General anesthetics protects against cardiac arrest-induced brain injury by inhibiting calcium wave propagation in zebrafish

Dao-Jie Xu, Bin Wang, Xuan Zhao, Yi Zheng, Jiu-Lin Du, Ying-Wei Wang, Dao-Jie Xu, Bin Wang, Xuan Zhao, Yi Zheng, Jiu-Lin Du, Ying-Wei Wang

Abstract

Cardiac arrest is a leading cause of death and disability worldwide. Although many victims are initially resuscitated, they often suffer from serious brain injury, even leading to a "persistent vegetative state". Therefore, it is need to explore therapies which restore and protect brain function after cardiac arrest. In the present study, using Tg (HuC:GCaMP5) zebrafish as a model, we found the zebrafish brain generated a burst of Ca2+ wave after cardiac arrest by in vivo time-lapse confocal imaging. The Ca2+ wave was firstly initiated at hindbrain and then sequentially propagated to midbrain and telencephalon, the neuron displayed Ca2+ overload after Ca2+ wave propagation. Consistent with this, our study further demonstrated neuronal apoptosis was increased in cardiac arrest zebrafish by TUNEL staining. The cardiac arrest-induced Ca2+ wave propagation can be prevented by general anesthetics such as midazolam or ketamine pretreatment. Moreover, midazolam or ketamine pretreatment dramatically decreased the neuronal apoptosis and improved the survival rate in CA zebrafish. Taken together, these findings provide the first in vivo evidence that general anesthetics pretreatment protects against cardiac arrest-induced brain injury by inhibiting calcium wave propagation in zebrafish.

Keywords: Brain injury; Ca2+ wave; Cardiac arrest; General anesthetics; Zebrafish.

Conflict of interest statement

Ethics approval

All experiments were performed under protocols approved by the Institutional Animal Care and Use Committee of the Institute of Neuroscience, Chinese Academy of Sciences, and Shanghai Jiaotong University.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Cardiac arrest causes a burst of calcium wave in brain. a Schematic showing the experimental scheme. b Schematic showing cardiac arrest (CA) model in zebrafish. A glass micropipette was used to press zebrafish heart (red) until the heart stop beating, neuronal activity was examined with in vivo time-lapse confocal imaging after CA. c Calcium activity of Tg (HuC:GCaMP5) transgenic zebrafish in different brain regions after CA (lateral view). ROI1 (red ellipses), ROI2 (green ellipses) and ROI3 (yellow ellipses) marked neuron in hindbrain, midbrain and telencephalon, respectively. Scale bar: 100 μm. d Calcium activity of three regions of interest in (c) at a higher time resolution. The arrows mark the onset of calcium activities in each region. e Time-lapse confocal images showing the lateral view of the brain in live Tg (HuC:GCaMP5) transgenic zebrafish in control and CA zebrafish at 7 day post-fertilization (dpf). 0 s indicating calcium wave onset. Scale bar: 100 μm. f The change in fluorescence intensity of neuron in midbrain in individual zebrafish during CA. g Occurrence probability of calcium waves in control and CA zebrafish (***P<0.001, chi-square test). h Quantification of the latency of CA to calcium wave generation in CA zebrafish. Numbers in the histograms represent the number of embryos analyzed in each group
Fig. 2
Fig. 2
Midazolam or ketamine pretreatment inhibits cardiac arrest-induced calcium wave propagation. a-d Time-lapse confocal images showing the lateral view of the brain in live Tg (HuC:GCaMP5) transgenic zebrafish in control (a), CA (b), CA + midazolam (0.5 mM)(c) and CA + ketamine (2.5 mM) pretreatment (d) zebrafish at 7 dpf. 0 s indicating calcium wave onset. MDZ, midazolam. Scale bar: 100 μm. e Occurrence probability of calcium waves in each group (***P<0.001, chi-square test). Numbers in the histograms represent the number of embryos analyzed in each group
Fig. 3
Fig. 3
Midazolam or ketamine pretreatment decreases the neuronal apoptosis after cardiac arrest. a-d TUNEL staining of control (a), CA (b), CA + midazolam (0.5 mM)(c) and CA + ketamine (2.5 mM) pretreatment (d) zebrafish at 7 dpf. Red, TUNEL staining, indicating the apoptotic cell; Blue, DAPI-stained nuclei. Scale bar: 10 μm. e Quantification of percentages of TUNEL positive cells in each group (mean ± s.e.m.; ***P<0.001, one-way ANOVA plus Newman–Keuls multiple comparison test). Numbers in the histograms represent the number of sections analyzed in each group
Fig. 4
Fig. 4
Midazolam or ketamine pretreatment improves survival and locomotor function after cardiac arrest. a Survival rate of zebrafish during 5-day follow-up after CA (**P<0.01, ***P<0.001 vs CA group, log-rank test). b Quantification of the spontaneous locomotor distance of 1 day post-CA zebrafish (mean ± s.e.m.; **P<0.01, ***P<0.001, ns, no significance, one-way ANOVA plus Newman–Keuls multiple comparison test). Numbers in the histograms represent the number of embryos analyzed in each group

