Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients

Shawn G Rhind, Naomi T Crnko, Andrew J Baker, Laurie J Morrison, Pang N Shek, Sandro Scarpelini, Sandro B Rizoli, Shawn G Rhind, Naomi T Crnko, Andrew J Baker, Laurie J Morrison, Pang N Shek, Sandro Scarpelini, Sandro B Rizoli

Abstract

Background: Traumatic brain injury (TBI) initiates interrelated inflammatory and coagulation cascades characterized by wide-spread cellular activation, induction of leukocyte and endothelial cell adhesion molecules and release of soluble pro/antiinflammatory cytokines and thrombotic mediators. Resuscitative care is focused on optimizing cerebral perfusion and reducing secondary injury processes. Hypertonic saline is an effective osmotherapeutic agent for the treatment of intracranial hypertension and has immunomodulatory properties that may confer neuroprotection. This study examined the impact of hypertonic fluids on inflammatory/coagulation cascades in isolated head injury.

Methods: Using a prospective, randomized controlled trial we investigated the impact of prehospital resuscitation of severe TBI (GCS < 8) patients using 7.5% hypertonic saline in combination with 6% dextran-70 (HSD) vs 0.9% normal saline (NS), on selected cellular and soluble inflammatory/coagulation markers. Serial blood samples were drawn from 65 patients (30 HSD, 35 NS) at the time of hospital admission and at 12, 24, and 48-h post-resuscitation. Flow cytometry was used to analyze leukocyte cell-surface adhesion (CD62L, CD11b) and degranulation (CD63, CD66b) molecules. Circulating concentrations of soluble (s)L- and sE-selectins (sL-, sE-selectins), vascular and intercellular adhesion molecules (sVCAM-1, sICAM-1), pro/antiinflammatory cytokines [tumor necrosis factor (TNF)-alpha and interleukin (IL-10)], tissue factor (sTF), thrombomodulin (sTM) and D-dimers (D-D) were assessed by enzyme immunoassay. Twenty-five healthy subjects were studied as a control group.

Results: TBI provoked marked alterations in a majority of the inflammatory/coagulation markers assessed in all patients. Relative to control, NS patients showed up to a 2-fold higher surface expression of CD62L, CD11b and CD66b on polymorphonuclear neutrophils (PMNs) and monocytes that persisted for 48-h. HSD blunted the expression of these cell-surface activation/adhesion molecules at all time-points to levels approaching control values. Admission concentrations of endothelial-derived sVCAM-1 and sE-selectin were generally reduced in HSD patients. Circulating sL-selectin levels were significantly elevated at 12 and 48, but not 24 h post-resuscitation with HSD. TNF-alpha and IL-10 levels were elevated above control throughout the study period in all patients, but were reduced in HSD patients. Plasma sTF and D-D levels were also significantly lower in HSD patients, whereas sTM levels remained at control levels.

Conclusions: These findings support an important modulatory role of HSD resuscitation in attenuating the upregulation of leukocyte/endothelial cell proinflammatory/prothrombotic mediators, which may help ameliorate secondary brain injury after TBI.

Trial registration: NCT00878631.

Figures

Figure 1
Figure 1
Cell-surface expression of L-selectin (CD62L) and β2-integrin (CD11b) adhesion molecules on fresh peripheral blood monocytes (A-B) and polymorphonuclear neutrophils (PMNs; C-D) assessed by whole blood immunofluorescence flow cytometry. Results were expressed as mean fluorescence intensity (MFI ± SEM; bars) in arbitrary units (a.u.) and the percentage of receptor-positive cells (circles), which correlate with antibody cell surface density. Blood was sampled serially from severe TBI patients resuscitated with normal saline (NS, n = 13) vs hypertonic saline-dextran (HSD, n = 10), upon hospital admission (Adm) and 12, 24, and 48-h post-resuscitation, and from healthy controls (n = 25). *P < 0.05 vs age-matched healthy controls (n = 25); †P < 0.05 vs time-matched NS-treated patients by ANOVA.
