomonas aeruginosa in respiratory samples as a positive risk factor for bronchiolitis obliterans syndrome (BOS). Yet, culture-independent microbiological techniques have identified a negative association between Pseudomonas species and BOS. Our objective was to investigate whether there may be a unifying explanation for these apparently dichotomous results.

Methods: We performed bronchoscopies with bronchoalveolar lavage (BAL) on lung transplant recipients (46 procedures in 33 patients) and 26 non-transplant control subjects. We analyzed bacterial communities in the BAL fluid using qPCR and pyrosequencing of 16S rRNA gene amplicons and compared the culture-independent data with the clinical metadata and culture results from these subjects.

Findings: Route of bronchoscopy (via nose or via mouth) was not associated with changes in BAL microbiota (p = 0.90). Among the subjects with positive Pseudomonas bacterial culture, P. aeruginosa was also identified by culture-independent methods. In contrast, a distinct Pseudomonas species, P. fluorescens, was often identified in asymptomatic transplant subjects by pyrosequencing but not detected via standard bacterial culture. The subject populations harboring these two distinct pseudomonads differed significantly with respect to associated symptoms, BAL neutrophilia, bacterial DNA burden and microbial diversity. Despite notable differences in culturability, a global database search of UM Hospital Clinical Microbiology Laboratory records indicated that P. fluorescens is commonly isolated from respiratory specimens.

Interpretation: We have reported for the first time that two prominent and distinct Pseudomonas species (P. fluorescens and P. aeruginosa) exist within the post-transplant lung microbiome, each with unique genomic and microbiologic features and widely divergent clinical associations, including presence during acute infection.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. 16S rRNA gene qPCR of…
Figure 1. 16S rRNA gene qPCR of DNA prepared from unfractionated BAL samples.
The number of copies of bacterial 16S rRNA genes per 5's multiple comparisons test.
Figure 2. Comparison of transplant BAL specimens…
Figure 2. Comparison of transplant BAL specimens obtained via nasal and oral routes of bronchoscopy.
Unsupervised principal component analysis (PCA) labeled by route of bronchoscope insertion. Group dissimilarity tested using ANOVA permutation test of ordination constrained by route of insertion.
Figure 3. Ordination analyses of bacterial communities…
Figure 3. Ordination analyses of bacterial communities detected in BAL samples.
Unsupervised principal component analysis (PCA): labeled by specimen group (A) and with specimen group centroids labeled (B) C: Ordination constrained by specimen group (RDA). Group dissimilarity tested using ANOVA permutation test. D: Biplot analysis of PCA plot with prominent OTUs labeled.
Figure 4. Shannon Diversity Indices of bacterial…
Figure 4. Shannon Diversity Indices of bacterial communities in BAL samples from lung transplant recipients.
A-C: Comparison of bacterial community diversity by transplant status (A), specimen group (symptomatic/transplant status) (B) and antibiotic exposure (C). D-E: Bacterial community diversity correlated with BAL neutrophilia (D) and 16S DNA (E). F: Comparison of bacterial community diversity among transplant subjects by culture results. Comparison of group means performed with unpaired t-test and ANOVA with Tukey's multiple comparisons test. Continuous variables assessed for correlation with linear regression.
Figure 5. Taxonomic classification of the bacterial…
Figure 5. Taxonomic classification of the bacterial OTUs detected in BAL samples.
Families and OTUs are ranked in descending order of mean relative abundance among all subjects. Box plots are colored according to phylum (see Phyla legend). Outliers are plotted as circles. A: Relative abundance of the 10 most abundant bacterial families. B: Relative abundance of 20 most abundant bacterial OTUs.
Figure 6. Clinical comparison among lung transplant…
Figure 6. Clinical comparison among lung transplant recipients in relationship to two distinct Pseudomonas OTUs in BAL fluid.
P. aeruginosa refers to OTU 1065, and P. fluorescens refers to OTU 1025 (see text). A: Relative abundance of each OTU in transplant recipients with greater than 10% of either. B-E: Comparison of P. aeruginosa-prominent and P. fluorescens-prominent BAL specimens by BAL neutrophilia (B), bacterial DNA burden (C), bacterial community diversity (D) and culture results (E). F: Relative abundance of P. fluorescens among pre-defined subject groups. Comparison of group means performed using unpaired t-test and ANOVA with Tukey's multiple comparisons test. Contingency testing performed using Fisher's exact test.
Figure 7. In vivo associations between P.…
Figure 7. In vivo associations between P. fluorescens (OTU 1025) and other prominent bacteria: Prevotella (A) and Veillonella (B).
Group means compared using unpaired t-test.