References

    1. Stub D, Bernard S, Duffy SJ, Kaye DM. Post cardiac arrest syndrome: a review of therapeutic strategies. Circulation. 2011;123:1428–1435. doi: 10.1161/CIRCULATIONAHA.110.988725.
    1. Field JM, Hazinski MF, Sayre MR, Chameides L, Schexnayder SM, Hemphill R, Samson RA, Kattwinkel J, Berg RA, Bhanji F, et al. Part 1: executive summary: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S640–S656. doi: 10.1161/CIRCULATIONAHA.110.970889.
    1. Dezfulian C, Shiva S, Alekseyenko A, Pendyal A, Beiser DG, Munasinghe JP, Anderson SA, Chesley CF, Vanden Hoek TL, Gladwin MT. Nitrite therapy after cardiac arrest reduces reactive oxygen species generation, improves cardiac and neurological function, and enhances survival via reversible inhibition of mitochondrial complex I. Circulation. 2009;120:897–905. doi: 10.1161/CIRCULATIONAHA.109.853267.
    1. Nolan JP, Lyon RM, Sasson C, Rossetti AO, Lansky AJ, Fox KA, Meier P. Advances in the hospital management of patients following an out of hospital cardiac arrest. Heart. 2012;98:1201–1206. doi: 10.1136/heartjnl-2011-301293.
    1. Cherry BH, Nguyen AQ, Hollrah RA, Olivencia-Yurvati AH, Mallet RT. Modeling cardiac arrest and resuscitation in the domestic pig. World J Crit Care Med. 2015;4:1–12. doi: 10.5492/wjccm.v4.i1.1.
    1. Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30:2126–2128. doi: 10.1007/s00134-004-2425-z.
    1. Young GB. Clinical practice. Neurologic prognosis after cardiac arrest. N Engl J Med. 2009;361:605–611. doi: 10.1056/NEJMcp0903466.
    1. Adrie C, Laurent I, Monchi M, Cariou A, Dhainaou JF, Spaulding C. Postresuscitation disease after cardiac arrest: a sepsis-like syndrome? Curr Opin Crit Care. 2004;10:208–212. doi: 10.1097/01.ccx.0000126090.06275.fe.
    1. Hypothermia after Cardiac Arrest Study G Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–556. doi: 10.1056/NEJMoa012689.
    1. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–563. doi: 10.1056/NEJMoa003289.
    1. Lundbye JB, Rai M, Ramu B, Hosseini-Khalili A, Li D, Slim HB, Bhavnani SP, Nair SU, Kluger J. Therapeutic hypothermia is associated with improved neurologic outcome and survival in cardiac arrest survivors of non-shockable rhythms. Resuscitation. 2012;83:202–207. doi: 10.1016/j.resuscitation.2011.08.005.
    1. Testori C, Sterz F, Behringer W, Haugk M, Uray T, Zeiner A, Janata A, Arrich J, Holzer M, Losert H. Mild therapeutic hypothermia is associated with favourable outcome in patients after cardiac arrest with non-shockable rhythms. Resuscitation. 2011;82:1162–1167. doi: 10.1016/j.resuscitation.2011.05.022.
    1. Neumar RW. Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med. 2000;36:483–506. doi: 10.1016/S0196-0644(00)82028-4.