Figure 2
Figure 2
Cell-surface expression of specific (CD66b; A) and azurophilic (CD63; B) granular proteins on fresh polymorphonuclear neutrophils (PMNs), assessed by whole blood immunofluorescence flow cytometry. Results were expressed as mean linear fluorescence intensity (MFI ± SEM; bars) in arbitrary units (a.u.) and the percentage of receptor-positive cells (circles). Blood was sampled serially from severe TBI patients resuscitated with normal saline (NS, n = 13) vs hypertonic saline-dextran (HSD, n = 10), upon hospital admission (Adm) and 12, 24, and 48-h post-resuscitation, and from healthy controls (n = 25). *P < 0.05 vs age-matched healthy controls (n = 25); †P < 0.05 vs time-matched NS-treated patients by ANOVA.
Figure 3
Figure 3
Serum concentrations (mean ± SEM, ng/mL) of soluble vascular cell adhesion molecule (sVCAM-1), intercellular adhesion molecule (sICAM-1), endothelial selectin (sE-selectin) and leukocyte selectin (L-selectin) in severe TBI patients resuscitated with normal saline (NS, n = 35) or hypertonic saline-dextran (HSD, n = 30) and healthy controls (n = 25). Blood was sampled serially upon hospital admission (Adm) and 12, 24, and 48-h post-resuscitation. *P < 0.05 vs age-matched healthy controls (n = 25); † P < 0.05 vs time-matched NS-treated patients by ANOVA.
Figure 4
Figure 4
Kinetics of serum concentrations (mean ± SEM, pg/mL) of pro- and anti-inflammatory cytokines TNF-α and IL-10 sampled serially in normal saline (NS, n = 35) and hypertonic saline-dextran (HSD, n = 30) resuscitated TBI patients, upon hospital admission (Adm), 12, 24, 48-h post-resuscitation. *P < 0.05 vs age-matched healthy controls (n = 25); †P < 0.05 vs time-matched NS-treated patients by ANOVA.
Figure 5
Figure 5
Plasma concentrations of tissue factor (sTF; A), thrombomodulin (sTM; B) and D-dimers (D-D; C) in TBI patients resuscitated with normal saline (NS, n = 30) or hypertonic saline-dextran (HSD, n = 25) at the time of hospital admission. *P < 0.05 vs age-matched healthy controls (n = 25); †P < 0.05 vs time-matched NS-treated patients by ANOVA.

References

    1. Cernak I, Noble-Haeusslein LJ. Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab. 2009. in press .
    1. Schmidt OI, Infanger M, Heyde CE, Ertel W, Stahel PF. The role of neuroinflammation in traumatic brain injury. Eur J Trauma. 2004;3:135–149.
    1. Stahel PF, Smith WR, Moore EE. Hypoxia and hypotension, the "lethal duo" in traumatic brain injury: implications for prehospital care. Intensive Care Med. 2008;34:402–404. doi: 10.1007/s00134-007-0889-3.
    1. Lu J, Goh SJ, Tng PY, Deng YY, Ling EA, Moochhala S. Systemic inflammatory response following acute traumatic brain injury. Front Biosci. 2009;14:3795–3813. doi: 10.2741/3489.
    1. Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T. Modulation of immune response by head injury. Injury. 2007;38:1392–1400. doi: 10.1016/j.injury.2007.10.005.
    1. Hammell CL, Henning JD. Prehospital management of severe traumatic brain injury. BMJ. 2009;338:b1683. doi: 10.1136/bmj.b1683.
    1. Adamides AA, Winter CD, Lewis PM, Cooper DJ, Kossmann T, Rosenfeld JV. Current controversies in the management of patients with severe traumatic brain injury. ANZ J Surg. 2006;76:163–174. doi: 10.1111/j.1445-2197.2006.03674.x.
    1. Menon DK. Unique challenges in clinical trials in traumatic brain injury. Crit Care Med. 2009;37:S129–135. doi: 10.1097/CCM.0b013e3181921225.
    1. Boomer L, Jones W, Davis B, Williams S, Barber A. Optimal Fluid Resuscitation: Timing and Composition of Intravenous Fluids. Surg Infect (Larchmt) 2009;10:379–87. doi: 10.1089/sur.2008.097.
