Acute Corticotropin-Releasing Factor Receptor Type 2 Agonism Results in Sustained Symptom Improvement in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Gerard Pereira, Hunter Gillies, Sanjay Chanda, Michael Corbett, Suzanne D Vernon, Tina Milani, Lucinda Bateman, Gerard Pereira, Hunter Gillies, Sanjay Chanda, Michael Corbett, Suzanne D Vernon, Tina Milani, Lucinda Bateman

Abstract

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multi-symptom disease with widespread evidence of disrupted systems. The authors hypothesize that it is caused by the upregulation of the corticotropin-releasing factor receptor type 2 (CRFR2) in the raphé nuclei and limbic system, which impairs the ability to maintain homeostasis. The authors propose utilizing agonist-mediated receptor endocytosis to downregulate CRFR2.

Materials and methods: This open-label trial tested the safety, tolerability and efficacy of an acute dose of CT38s (a short-lived, CRFR2-selective agonist, with no known off-target activity) in 14 ME/CFS patients. CT38s was subcutaneously-infused at one of four dose-levels (i.e., infusion rates of 0.01, 0.03, 0.06, and 0.20 μg/kg/h), for a maximum of 10.5 h. Effect was measured as the pre-/post-treatment change in the mean 28-day total daily symptom score (TDSS), which aggregated 13 individual patient-reported symptoms.

Results: ME/CFS patients were significantly more sensitive to the transient hemodynamic effects of CRFR2 stimulation than healthy subjects in a prior trial, supporting the hypothesized CRFR2 upregulation. Adverse events were generally mild, resolved without intervention, and difficult to distinguish from ME/CFS symptoms, supporting a CRFR2 role in the disease. The acute dose of CT38s was associated with an improvement in mean TDSS that was sustained (over at least 28 days post-treatment) and correlated with both total exposure and pre-treatment symptom severity. At an infusion rate of 0.03 μg/kg/h, mean TDSS improved by -7.5 ± 1.9 (or -25.7%, p = 0.009), with all monitored symptoms improving.

Conclusion: The trial supports the hypothesis that CRFR2 is upregulated in ME/CFS, and that acute CRFR2 agonism may be a viable treatment approach warranting further study.

Clinical trial registration: ClinicalTrials.gov, identifier NCT03613129.

Keywords: CRF2; ME/CFS; agonist-mediated receptor endocytosis; corticotropin-releasing factor receptor 2; homeostasis; myalgic encephalomyelitis chronic fatigue syndrome; serotonin.

Conflict of interest statement

GP, HG, SC, MC, and LB are shareholders of Cortene Inc., which owns the commercial rights to the drug being tested. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The authors declare that this study received funding from Cortene, Inc. The funder conceived of the idea to test CT38 in ME/CFS and was involved in the overall study design, protocol preparation, data analysis and writing the manuscript. The funder was not involved in recruiting patients, data collection or the conduct of the clinical trial.

Copyright © 2021 Pereira, Gillies, Chanda, Corbett, Vernon, Milani and Bateman.