    1. Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Bottiger BW, Callaway C, Clark RS, Geocadin RG, Jauch EC, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the international liaison committee on resuscitation (American Heart Association, Australian and New Zealand council on resuscitation, European resuscitation council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, resuscitation Council of Asia, and the resuscitation Council of Southern Africa); the American Heart Association emergency cardiovascular care committee; the council on cardiovascular surgery and Anesthesia; the council on cardiopulmonary, Perioperative, and critical care; the council on clinical cardiology; and the stroke council. Circulation. 2008;118:2452–2483. doi: 10.1161/CIRCULATIONAHA.108.190652.
    1. Sharma HS, Miclescu A, Wiklund L. Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain. J Neural Transm (Vienna) 2011;118:87–114. doi: 10.1007/s00702-010-0486-4.
    1. Fujioka M, Taoka T, Matsuo Y, Mishima K, Ogoshi K, Kondo Y, Tsuda M, Fujiwara M, Asano T, Sakaki T, et al. Magnetic resonance imaging shows delayed ischemic striatal neurodegeneration. Ann Neurol. 2003;54:732–747. doi: 10.1002/ana.10751.
    1. Cramer SC. Repairing the human brain after stroke. I. Mechanisms of spontaneous recovery. Ann Neurol. 2008;63:272–287. doi: 10.1002/ana.21393.
    1. Cheng MY, Wang EH, Woodson WJ, Wang S, Sun G, Lee AG, Arac A, Fenno LE, Deisseroth K, Steinberg GK. Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc Natl Acad Sci U S A. 2014;111:12913–12918. doi: 10.1073/pnas.1404109111.
    1. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10:861–872. doi: 10.1038/nrn2735.
    1. Xu DJ, Bu JW, Gu SY, Xia YM, Du JL, Wang YW. Celecoxib impairs heart development via inhibiting cyclooxygenase-2 activity in zebrafish embryos. Anesthesiology. 2011;114:391–400. doi: 10.1097/ALN.0b013e3182039f22.
    1. Zhang RW, Li XQ, Kawakami K, Du JL. Stereotyped initiation of retinal waves by bipolar cells via presynaptic NMDA autoreceptors. Nat Commun. 2016;7:12650. doi: 10.1038/ncomms12650.
    1. Li Y, Du XF, Liu CS, Wen ZL, Du JL. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell. 2012;23:1189–1202. doi: 10.1016/j.devcel.2012.10.027.
    1. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderon NC, Esposti F, Borghuis BG, Sun XR, et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci. 2012;32:13819–13840. doi: 10.1523/JNEUROSCI.2601-12.2012.
    1. Wang Z, Wang Y, Tian X, Shen H, Dou Y, Li H, Chen G. Transient receptor potential channel 1/4 reduces subarachnoid hemorrhage-induced early brain injury in rats via calcineurin-mediated NMDAR and NFAT dephosphorylation. Sci Rep. 2016;6:33577. doi: 10.1038/srep33577.
    1. Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci. 2004;61:657–668. doi: 10.1007/s00018-003-3319-x.
    1. Cui D, Shang H, Zhang X, Jiang W, Jia X. Cardiac arrest triggers hippocampal neuronal death through autophagic and apoptotic pathways. Sci Rep. 2016;6:27642. doi: 10.1038/srep27642.
    1. Lebesgue D, Chevaleyre V, Zukin RS, Etgen AM. Estradiol rescues neurons from global ischemia-induced cell death: multiple cellular pathways of neuroprotection. Steroids. 2009;74:555–561. doi: 10.1016/j.steroids.2009.01.003.