    1. Oddo M, Levine JM, Frangos S, Carrera E, Maloney-Wilensky E, Pascual JL, Kofke WA, Mayer SA, LeRoux PD. Effect of mannitol and hypertonic saline on cerebral oxygenation in patients with severe traumatic brain injury and refractory intracranial hypertension. J Neurol Neurosurg Psychiatry. 2009;80:916–920. doi: 10.1136/jnnp.2008.156596.
    1. Strandvik GF. Hypertonic saline in critical care: a review of the literature and guidelines for use in hypotensive states and raised intracranial pressure. Anaesthesia. 2009;64:990–1003. doi: 10.1111/j.1365-2044.2009.05986.x.
    1. Bulger EM, Jurkovich GJ, Nathens AB, Copass MK, Hanson S, Cooper C, Liu PY, Neff M, Awan AB, Warner K, Maier RV. Hypertonic resuscitation of hypovolemic shock after blunt trauma: a randomized controlled trial. Arch Surg. 2008;143:139–148. doi: 10.1001/archsurg.2007.41. discussion 149.
    1. Pascual JL, Ferri LE, Seely AJ, Campisi G, Chaudhury P, Giannias B, Evans DC, Razek T, Michel RP, Christou NV. Hypertonic saline resuscitation of hemorrhagic shock diminishes neutrophil rolling and adherence to endothelium and reduces in vivo vascular leakage. Ann Surg. 2002;236:634–642. doi: 10.1097/00000658-200211000-00014.
    1. Rizoli SB, Rhind SG, Shek PN, Inaba K, Filips D, Tien H, Brenneman F, Rotstein O. The immunomodulatory effects of hypertonic saline resuscitation in patients sustaining traumatic hemorrhagic shock: a randomized, controlled, double-blinded trial. Ann Surg. 2006;243:47–57. doi: 10.1097/01.sla.0000193608.93127.b1.
    1. Summy-Long JY, Hu S. Peripheral osmotic stimulation inhibits the brain's innate immune response to microdialysis of acidic perfusion fluid adjacent to supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1532–1545.
    1. Elliott MB, Jallo JJ, Barbe MF, Tuma RF. Hypertonic saline attenuates tissue loss and astrocyte hypertrophy in a model of traumatic brain injury. Brain Res. 2009;1305:183–91. doi: 10.1016/j.brainres.2009.09.104. Epub 2009 Oct 3.
    1. Sell SL, Avila MA, Yu G, Vergara L, Prough DS, Grady JJ, DeWitt DS. Hypertonic resuscitation improves neuronal and behavioral outcomes after traumatic brain injury plus hemorrhage. Anesthesiology. 2008;108:873–881. doi: 10.1097/ALN.0b013e31816c8a15.
    1. Stein SC, Smith DH. Coagulopathy in traumatic brain injury. Neurocrit Care. 2004;1:479–488. doi: 10.1385/NCC:1:4:479.
    1. Lehnardt S. Innate immunity and neuroinflammation in the CNS: The role of microglia in Toll-like receptor-mediated neuronal injury. Glia. 2009;58:253–63.
    1. Balabanov R, Goldman H, Murphy S, Pellizon G, Owen C, Rafols J, Dore-Duffy P. Endothelial cell activation following moderate traumatic brain injury. Neurol Res. 2001;23:175–182. doi: 10.1179/016164101101198514.
    1. Bednar MM, Gross CE, Howard DB, Lynn M. Neutrophil activation in acute human central nervous system injury. Neurol Res. 1997;19:588–592.
    1. Carson MJ, Thrash JC, Walter B. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res. 2006;6:237–245. doi: 10.1016/j.cnr.2006.09.004.
    1. Kadhim HJ, Duchateau J, Sebire G. Cytokines and brain injury: invited review. J Intensive Care Med. 2008;23:236–249. doi: 10.1177/0885066608318458.
    1. Lee SJ, Benveniste EN. Adhesion molecule expression and regulation on cells of the central nervous system. J Neuroimmunol. 1999;98:77–88. doi: 10.1016/S0165-5728(99)00084-3.
    1. Soriano SG, Piva S. Central nervous system inflammation. Eur J Anaesthesiol Suppl. 2008;42:154–159. doi: 10.1017/S0265021507003390.