Figures

FIGURE 1
FIGURE 1
Etiological hypothesis.
FIGURE 2
FIGURE 2
InTiME schema.
FIGURE 3
FIGURE 3
Patient disposition.
FIGURE 4
FIGURE 4
Effect of CT38 in healthy subjects (triangles, green line) and ME/CFS patients (circles, purple line), on the change from baseline in: mean maximum HR (HRmax) versus (A) mean Cmax or (B) mean AUC; and mean minimum dBP (dBPmin) versus (C) mean Cmax or (D) mean AUC; with relevant p-values (italics) from statistical comparisons by Kolmogorov-Smirnov test.
FIGURE 5
FIGURE 5
Effect of CT38 on the pre-/post-treatment change in the 28-day mean TDSS (bars), with standard deviations (error bars), by patient. All changes are statistically significant (p < 0.05), except ns (not significant).
FIGURE 6
FIGURE 6
Effect of CT38 on the pre-/post-treatment change in the 28-day means (bars), with standard deviations (error bars), of TDSS and individual symptoms scores, for CT38: (A) Cmax < 0.25 ng/ml; or (B) Cmax > 0.25 ng/ml, either improving (green) or worsening (purple) with relevant p-values (in italics). Note that scales for TDSS and individual symptoms are different.
FIGURE 7
FIGURE 7
Effect of CT38 total AUC on the patient-specific change in 28-day mean TDSS, with ρ = Pearson’s correlation coefficient, for CT38: (A) Cmax < 0.25 ng/ml (green), stratified by TDSSpre (moderate: large circles, dark line; mild: small circles, light line); or (B) Cmax > 0.25 ng/ml (purple).
FIGURE 8
FIGURE 8
Effect of CT38 on the means of pre-treatment (purple bars) and post-treatment (green bars), with standard deviations (error bars), of SF-36 physical component score (PCS) and SF-36 mental component score (MCS) for CT38: (A) Cmax < 0.25 ng/ml; and (B) Cmax > 0.25 ng/ml.
FIGURE 9
FIGURE 9
Effect of CT38 individual treatment AUC on mean TDSS pre-treatment (purple bar) and post successive treatments (green bars), with standard deviations (error bars) and the level of AUC delivered in each successive treatment, by patient.