    1. Muller TE, Nunes ME, Menezes CC, Marins AT, Leitemperger J, Gressler AC, Carvalho FB, de Freitas CM, Quadros VA, Fachinetto R et al. Sodium Selenite Prevents Paraquat-Induced Neurotoxicity in Zebrafish. Mol Neurobiol. 2017. doi:10.1007/s12035-017-0441-6.
    1. Liu X, Zhang Y, Lin J, Xia Q, Guo N, Li Q. Social preference deficits in juvenile Zebrafish induced by early chronic exposure to sodium Valproate. Front Behav Neurosci. 2016;10:201.
    1. Samson AJ, Robertson G, Zagnoni M, Connolly CN. Neuronal networks provide rapid neuroprotection against spreading toxicity. Sci Rep. 2016;6:33746. doi: 10.1038/srep33746.
    1. Zhou X, Hollern D, Liao J, Andrechek E, Wang H. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death Dis. 2013;4:e560. doi: 10.1038/cddis.2013.82.
    1. Luigetti M, Goldsberry GT, Cianfoni A. Brain MRI in global hypoxia-ischemia: a map of selective vulnerability. Acta Neurol Belg. 2012;112:105–107. doi: 10.1007/s13760-012-0007-3.
    1. Coburn C, Allman E, Mahanti P, Benedetto A, Cabreiro F, Pincus Z, Matthijssens F, Araiz C, Mandel A, Vlachos M, et al. Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C. Elegans. PLoS Biol. 2013;11:e1001613. doi: 10.1371/journal.pbio.1001613.
    1. Bickler PE, Warren DE, Clark JP, Gabatto P, Gregersen M, Brosnan H. Anesthetic protection of neurons injured by hypothermia and rewarming: roles of intracellular Ca2+ and excitotoxicity. Anesthesiology. 2012;117:280–292. doi: 10.1097/ALN.0b013e318260a7b9.
    1. Blanck TJ, Haile M, Xu F, Zhang J, Heerdt P, Veselis RA, Beckman J, Kang R, Adamo A, Hemmings H. Isoflurane pretreatment ameliorates postischemic neurologic dysfunction and preserves hippocampal Ca2+/calmodulin-dependent protein kinase in a canine cardiac arrest model. Anesthesiology. 2000;93:1285–1293. doi: 10.1097/00000542-200011000-00023.
    1. Bayona NA, Gelb AW, Jiang Z, Wilson JX, Urquhart BL, Cechetto DF. Propofol neuroprotection in cerebral ischemia and its effects on low-molecular-weight antioxidants and skilled motor tasks. Anesthesiology. 2004;100:1151–1159. doi: 10.1097/00000542-200405000-00017.
    1. Archer DP, Walker AM, McCann SK, Moser JJ, Appireddy RM. Anesthetic Neuroprotection in experimental stroke in rodents. A systematic review and meta-analysis. Anesthesiology. 2017;126:653–665. doi: 10.1097/ALN.0000000000001534.
    1. Oddo M, Crippa IA, Mehta S, Menon D, Payen JF, Taccone FS, Citerio G. Optimizing sedation in patients with acute brain injury. Crit Care. 2016;20:128. doi: 10.1186/s13054-016-1294-5.
    1. Roberts DJ, Hall RI, Kramer AH, Robertson HL, Gallagher CN, Zygun DA. Sedation for critically ill adults with severe traumatic brain injury: a systematic review of randomized controlled trials. Crit Care Med. 2011;39:2743–2751. doi: 10.1097/CCM.0b013e318228236f.
    1. Wang J, Cottrell JE, Kass IS. Effects of desflurane and propofol on electrophysiological parameters during and recovery after hypoxia in rat hippocampal slice CA1 pyramidal cells. Neuroscience. 2009;160:140–148. doi: 10.1016/j.neuroscience.2009.02.027.