    1. Harhangi BS, Kompanje EJ, Leebeek FW, Maas AI. Coagulation disorders after traumatic brain injury. Acta Neurochir (Wien) 2008;150:165–175. doi: 10.1007/s00701-007-1475-8. discussion 175.
    1. Sriram K, O'Callaghan JP. Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol. 2007;2:140–153. doi: 10.1007/s11481-007-9070-6.
    1. Feuerstein GZ, Liu T, Barone FC. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev. 1994;6:341–360.
    1. Engelhardt B. Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines. J Neurol Sci. 2008;274:23–26. doi: 10.1016/j.jns.2008.05.019.
    1. McKeating EG, Andrews PJ. Cytokines and adhesion molecules in acute brain injury. Br J Anaesth. 1998;80:77–84.
    1. Langer HF, Chavakis T. Leukocyte-endothelial interactions in inflammation. J Cell Mol Med. 2009;13:1211–1220. doi: 10.1111/j.1582-4934.2009.00811.x.
    1. Scholz M, Cinatl J, Schadel-Hopfner M, Windolf J. Neutrophils and the blood-brain barrier dysfunction after trauma. Med Res Rev. 2007;27:401–416. doi: 10.1002/med.20064.
    1. Lacy P, Eitzen G. Control of granule exocytosis in neutrophils. Front Biosci. 2008;13:5559–5570. doi: 10.2741/3099.
    1. Nguyen HX, O'Barr TJ, Anderson AJ. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha. J Neurochem. 2007;102:900–912. doi: 10.1111/j.1471-4159.2007.04643.x.
    1. Yokota H, Naoe Y, Nakabayashi M, Unemoto K, Kushimoto S, Kurokawa A, Node Y, Yamamoto Y. Cerebral endothelial injury in severe head injury: the significance of measurements of serum thrombomodulin and the von Willebrand factor. J Neurotrauma. 2002;19:1007–1015. doi: 10.1089/089771502760341929.
    1. Levi M, Poll T van der, ten Cate H. Tissue factor in infection and severe inflammation. Semin Thromb Hemost. 2006;32:33–39. doi: 10.1055/s-2006-933338.
    1. Saggar V, Mittal RS, Vyas MC. Hemostatic Abnormalities in Patients with Closed Head Injuries and Their Role in Predicting Early Mortality. J Neurotrauma. 2009;26:1665–8. doi: 10.1089/neu.2008.0799.
    1. Gando S. Tissue factor in trauma and organ dysfunction. Semin Thromb Hemost. 2006;32:48–53. doi: 10.1055/s-2006-933340.
    1. Szotowski B, Antoniak S, Poller W, Schultheiss HP, Rauch U. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res. 2005;96:1233–1239. doi: 10.1161/01.RES.0000171805.24799.fa.
    1. Koutsi A, Papapanagiotou A, Papavassiliou AG. Thrombomodulin: from haemostasis to inflammation. Int J Biochem Cell Biol. 2008;40:1669–1673. doi: 10.1016/j.biocel.2007.06.024.
    1. Fisher M. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction. Rev Neurol Dis. 2008;5(Suppl 1):S4–11.
    1. Gearing AJ, Hemingway I, Pigott R, Hughes J, Rees AJ, Cashman SJ. Soluble forms of vascular adhesion molecules, E-selectin, ICAM-1, and VCAM-1: pathological significance. Ann N Y Acad Sci. 1992;667:324–331. doi: 10.1111/j.1749-6632.1992.tb51633.x.
    1. Esmon CT. Crosstalk between inflammation and thrombosis. Maturitas. 2008;61:122–131. doi: 10.1016/j.maturitas.2008.11.008.
    1. Baker AJ, Rhind SG, Morrison LJ, Black S, Crnko NT, Shek PN, Rizoli SB. Resuscitation with hypertonic saline-dextran reduces serum biomarker levels and correlates with outcome in severe traumatic brain injury patients. J Neurotrauma. 2009;26:1227–1240. doi: 10.1089/neu.2008.0868.
    1. Blyth BJ, Farhavar A, Gee C, Hawthorn B, He H, Nayak A, Stocklein V, Bazarian JJ. Validation of serum markers for blood-brain barrier disruption in traumatic brain injury. J Neurotrauma. 2009;26:1497–1507. doi: 10.1089/neu.2008.0738.