References

    1. Alonge K. M., D’Alessio D. A., Schwartz M. W. (2021). Brain control of blood glucose levels: implications for the pathogenesis of type 2 diabetes. Diabetologia 64 5–14. 10.1007/s00125-020-05293-3
    1. Andrews P. W., Bharwani A., Lee K. R., Fox M., Thomson J. A. (2015). Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci. Biobehav. Rev. 51 164–188. 10.1016/j.neubiorev.2015.01.018
    1. Argilés J. M., Figueras M., Ametller E., Fuster G., Olivan M., de Oliveira C. C. F., et al. (2008). Effects of CRF2R agonist on tumor growth and cachexia in mice implanted with Lewis lung carcinoma cells. Muscle Nerve 37 190–195. 10.1002/mus.20899
    1. Armstrong C. W., McGregor N. R., Lewis D. P., Butt H. L., Gooley P. R. (2015). Metabolic profiling reveals anomalous energy metabolism and oxidative stress pathways in chronic fatigue syndrome patients. Metabolomics 11 1626–1639. 10.1007/s11306-015-0816-5
    1. Avery M. C., Krichmar J. L. (2017). Neuromodulatory systems and their interactions: a review of models, theories, and experiments. Front. Neural Circuits 11:108. 10.3389/fncir.2017.00108
    1. Bakheit A. M., Behan P. O., Dinan T. G., Gray C. E., O’Keane V. (1992). Possible upregulation of hypothalamic 5-hydroxytryptamine receptors in patients with postviral fatigue syndrome. BMJ 304 1010–1012. 10.1136/bmj.304.6833.1010
    1. Bangasser D. A. (2013). Sex differences in stress-related receptors: “micro” differences with “macro” implications for mood and anxiety disorders. Biol. Sex Differ. 4:2. 10.1186/2042-6410-4-2
    1. Bangasser D. A., Curtis A., Reyes B. A. S., Bethea T. T., Parastatidis I., Ischiropoulos H., et al. (2010). Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol. Psychiatry 15 896–904. 10.1038/mp.2010.66
    1. Bangasser D. A., Reyes B. A. S., Piel D., Garachh V., Zhang X.-Y., Plona Z. M., et al. (2013). Increased vulnerability of the brain norepinephrine system of females to corticotropin-releasing factor overexpression. Mol. Psychiatry 18 166–173. 10.1038/mp.2012.24
    1. Berg K. A., Clarke W. P. (2018). Making sense of pharmacology: inverse agonism and functional selectivity. Int. J. Neuropsychopharmacol. 21 962–977. 10.1093/ijnp/pyy071
    1. Berger M., Gray J. A., Roth B. L. (2009). The expanded biology of serotonin. Ann. Rev. Med. 60 355–366. 10.1146/annurev.med.60.042307.110802
    1. Berthoud H.-R., Neuhuber W. L. (2000). Functional and chemical anatomy of the afferent vagal system. Autonomic Neurosci. 85 1–17. 10.1016/S1566-0702(00)00215-0
    1. Black J. B., Premont R. T., Daaka Y. (2016). Feedback regulation of G protein-coupled receptor signaling by GRKs and arrestins. Seminars Cell Dev. Biol. 50 95–104. 10.1016/j.semcdb.2015.12.015
    1. Boneva R. S., Lin J.-M. S., Unger E. R. (2015). Early menopause and other gynecologic risk indicators for chronic fatigue syndrome in women. Menopause 22 826–834. 10.1097/GME.0000000000000411
    1. Borish L., Schmaling K., DiClementi J. D., Streib J., Negri J., Jones J. F. (1998). Chronic fatigue syndrome: Identification of distinct subgroups on the basis of allergy and psychologic variables. J. Allergy Clin. Immunol. 102 222–230. 10.1016/S0091-6749(98)70090-9
    1. Boulant J. A. (2000). Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin. Infect. Dis. 31 S157–S161. 10.1086/317521
    1. Chanes L., Barrett L. F. (2016). Redefining the role of limbic areas in cortical processing. Trends Cogn. Sci. 20 96–106. 10.1016/j.tics.2015.11.005
    1. Chang W., Kanda H., Ikeda R., Ling J., DeBerry J. J., Gu J. G. (2016). Merkel disc is a serotonergic synapse in the epidermis for transmitting tactile signals in mammals. Proc. Natl. Acad. Sci. U.S.A. 113 E5491–E5500. 10.1073/pnas.1610176113
    1. Charnay Y., Léger L. (2010). Brain serotonergic circuitries. Dial. Clin. Neurosci. 12 471–487. 10.31887/DCNS.2010.12.4/ycharnay