References

    1. Dickson RP, Erb-Downward JR, Huffnagle GB (2013) The role of the bacterial microbiome in lung disease. Expert Rev Respir Med 7: 245–257.
    1. Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, et al. (2011) Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One 6: e16384.
    1. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, et al. (2010) Disordered microbial communities in asthmatic airways. PLoS One 5: e8578.
    1. Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, et al. (2012) Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci U S A109: 5809–5814.
    1. Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, et al. (2012) The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report-2012. J Heart Lung Transplant 31: 1073–1086.
    1. Botha P, Archer L, Anderson RL, Lordan J, Dark JH, et al. (2008) Pseudomonas aeruginosa colonization of the allograft after lung transplantation and the risk of bronchiolitis obliterans syndrome. Transplantation 85: 771–774.
    1. Husain S, Singh N (2002) Bronchiolitis obliterans and lung transplantation: evidence for an infectious etiology. Semin Respir Infect 17: 310–314.
    1. Khalifah AP, Hachem RR, Chakinala MM, Schechtman KB, Patterson GA, et al. (2004) Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death. Am J Respir Crit Care Med 170: 181–187.
    1. Duncan MD, Wilkes DS (2005) Transplant-related immunosuppression: a review of immunosuppression and pulmonary infections. Proc Am Thorac Soc 2: 449–455.
    1. Kotloff RM, Thabut G (2011) Lung transplantation. Am J Respir Crit Care Med 184: 159–171.
    1. Willner DL, Hugenholtz P, Yerkovich ST, Tan ME, Daly JN, et al... (2013) Re-Establishment of Recipient-Associated Microbiota in the Lung Allograft is Linked to Reduced Risk of Bronchiolitis Obliterans Syndrome. Am J Respir Crit Care Med.
    1. Vos R, Vanaudenaerde BM, Geudens N, Dupont LJ, Van Raemdonck DE, et al. (2008) Pseudomonal airway colonisation: risk factor for bronchiolitis obliterans syndrome after lung transplantation? Eur Respir J 31: 1037–1045.
    1. Gottlieb J, Mattner F, Weissbrodt H, Dierich M, Fuehner T, et al. (2009) Impact of graft colonization with gram-negative bacteria after lung transplantation on the development of bronchiolitis obliterans syndrome in recipients with cystic fibrosis. Respir Med 103: 743–749.
    1. Charlson ES, Diamond JM, Bittinger K, Fitzgerald AS, Yadav A, et al. (2012) Lung-enriched organisms and aberrant bacterial and fungal respiratory microbiota after lung transplant. Am J Respir Crit Care Med 186: 536–545.
    1. Borewicz K, Pragman AA, Kim HB, Hertz M, Wendt C, et al... (2012) Longitudinal Analysis of the Lung Microbiome in Lung Transplantation. FEMS Microbiol Lett.
    1. Lozupone C, Cota-Gomez A, Palmer BE, Linderman DJ, Charlson ES, et al... (2013) Widespread Colonization of the Lung by Tropheryma whipplei in HIV Infection. Am J Respir Crit Care Med.
    1. Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, et al. (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 187: 1067–1075.
    1. Estenne M, Maurer JR, Boehler A, Egan JJ, Frost A, et al. (2002) Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant21: 297–310.
    1. Mason KL, Erb DownwardJR, Mason KD, Falkowski NR, Eaton KA, et al. (2012) Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect Immun 80: 3371–3380.
    1. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, et al. (2011) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184: 957–963.
    1. Hill DA, Hoffmann C, Abt MC, Du Y, Kobuley D, et al. (2009) Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol 3: 148–158.
    1. Wilmotte A, Van der Auwera G, De Wachter R (1993) Structure of the 16 S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF ('Mastigocladus laminosus HTF') strain PCC7518, and phylogenetic analysis. FEBS Lett 317: 96–100.
    1. Jumpstart Consortium Human Microbiome Project Data Generation Working Group (2010) Human Microbiome Consortium 16S 454 Sequencing Protocol. 4.2.2 ed.