    1. Vajtr D, Benada O, Kukacka J, Prusa R, Houstava L, Toupalik P, Kizek R. Correlation of ultrastructural changes of endothelial cells and astrocytes occurring during blood brain barrier damage after traumatic brain injury with biochemical markers of BBB leakage and inflammatory response. Physiol Res. 2009;58:263–268.
    1. Morrison LJ, Rizoli SB, Schwartz B, Rhind SG, Simitciu M, Perreira T, Macdonald R, Trompeo A, Stuss DT, Black SE. The Toronto prehospital hypertonic resuscitation-head injury and multi organ dysfunction trial (TOPHR HIT)--methods and data collection tools. Trials. 2009;10:105. doi: 10.1186/1745-6215-10-105.
    1. Schmidt OI, Heyde CE, Ertel W, Stahel PF. Closed head injury--an inflammatory disease? Brain Res Brain Res Rev. 2005;48:388–399. doi: 10.1016/j.brainresrev.2004.12.028.
    1. Catania A, Lonati C, Sordi A, Gatti S. Detrimental consequences of brain injury on peripheral cells. Brain Behav Immun. 2009;23:877–84. doi: 10.1016/j.bbi.2009.04.006. Epub 2009 Apr 24.
    1. Lim HB, Smith M. Systemic complications after head injury: a clinical review. Anaesthesia. 2007;62:474–482. doi: 10.1111/j.1365-2044.2007.04998.x.
    1. Hartl R, Medary MB, Ruge M, Arfors KE, Ghahremani F, Ghajar J. Hypertonic/hyperoncotic saline attenuates microcirculatory disturbances after traumatic brain injury. J Trauma. 1997;42:S41–47. doi: 10.1097/00005373-199705001-00008.
    1. Scarpelini S, Rhind SG, Tien H, Spencer Netto AC, Leung KK, Rizoli SB. Effects of hypertonic saline on the development of acute lung injury following traumatic shock. Journal of Organ Dysfunction. 2008;4:99–105. doi: 10.1080/17471060801931260.
    1. Santucci CA, Purcell TB, Mejia C. Leukocytosis as a predictor of severe injury in blunt trauma. West J Emerg Med. 2008;9:81–85.
    1. Rovlias A, Kotsou S. The blood leukocyte count and its prognostic significance in severe head injury. Surg Neurol. 2001;55:190–196. doi: 10.1016/S0090-3019(01)00414-1.
    1. Schoettle RJ, Kochanek PM, Magargee MJ, Uhl MW, Nemoto EM. Early polymorphonuclear leukocyte accumulation correlates with the development of posttraumatic cerebral edema in rats. J Neurotrauma. 1990;7:207–217. doi: 10.1089/neu.1990.7.207.
    1. Zhuang J, Shackford SR, Schmoker JD, Anderson ML. The association of leukocytes with secondary brain injury. J Trauma. 1993;35:415–422. doi: 10.1097/00005373-199309000-00014.
    1. Maekawa K, Futami S, Nishida M, Terada T, Inagawa H, Suzuki S, Ono K. Effects of trauma and sepsis on soluble L-selectin and cell surface expression of L-selectin and CD11b. J Trauma. 1998;44:460–468. doi: 10.1097/00005373-199803000-00007.
    1. Ruchaud-Sparagano MH, Stocks SC, Turley H, Dransfield I. Activation of neutrophil function via CD66: differential effects upon beta 2 integrin mediated adhesion. Br J Haematol. 1997;98:612–620. doi: 10.1046/j.1365-2141.1997.2523070.x.
    1. Rhee P, Wang D, Ruff P, Austin B, DeBraux S, Wolcott K, Burris D, Ling G, Sun L. Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med. 2000;28:74–78. doi: 10.1097/00003246-200001000-00012.
    1. Thiel M, Buessecker F, Eberhardt K, Chouker A, Setzer F, Kreimeier U, Arfors KE, Peter K, Messmer K. Effects of hypertonic saline on expression of human polymorphonuclear leukocyte adhesion molecules. J Leukoc Biol. 2001;70:261–273.