    1. Chen P., Hover C. V., Lindberg D., Li C. (2013). Central urocortin 3 and type 2 corticotropin-releasing factor receptor in the regulation of energy homeostasis: critical involvement of the ventromedial hypothalamus. Front. Endocrinol. 3:180. 10.3389/fendo.2012.00180
    1. Chia J. K. S., Chia A. Y. (2007). Chronic fatigue syndrome is associated with chronic enterovirus infection of the stomach. J. Clin. Pathol. 61 43–48. 10.1136/jcp.2007.050054
    1. Chu L., Valencia I. J., Garvert D. W., Montoya J. G. (2018). Deconstructing post-exertional malaise in myalgic encephalomyelitis/chronic fatigue syndrome: a patient-centered, cross-sectional survey. PLoS One 13:e0197811. 10.1371/journal.pone.0197811
    1. Chu L., Valencia I. J., Garvert D. W., Montoya J. G. (2019). Onset patterns and course of myalgic encephalomyelitis/chronic fatigue syndrome. Front. Pediatrics 7:12. 10.3389/fped.2019.00012
    1. Cleare A. J., Messa C., Rabiner E. A., Grasby P. M. (2005). Brain 5-HT1A receptor binding in chronic fatigue syndrome measured using positron emission tomography and [11C]WAY-100635. Biol. Psychiatry 57 239–246. 10.1016/j.biopsych.2004.10.031
    1. Dantzer R. (2018). Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol. Rev. 98 477–504. 10.1152/physrev.00039.2016
    1. Dedic N., Chen A., Deussing J. M. (2018). The CRF family of neuropeptides and their receptors - mediators of the central stress response. Curr. Mol. Pharmacol. 11 4–31. 10.2174/1874467210666170302104053
    1. Delhaye B. P., Long K. H., Bensmaia S. J. (2018). “Neural basis of touch and proprioception in primate cortex,” in Comprehensive Physiology, ed. Pollock D. M. (Hoboken, NJ: John Wiley & Sons, Inc; ), 1575–1602. 10.1002/cphy.c170033
    1. Deussing J. M., Chen A. (2018). The corticotropin-releasing factor family: physiology of the stress response. Physiol. Rev. 98 2225–2286. 10.1152/physrev.00042.2017
    1. Devendorf A. R., Brown A. A., Jason L. A. (2016). The role of infectious and stress-related onsets in myalgic encephalomyelitis and chronic fatigue syndrome symptomatology and functioning. DePaul Dis. 5:6.
    1. Dinan T. G., Majeed T., Lavelle E., Scott L. V., Berti C., Behan P. (1997). Blunted serotonin-mediated activation of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome. Psychoneuroendocrinology 22 261–267. 10.1016/S0306-4530(97)00002-4
    1. Donovan M. H., Tecott L. H. (2013). Serotonin and the regulation of mammalian energy balance. Neuroend. Sci. 7:36. 10.3389/fnins.2013.00036
    1. Dos Santos E. D., Da Silva A. V., Haemmerle K. R. T., Batagello C. A. S., Da Silva J. M., et al. (2015). The centrally projecting edinger–westphal nucleus—I: efferents in the rat brain. J. Chem. Neuroanatomy 68 22–38. 10.1016/j.jchemneu.2015.07.002
    1. Elharrar E., Warhaftig G., Issler O., Sztainberg Y., Dikshtein Y., Zahut R., et al. (2013). Overexpression of corticotropin-releasing factor receptor type 2 in the bed nucleus of stria terminalis improves posttraumatic stress disorder-like symptoms in a model of incubation of fear. Biol. Psychiatry 74 827–836. 10.1016/j.biopsych.2013.05.039
    1. Ferguson J. M. (2001). SSRI antidepressant medications: adverse effects and tolerability. Prim. Care Companion J. Clin. Psychiatry 3 22–27. 10.4088/pcc.v03n0105
    1. Flak J. N., Goforth P. B., Dell’Orco J., Sabatini P. V., Li C., Bozadjieva N., et al. (2020). Ventromedial hypothalamic nucleus neuronal subset regulates blood glucose independently of insulin. J. Clin. Investigation 130 2943–2952. 10.1172/JCI134135
    1. Furman D., Campisi J., Verdin E., Carrera-Bastos P., Targ S., Franceschi C., et al. (2019). Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25 1822–1832. 10.1038/s41591-019-0675-0