    1. Daigle D, Simen BB, Pochart P (2011) High-throughput sequencing of PCR products tagged with universal primers using 454 life sciences systems. Curr Protoc Mol Biol Chapter 7 : Unit7 5.
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537–7541.
    1. Spilker T, Coenye T, Vandamme P, LiPuma JJ (2004) PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 42: 2074–2079.
    1. Scarpellini M, Franzetti L, Galli A (2004) Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiol Lett 236: 257–260.
    1. Katoh K, Misawa K, Kuma Ki, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30: 3059–3066.
    1. Ingenito EP, Solway J, McFadden ER Jr, Pichurko B, Bowman HF, et al. (1987) Indirect assessment of mucosal surface temperatures in the airways: theory and tests. J Appl Physiol 63: 2075–2083.
    1. Bernstein DI, Lummus ZL, Santilli G, Siskosky J, Bernstein IL (1995) Machine operator's lung. A hypersensitivity pneumonitis disorder associated with exposure to metalworking fluid aerosols. Chest 108: 636–641.
    1. Bahrani-Mougeot FK, Paster BJ, Coleman S, Barbuto S, Brennan MT, et al. (2007) Molecular analysis of oral and respiratory bacterial species associated with ventilator-associated pneumonia. J Clin Microbiol 45: 1588–1593.
    1. Mulet M, Lalucat J, GarcíaValdés E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol12: 1513–1530.
    1. Loper JE, Hassan KA, Mavrodi DV, Davis II EW, Lim CK, et al. (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS genetics 8: e1002784.
    1. Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35: 652–680.
    1. Diaz PI, Hong BY, Frias-Lopez J, Dupuy AK, Angeloni M, et al. (2013) Transplantation-Associated Long-Term Immunosuppression Promotes Oral Colonization by Potentially Opportunistic Pathogens without Impacting Other Members of the Salivary Bacteriome. Clin Vaccine Immunol 20: 920–930.
    1. Patel SK, Pratap CB, Verma AK, Jain AK, Dixit VK, et al. (2013) Pseudomonas fluorescens-like bacteria from the stomach: A microbiological and molecular study. World J Gastroenterol 19: 1056–1067.
    1. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, et al. (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23: 873–878.
    1. Gershman MD, Kennedy DJ, Noble-Wang J, Kim C, Gullion J, et al. (2008) Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clin Infect Dis 47: 1372–1379.
    1. Mortensen JE, Fisher MC, LiPuma JJ (1995) Recovery of Pseudomonas cepacia and other Pseudomonas species from the environment. Infect Control Hosp Epidemiol: 30–32.
    1. Leung RK, Zhou JW, Guan W, Li SK, Yang ZF, et al... (2012) Modulation of potential respiratory pathogens by pH1N1 viral infection. Clin Microbiol Infect.
    1. Bossuyt X (2006) Serologic markers in inflammatory bowel disease. Clin Chem 52: 171–181.
    1. Wei B, Huang T, Dalwadi H, Sutton CL, Bruckner D, et al. (2002) Pseudomonas fluorescens encodes the Crohn's disease-associated I2 sequence and T-cell superantigen. Infect Immun 70: 6567–6575.
    1. Baader A, Garre C (1887) Über Antagonisten unter den Bacterien. Correspondenz-Blatt für Schweizer Ärzte 13: 385–392.
    1. Sutherland R, Boon R, Griffin K, Masters P, Slocombe B, et al. (1985) Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother 27: 495–498.
    1. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. (2008) A core gut microbiome in obese and lean twins. Nature 457: 480–484.
    1. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, et al. (2012) Human gut microbiome viewed across age and geography. Nature 486: 222–227.
    1. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486: 207–214.
    1. Twigg HL, Morris A, Ghedin E, Curtis JL, Huffnagle GB, et al. (2013) Use of bronchoalveolar lavage to assess the respiratory microbiome: signal in the noise. The Lancet Respiratory Medicine 1: 354–356.
    1. Don R, Cox P, Wainwright B, Baker K, Mattick J (1991) 'Touchdown'PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19: 4008.

Source: PubMed

3
Subskrybuj