    1. Alam HB, Sun L, Ruff P, Austin B, Burris D, Rhee P. E- and P-selectin expression depends on the resuscitation fluid used in hemorrhaged rats. J Surg Res. 2000;94:145–152. doi: 10.1006/jsre.2000.6011.
    1. Angle N, Hoyt DB, Cabello-Passini R, Herdon-Remelius C, Loomis W, Junger WG. Hypertonic saline resuscitation reduces neutrophil margination by suppressing neutrophil L selectin expression. J Trauma. 1998;45:7–12. doi: 10.1097/00005373-199807000-00002. discussion 12-13.
    1. Sibson NR, Blamire AM, Bernades-Silva M, Laurent S, Boutry S, Muller RN, Styles P, Anthony DC. MRI detection of early endothelial activation in brain inflammation. Magn Reson Med. 2004;51:248–252. doi: 10.1002/mrm.10723.
    1. Carlos TM, Clark RS, Franicola-Higgins D, Schiding JK, Kochanek PM. Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats. J Leukoc Biol. 1997;61:279–285.
    1. Bernardes-Silva M, Anthony DC, Issekutz AC, Perry VH. Recruitment of neutrophils across the blood-brain barrier: the role of E- and P-selectins. J Cereb Blood Flow Metab. 2001;21:1115–1124. doi: 10.1097/00004647-200109000-00009.
    1. Hess DC, Bhutwala T, Sheppard JC, Zhao W, Smith J. ICAM-1 expression on human brain microvascular endothelial cells. Neurosci Lett. 1994;168:201–204. doi: 10.1016/0304-3940(94)90450-2.
    1. Stanimirovic DB, Wong J, Shapiro A, Durkin JP. Increase in surface expression of ICAM-1, VCAM-1 and E-selectin in human cerebromicrovascular endothelial cells subjected to ischemia-like insults. Acta Neurochir Suppl. 1997;70:12–16.
    1. Royo NC, Wahl F, Stutzmann JM. Kinetics of polymorphonuclear neutrophil infiltration after a traumatic brain injury in rat. Neuroreport. 1999;10:1363–1367. doi: 10.1097/00001756-199904260-00038.
    1. D'Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor alpha signaling during peripheral organ inflammation. J Neurosci. 2009;29:2089–2102. doi: 10.1523/JNEUROSCI.3567-08.2009.
    1. Weaver KD, Branch CA, Hernandez L, Miller CH, Quattrocchi KB. Effect of leukocyte-endothelial adhesion antagonism on neutrophil migration and neurologic outcome after cortical trauma. J Trauma. 2000;48:1081–1090. doi: 10.1097/00005373-200006000-00014.
    1. Barone M, Jimenez DF, Huxley VH, Yang XF. Cerebral vascular response to hypertonic fluid resuscitation in thermal injury. Acta Neurochir Suppl. 1997;70:265–266.
    1. Giddings JC. Soluble adhesion molecules in inflammatory and vascular diseases. Biochem Soc Trans. 2005;33:406–408. doi: 10.1042/BST0330406.
    1. Mousa SA. Cell adhesion molecules potential therapeutic & diagnostic implications. Mol Biotechnol. 2008;38:33–40. doi: 10.1007/s12033-007-0072-7.
    1. McKeating EG, Andrews PJ, Mascia L. The relationship of soluble adhesion molecule concentrations in systemic and jugular venous serum to injury severity and outcome after traumatic brain injury. Anesth Analg. 1998;86:759–765. doi: 10.1097/00000539-199804000-00016.
    1. Siemiatkowski A, Rogowski F, Wereszczynska-Siemiatkowska U, Malinowska L, Borkowski J. Soluble selectin profiles associated with severe trauma. Arch Immunol Ther Exp (Warsz) 2001;49:317–324.
    1. Cowley HC, Heney D, Gearing AJ, Hemingway I, Webster NR. Increased circulating adhesion molecule concentrations in patients with the systemic inflammatory response syndrome: a prospective cohort study. Crit Care Med. 1994;22:651–657. doi: 10.1097/00003246-199404000-00022.
    1. McKeating EG, Andrews PJ, Mascia L. Leukocyte adhesion molecule profiles and outcome after traumatic brain injury. Acta Neurochir Suppl. 1998;71:200–202.