    1. Godoy L. D., Rossignoli M. T., Delfino-Pereira P., Garcia-Cairasco N., de Lima Umeoka E. H. (2018). A comprehensive overview on stress neurobiology: basic concepts and clinical implications. Front. Behav. Neurosci. 12:127. 10.3389/fnbeh.2018.00127
    1. Goertzel B. N., Pennachin C., de Souza Coelho L., Gurbaxani B., Maloney E. M., Jones J. F. (2006). Combinations of single nucleotide polymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue syndrome. Pharmacogenomics 7 475–483. 10.2217/14622416.7.3.475
    1. Gonzalez-Rey E., Chorny A., Varela N., O’Valle F., Delgado M. (2007). Therapeutic effect of urocortin on collagen-induced arthritis by down-regulation of inflammatory and Th1 responses and induction of regulatory T cells. Arthr. Rheumatism 56 531–543. 10.1002/art.22394
    1. Gonzalez-Rey E., Chorny A., Varela N., Robledo G., Delgado M. (2006a). Urocortin and adrenomedullin prevent lethal endotoxemia by down-regulating the inflammatory response. Am. J. Pathol. 168 1921–1930. 10.2353/ajpath.2006.051104
    1. Gonzalez-Rey E., Fernandez-Martin A., Chorny A., Delgado M. (2006b). Therapeutic effect of urocortin and adrenomedullin in a murine model of Crohn’s disease. Gut 55 824–832. 10.1136/gut.2005.084525
    1. Harris P. A., Taylor R., Minor B. L., Elliott V., Fernandez M., O’Neal L., et al. (2019). The REDCap consortium: building an international community of software platform partners. J. Biomed. Inform. 95:103208. 10.1016/j.jbi.2019.103208
    1. Harris P. A., Taylor R., Thielke R., Payne J., Gonzalez N., Conde J. G. (2009). Research electronic data capture (REDCap)a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42 377–381. 10.1016/j.jbi.2008.08.010
    1. Hauger R. L., Olivares-Reyes J. A., Braun S., Hernandez-Aranda J., Hudson C. C., Gutknecht E., et al. (2013). Desensitization of human CRF2(a) receptor signaling governed by agonist potency and βarrestin2 recruitment. Regul. Pept. 186 62–76. 10.1016/j.regpep.2013.06.009
    1. Heath T. P., Melichar J. K., Nutt D. J., Donaldson L. F. (2006). Human taste thresholds are modulated by serotonin and noradrenaline. J. Neurosci. 26 12664–12671. 10.1523/JNEUROSCI.3459-06.2006
    1. Heim C., Wagner D., Maloney E., Papanicolaou D. A., Solomon L., Jones J. F., et al. (2006). Early adverse experience and risk for chronic fatigue syndrome: results from a population-based study. Arch. Gen. Psychiatry 63 1258–1266. 10.1001/archpsyc.63.11.1258
    1. Hensler J. G. (2006). Serotonergic modulation of the limbic system. Neurosci. Biobehav. Rev. 30 203–214. 10.1016/j.neubiorev.2005.06.007
    1. Hilaire G., Voituron N., Menuet C., Ichiyama R. M., Subramanian H. H., Dutschmann M. (2010). The role of serotonin in respiratory function and dysfunction. Res. Physiol. Neurobiol. 174 76–88. 10.1016/j.resp.2010.08.017
    1. Howerton A. R., Roland A. V., Fluharty J. M., Marshall A., Chen A., Daniels D., et al. (2014). Sex differences in corticotropin-releasing factor receptor-1 action within the dorsal raphe nucleus in stress responsivity. Biol. Psychiatry 75 873–883. 10.1016/j.biopsych.2013.10.013
    1. Hurley L. M., Hall I. C. (2011). Context-dependent modulation of auditory processing by serotonin. Hear. Res. 279 74–84. 10.1016/j.heares.2010.12.015
    1. Hvidberg M. F., Brinth L. S., Olesen A. V., Petersen K. D., Ehlers L. (2015). The health-related quality of life for patients with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS). PLoS One 10:e0132421. 10.1371/journal.pone.0132421
    1. Jamieson P. M., Cleasby M. E., Kuperman Y., Morton N. M., Kelly P. A. T., Brownstein D. G., et al. (2011). Urocortin 3 transgenic mice exhibit a metabolically favourable phenotype resisting obesity and hyperglycaemia on a high-fat diet. Diabetologia 54 2392–2403. 10.1007/s00125-011-2205-6
    1. Kerr J. R., Mattey D. L. (2008). Preexisting psychological stress predicts acute and chronic fatigue and arthritis following symptomatic parvovirus B19 infection. Clin. Infect. Dis. 46 e83–e87. 10.1086/533471