    1. Bickler PE, Fahlman CS. Enhanced hypoxic preconditioning by isoflurane: signaling gene expression and requirement of intracellular Ca2+ and inositol triphosphate receptors. Brain Res. 2010;1340:86–95. doi: 10.1016/j.brainres.2010.04.059.
    1. Bickler PE, Warner DS, Stratmann G, Schuyler JA. Gamma-Aminobutyric acid-a receptors contribute to isoflurane neuroprotection in organotypic hippocampal cultures. Anesth Analg. 2003;97:564–571. doi: 10.1213/01.ANE.0000068880.82739.7B.
    1. Mott DD, Lewis DV. The pharmacology and function of central GABAB receptors. Int Rev Neurobiol. 1994;36:97–223. doi: 10.1016/S0074-7742(08)60304-9.
    1. Sigel E. Functional modulation of ligand-gated GABAA and NMDA receptor channels by phosphorylation. J Recept Signal Transduct Res. 1995;15:325–332. doi: 10.3109/10799899509045224.
    1. Constant AL, Montlahuc C, Grimaldi D, Pichon N, Mongardon N, Bordenave L, Soummer A, Sauneuf B, Ricome S, Misset B, et al. Predictors of functional outcome after intraoperative cardiac arrest. Anesthesiology. 2014;121:482–491. doi: 10.1097/ALN.0000000000000313.
    1. Goswami S, Brady JE, Jordan DA, Li G. Intraoperative cardiac arrests in adults undergoing noncardiac surgery: incidence, risk factors, and survival outcome. Anesthesiology. 2012;117:1018–1026. doi: 10.1097/ALN.0b013e31827005e9.
    1. Ahn C, Kim W, Cho Y, Choi KS, Jang BH, Lim TH. Efficacy of extracorporeal cardiopulmonary resuscitation compared to conventional cardiopulmonary resuscitation for adult cardiac arrest patients: a systematic review and meta-analysis. Sci Rep. 2016;6:34208. doi: 10.1038/srep34208.
    1. Sareddy GR, Zhang Q, Wang R, Scott E, Zou Y, O'Connor JC, Chen Y, Dong Y, Vadlamudi RK, Brann D. Proline-, glutamic acid-, and leucine-rich protein 1 mediates estrogen rapid signaling and neuroprotection in the brain. Proc Natl Acad Sci U S A. 2015;112:E6673–E6682. doi: 10.1073/pnas.1516729112.
    1. Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci. 2014;35:63–75. doi: 10.1016/j.tips.2013.12.002.
    1. Khan KM, Collier AD, Meshalkina DA, Kysil EV, Khatsko SL, Kolesnikova T, Morzherin YY, Warnick JE, Kalueff AV, Echevarria DJ. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol. 2017;174:1925–1944. doi: 10.1111/bph.13754.
    1. Orger MB, Portugues R. Correlating whole brain neural activity with behavior in head-fixed larval Zebrafish. Methods Mol Biol. 2016;1451:307–320. doi: 10.1007/978-1-4939-3771-4_21.
    1. Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis. 2010;40:46–57. doi: 10.1016/j.nbd.2010.05.010.
    1. Ackman JB, Burbridge TJ, Crair MC. Retinal waves coordinate patterned activity throughout the developing visual system. Nature. 2012;490:219–225. doi: 10.1038/nature11529.
    1. Santoro MM, Samuel T, Mitchell T, Reed JC, Stainier DY. Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis. Nat Genet. 2007;39:1397–1402. doi: 10.1038/ng.2007.8.
    1. Creton R. Automated analysis of behavior in zebrafish larvae. Behav Brain Res. 2009;203:127–136. doi: 10.1016/j.bbr.2009.04.030.

Source: PubMed

3
Subskrybuj