    1. Bing M, Zheng-lu H, Hui C, Xian D, Jian H. Variations of p38 MAPK and sICAM-1 with therapeutic effect of different resuscitation fluids on severe traumatic patients. Chin J Traumatol. 2007;10:263–268.
    1. Ferri LE, Chia S, Benay C, Giannias B, Christou NV. L-selectin shedding in sepsis limits leukocyte mediated microvascular injury at remote sites. Surgery. 2009;145:384–391. doi: 10.1016/j.surg.2008.12.011.
    1. Seekamp A, van Griensven M, Hildebrandt F, Brauer N, Jochum M, Martin M. The effect of trauma on neutrophil L-selectin expression and sL-selectin serum levels. Shock. 2001;15:254–260. doi: 10.1097/00024382-200115040-00002.
    1. Goodman JC, Robertson CS, Grossman RG, Narayan RK. Elevation of tumor necrosis factor in head injury. J Neuroimmunol. 1990;30:213–217. doi: 10.1016/0165-5728(90)90105-V.
    1. Maier B, Schwerdtfeger K, Mautes A, Holanda M, Muller M, Steudel WI, Marzi I. Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury. Shock. 2001;15:421–426. doi: 10.1097/00024382-200115060-00002.
    1. Kirchhoff C, Buhmann S, Bogner V, Stegmaier J, Leidel BA, Braunstein V, Mutschler W, Biberthaler P. Cerebrospinal IL-10 concentration is elevated in non-survivors as compared to survivors after severe traumatic brain injury. Eur J Med Res. 2008;13:464–468.
    1. Maskin B, Gammella D, Solari L, Videta W, Barboza MF, Geliz L, Rondina C. Early release of the antiinflammatory cytokine IL-10 in traumatic brain injury. Medicina (B Aires) 2001;61:573–576.
    1. Dietrich JB. The adhesion molecule ICAM-1 and its regulation in relation with the blood-brain barrier. J Neuroimmunol. 2002;128:58–68. doi: 10.1016/S0165-5728(02)00114-5.
    1. Laird MD, Vender JR, Dhandapani KM. Opposing roles for reactive astrocytes following traumatic brain injury. Neurosignals. 2008;16:154–164. doi: 10.1159/000111560.
    1. Cuschieri J, Gourlay D, Garcia I, Jelacic S, Maier RV. Hypertonic preconditioning inhibits macrophage responsiveness to endotoxin. J Immunol. 2002;168:1389–1396.
    1. Powers KA, Woo J, Khadaroo RG, Papia G, Kapus A, Rotstein OD. Hypertonic resuscitation of hemorrhagic shock upregulates the anti-inflammatory response by alveolar macrophages. Surgery. 2003;134:312–318. doi: 10.1067/msy.2003.246.
    1. Gushchin V, Stegalkina S, Alam HB, Kirkpatrick JR, Rhee PM, Koustova E. Cytokine expression profiling in human leukocytes after exposure to hypertonic and isotonic fluids. J Trauma. 2002;52:867–871. doi: 10.1097/00005373-200205000-00008.
    1. Hatanaka E, Shimomi FM, Curi R, Campa A. Sodium chloride inhibits cytokine production by lipopolysaccharide-stimulated human neutrophils and mononuclear cells. Shock. 2007;27:32–35. doi: 10.1097/01.shk.0000238061.69579.a5.
    1. Hirsh MI, Hashiguchi N, Junger WG. Hypertonic saline increases gammadeltaT cell-mediated killing of activated neutrophils. Crit Care Med. 2008;36:3220–3225. doi: 10.1097/CCM.0b013e31818f238e.
    1. Ke QH, Zheng SS, Liang TB, Xie HY, Xia WL. Pretreatment of hypertonic saline can increase endogenous interleukin 10 release to attenuate hepatic ischemia reperfusion injury. Dig Dis Sci. 2006;51:2257–2263. doi: 10.1007/s10620-006-9135-6.
    1. Oreopoulos GD, Bradwell S, Lu Z, Fan J, Khadaroo R, Marshall JC, Li YH, Rotstein OD. Synergistic induction of IL-10 by hypertonic saline solution and lipopolysaccharides in murine peritoneal macrophages. Surgery. 2001;130:157–165. doi: 10.1067/msy.2001.115829.