    1. Kipnis J. (2018). Immune system: the “seventh sense.”. J. Exp. Med. 215 397–398. 10.1084/jem.20172295
    1. Kirby L. G., Freeman-Daniels E., Lemos J. C., Nunan J. D., Lamy C., Akanwa A., et al. (2008). Corticotropin-releasing factor increases GABA synaptic activity and induces inward current in 5-hydroxytryptamine dorsal raphe neurons. J. Neurosci. 28 12927–12937. 10.1523/JNEUROSCI.2887-08.2008
    1. Komaroff A. L. (2019). Advances in understanding the pathophysiology of chronic fatigue syndrome. JAMA 322 499–500. 10.1001/jama.2019.8312
    1. Kotas M. E., Medzhitov R. (2015). Homeostasis, inflammation, and disease susceptibility. Cell 160 816–827. 10.1016/j.cell.2015.02.010
    1. Lebow M., Neufeld-Cohen A., Kuperman Y., Tsoory M., Gil S., Chen A. (2012). Susceptibility to PTSD-like behavior is mediated by corticotropin-releasing factor receptor type 2 levels in the bed nucleus of the stria terminalis. J. Neurosci. 32 6906–6916. 10.1523/JNEUROSCI.4012-11.2012
    1. Lin M. T., Tsay H. J., Su W. H., Chueh F. Y. (1998). Changes in extracellular serotonin in rat hypothalamus affect thermoregulatory function. Am. J. Physiol. 274 R1260–R1267. 10.1152/ajpregu.1998.274.5.R1260
    1. Lukkes J. L., Forster G. L., Renner K. J., Summers C. H. (2008). Corticotropin-releasing factor 1 and 2 receptors in the dorsal raphe differentially affect serotonin release in the nucleus accumbens. Eur. J. Pharmacol. 578 185–193. 10.1016/j.ejphar.2007.09.024
    1. Lukkes J. L., Norman K. J., Meda S., Andersen S. L. (2016). Sex differences in the ontogeny of CRF receptors during adolescent development in the dorsal raphe nucleus and ventral tegmental area: Ontogeny of CRF receptors in DR and VTA. Synapse 70 125–132. 10.1002/syn.21882
    1. Lukkes J. L., Summers C. H., Scholl J. L., Renner K. J., Forster G. L. (2009). Early life social isolation alters corticotropin-releasing factor responses in adult rats. Neuroscience 158 845–855.
    1. Maloney E. M., Boneva R. S., Lin J.-M. S., Reeves W. C. (2010). Chronic fatigue syndrome is associated with metabolic syndrome: results from a case-control study in Georgia. Metabolism 59 1351–1357. 10.1016/j.metabol.2009.12.019
    1. Markovic D., Punn A., Lehnert H., Grammatopoulos D. K. (2008). Intracellular mechanisms regulating corticotropin-releasing hormone receptor-2β endocytosis and interaction with extracellularly regulated kinase 1/2 and p38 mitogen-activated protein kinase signaling cascades. Mol. Endocrinol. 22 689–706. 10.1210/me.2007-0136
    1. Markovic D., Punn A., Lehnert H., Grammatopoulos D. K. (2011). Molecular determinants and feedback circuits regulating type 2 CRH receptor signal integration. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 1813 896–907. 10.1016/j.bbamcr.2011.02.005
    1. Morris G., Berk M., Galecki P., Maes M. (2014). The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs). Mol. Neurobiol. 49 741–756. 10.1007/s12035-013-8553-0
    1. Nacul L., O’Boyle S., Palla L., Nacul F. E., Mudie K., Kingdon C. C., et al. (2020). How myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) progresses: the natural history of ME/CFS. Front. Neurol. 11:826. 10.3389/fneur.2020.00826
    1. Nakatomi Y., Mizuno K., Ishii A., Wada Y., Tanaka M., Tazawa S., et al. (2014). Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: an 11C-(R)-PK11195 PET study. J. Nucl. Med. 55 945–950. 10.2967/jnumed.113.131045
    1. Naschitz J. E., Yeshurun D., Rosner I. (2004). Dysautonomia in chronic fatigue syndrome: facts, hypotheses, implications. Med. Hypotheses 62 203–206. 10.1016/S0306-9877(03)00331-1
    1. Nater U. M., Maloney E., Heim C., Reeves W. C. (2011). Cumulative life stress in chronic fatigue syndrome. Psychiatry Res. 189 318–320. 10.1016/j.psychres.2011.07.015
    1. Neufeld-Cohen A., Kelly P. A. T., Paul E. D., Carter R. N., Skinner E., Olverman H. J., et al. (2012). Chronic activation of corticotropin-releasing factor type 2 receptors reveals a key role for 5-HT1A receptor responsiveness in mediating behavioral and serotonergic responses to stressful challenge. Biol. Psychiatry 72 437–447. 10.1016/j.biopsych.2012.05.005
    1. Newton J. L., Okonkwo O., Sutcliffe K., Seth A., Shin J., Jones D. E. J. (2007). Symptoms of autonomic dysfunction in chronic fatigue syndrome. QJM 100 519–526. 10.1093/qjmed/hcm057
    1. Nicolson G. L., Nasralla M. Y., De Meirleir K., Haier J. (2002). “Bacterial and viral co-infections in chronic fatigue syndrome (CFS/ME) patients,” in Proceeding of the Clinical and Scientific Conference on Myalgic Encephalopathy/Chronic Fatigue Syndrome, 1–12.
    1. Obara N., Kamiya H., Fukuda S. (2014). Serotonergic modulation of inhibitory synaptic transmission in mouse inferior colliculus. Biomed. Res. 35 81–84. 10.2220/biomedres.35.81
    1. Oliveira L. A., Almeida J., Benini R., Crestani C. C. (2015). CRF1 and CRF2 receptors in the bed nucleus of the stria terminalis modulate the cardiovascular responses to acute restraint stress in rats. Pharmacol. Res. 95–96 53–62. 10.1016/j.phrs.2015.03.012
    1. Pack T. F., Orlen M. I., Ray C., Peterson S. M., Caron M. G. (2018). The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation. J. Biol. Chem. 293 6161–6171. 10.1074/jbc.RA117.001300
    1. Paruthiyil S., Hagiwara S., Kundassery K., Bhargava A. (2018). Sexually dimorphic metabolic responses mediated by CRF2 receptor during nutritional stress in mice. Biol. Sex Differ. 9:49. 10.1186/s13293-018-0208-4
    1. Perrier J.-F., Cotel F. (2015). Serotonergic modulation of spinal motor control. Curr. Opin. Neurobiol. 33 1–7. 10.1016/j.conb.2014.12.008
    1. Perrier J.-F., Rasmussen H., Christensen R., Petersen A. (2013). Modulation of the intrinsic properties of motoneurons by serotonin. CPD 19 4371–4384. 10.2174/13816128113199990341
    1. Petzold G. C., Hagiwara A., Murthy V. N. (2009). Serotonergic modulation of odor input to the mammalian olfactory bulb. Nat. Neurosci. 12 784–791. 10.1038/nn.2335
    1. Pozo M., Claret M. (2018). Hypothalamic control of systemic glucose homeostasis: the pancreas connection. Trends Endocrinol. Metabolism 29 581–594. 10.1016/j.tem.2018.05.001
    1. Qi X., Shan Z., Ji Y., Guerra V., Alexander J. C., Ormerod B. K., et al. (2014). Sustained AAV-mediated overexpression of CRF in the central amygdala diminishes the depressive-like state associated with nicotine withdrawal. Transl. Psychiatry 4:e385. 10.1038/tp.2014.25
    1. Quintanar J. L., Guzmán-Soto I. (2013). Hypothalamic neurohormones and immune responses. Front. Integr. Neurosci. 7:56. 10.3389/fnint.2013.00056
    1. Reyes B. A. S., Bangasser D. A., Valentino R. J., Van Bockstaele E. J. (2014). Using high resolution imaging to determine trafficking of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus. Life Sci. 112 2–9. 10.1016/j.lfs.2014.07.017
    1. Reyes B. A. S., Valentino R. J., Van Bockstaele E. J. (2008). Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons. Endocrinology 149 122–130. 10.1210/en.2007-0705
    1. Roh E., Song D. K., Kim M.-S. (2016). Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp. Mol. Med. 48:e216. 10.1038/emm.2016.4
    1. Rozeske R. R., Evans A. K., Frank M. G., Watkins L. R., Lowry C. A., Maier S. F. (2011). Uncontrollable, but not controllable, stress desensitizes 5-HT1A receptors in the dorsal raphe nucleus. J. Neurosci. 31 14107–14115. 10.1523/JNEUROSCI.3095-11.2011
    1. Ruiz-Núñez B., Tarasse R., Vogelaar E. F., Janneke Dijck-Brouwer D. A., Muskiet F. A. J. (2018). Higher prevalence of “low T3 syndrome” in patients with chronic fatigue syndrome: a case–control study. Front. Endocrinol. 9:97. 10.3389/fendo.2018.00097