    1. Powers KA, Zurawska J, Szaszi K, Khadaroo RG, Kapus A, Rotstein OD. Hypertonic resuscitation of hemorrhagic shock prevents alveolar macrophage activation by preventing systemic oxidative stress due to gut ischemia/reperfusion. Surgery. 2005;137:66–74. doi: 10.1016/j.surg.2004.05.051.
    1. Csuka E, Morganti-Kossmann MC, Lenzlinger PM, Joller H, Trentz O, Kossmann T. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol. 1999;101:211–221. doi: 10.1016/S0165-5728(99)00148-4.
    1. Woiciechowsky C, Asadullah K, Nestler D, Eberhardt B, Platzer C, Schoning B, Glockner F, Lanksch WR, Volk HD, Docke WD. Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nat Med. 1998;4:808–813. doi: 10.1038/nm0798-808.
    1. Hess JR, Brohi K, Dutton RP, Hauser CJ, Holcomb JB, Kluger Y, Mackway-Jones K, Parr MJ, Rizoli SB, Yukioka T. The coagulopathy of trauma: a review of mechanisms. J Trauma. 2008;65:748–754. doi: 10.1097/TA.0b013e3181877a9c.
    1. Zehtabchi S, Soghoian S, Liu Y, Carmody K, Shah L, Whittaker B, Sinert R. The association of coagulopathy and traumatic brain injury in patients with isolated head injury. Resuscitation. 2008;76:52–56. doi: 10.1016/j.resuscitation.2007.06.024.
    1. Brummel-Ziedins K, Whelihan MF, Ziedins EG, Mann KG. The resuscitative fluid you choose may potentiate bleeding. J Trauma. 2006;61:1350–1358. doi: 10.1097/01.ta.0000235525.64176.01.
    1. Dubick MA, Bruttig SP, Wade CE. Issues of concern regarding the use of hypertonic/hyperoncotic fluid resuscitation of hemorrhagic hypotension. Shock. 2006;25:321–328. doi: 10.1097/00024382-200606001-00179.
    1. Reed RL, Johnston TD, Chen Y, Fischer RP. Hypertonic saline alters plasma clotting times and platelet aggregation. J Trauma. 1991;31:8–14. doi: 10.1097/00005373-199101000-00002.
    1. Hess JR, Dubick MA, Summary JJ, Bangal NR, Wade CE. The effects of 7.5% NaCl/6% dextran 70 on coagulation and platelet aggregation in humans. J Trauma. 1992;32:40–44. doi: 10.1097/00005373-199201000-00009.
    1. Tan TS, Tan KH, Ng HP, Loh MW. The effects of hypertonic saline solution (7.5%) on coagulation and fibrinolysis: an in vitro assessment using thromboelastography. Anaesthesia. 2002;57:644–648. doi: 10.1046/j.1365-2044.2002.02603.x.
    1. Wilder DM, Reid TJ, Bakaltcheva IB. Hypertonic resuscitation and blood coagulation: in vitro comparison of several hypertonic solutions for their action on platelets and plasma coagulation. Thromb Res. 2002;107:255–261. doi: 10.1016/S0049-3848(02)00335-3.
    1. Huang GS, Shih CM, Wu CC, Hu MH, Tsai CS, Liaw WJ, Chan SM, Li CY. Hypertonic Saline, Mannitol and Hydroxyethyl Starch Preconditioning of Platelets Obtained From Septic Patients Attenuates CD40 Ligand Expression In Vitro. J Trauma. 2009. in press .
    1. Wu XH, Shi XY, Gan JX, Lu XG, Jiang GY, Zhou JF. Dynamically monitoring tissue factor and tissue factor pathway inhibitor following secondary brain injury. Chin J Traumatol. 2003;6:114–117.
    1. Hagiwara S, Iwasaka H, Matsumoto S, Hasegawa A, Yasuda N, Noguchi T. In vivo and in vitro effects of the anticoagulant, thrombomodulin, on the inflammatory response in rodent models. Shock. 2009. in press .

Source: PubMed

3
Subskrybuj