    1. Sananbenesi F., Fischer A., Schrick C., Spiess J., Radulovic J. (2003). Mitogen-activated protein kinase signaling in the hippocampus and its modulation by corticotropin-releasing factor receptor 2: a possible link between stress and fear memory. J. Neurosci. 23 11436–11443. 10.1523/jneurosci.23-36-11436.2003
    1. Sharpe M., Hawton K., Clements A., Cowen P. J. (1997). Increased brain serotonin function in men with chronic fatigue syndrome. BMJ 315 164–165. 10.1136/bmj.315.7101.164
    1. Shimegi S., Kimura A., Sato A., Aoyama C., Mizuyama R., Tsunoda K., et al. (2016). Cholinergic and serotonergic modulation of visual information processing in monkey V1. J. Physiol. Paris 110 44–51. 10.1016/j.jphysparis.2016.09.001
    1. Silverman M. N., Pearce B. D., Biron C. A., Miller A. H. (2005). Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral. Immunol. 18 41–78. 10.1089/vim.2005.18.41
    1. Soto-Tinoco E., Guerrero-Vargas N. N., Buijs R. M. (2016). Interaction between the hypothalamus and the immune system: Hypothalamus-immune system interaction. Exp. Physiol. 101 1463–1471. 10.1113/EP085560
    1. Straus S., Dale J., Wright R., Metcalfe D. (1988). Allergy and the chronic fatigue syndrome. J. Allergy Clin. Immunol. 81 791–795. 10.1016/0091-6749(88)90933-5
    1. Sundman E., Olofsson P. S. (2014). Neural control of the immune system. Adv. Physiol. Educ. 38 135–139. 10.1152/advan.00094.2013
    1. Tups A., Benzler J., Sergi D., Ladyman S. R., Williams L. M. (2017). “Central regulation of glucose homeostasis,” in Comprehensive Physiology, ed. Terjung R. (Hoboken, NJ: John Wiley & Sons, Inc; ), 741–764. 10.1002/cphy.c160015
    1. van Campen C. L. M. C., Rowe P. C., Verheugt F. W. A., Visser F. C. (2021). Numeric rating scales show prolonged post-exertional symptoms after orthostatic testing of adults with myalgic encephalomyelitis/chronic fatigue syndrome. Front. Med. 7:602894. 10.3389/fmed.2020.602894
    1. Venkatasubramanian S., Griffiths M. E., McLean S. G., Miller M. R., Luo R., Lang N. N., et al. (2013). Vascular effects of urocortins 2 and 3 in healthy volunteers. J. Am. Heart. Assoc. 2:e004267. 10.1161/JAHA.112.004267
    1. Wagner D., Nisenbaum R., Heim C., Jones J. F., Unger E. R., Reeves W. C. (2005). Psychometric properties of the CDC symptom inventory for assessment of chronic fatigue syndrome. Population Health Metrics 3:8. 10.1186/1478-7954-3-8
    1. Ware J. E., Kosinski M., Keller S. D. (1994). SF-36 Physical and Mental Health Summary Scales: A User’s Manual. Available online at: .
    1. Waselus M., Nazzaro C., Valentino R. J., Van Bockstaele E. J. (2009). Stress-induced redistribution of corticotropin-releasing factor receptor subtypes in the dorsal raphe nucleus. Biol. Psychiatry 66 76–83. 10.1016/j.biopsych.2009.02.014
    1. Waselus M., Valentino R. J., Van Bockstaele E. J. (2005). Ultrastructural evidence for a role of γ-aminobutyric acid in mediating the effects of corticotropin-releasing factor on the rat dorsal raphe serotonin system. J. Comp. Neurol. 482 155–165. 10.1002/cne.20360
    1. Waselus M., Valentino R. J., Van Bockstaele E. J. (2011). Collateralized dorsal raphe nucleus projections: a mechanism for the integration of diverse functions during stress. J. Chem. Neuroanat. 41 266–280. 10.1016/j.jchemneu.2011.05.011
    1. Weathington J. M., Hamki A., Cooke B. M. (2014). Sex- and region-specific pubertal maturation of the corticotropin-releasing factor receptor system in the rat: pubertal maturation of the forebrain crf. J. Comp. Neurol. 522 1284–1298. 10.1002/cne.23475
    1. Wood S. K., Zhang X.-Y., Reyes B. A. S., Lee C. S., Van Bockstaele E. J., Valentino R. J. (2013). Cellular adaptations of dorsal raphe serotonin neurons associated with the development of active coping in response to social stress. Biol. Psychiatry 73 1087–1094. 10.1016/j.biopsych.2013.01.026

Source: PubMed

3
Subskrybuj