Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6

Sophie Tezenas du Montcel, Alexandra Durr, Maria Rakowicz, Lorenzo Nanetti, Perrine Charles, Anna Sulek, Caterina Mariotti, Rafal Rola, Ludger Schols, Peter Bauer, Isabelle Dufaure-Garé, Heike Jacobi, Sylvie Forlani, Tanja Schmitz-Hübsch, Alessandro Filla, Dagmar Timmann, Bart P van de Warrenburg, Cecila Marelli, Jun-Suk Kang, Paola Giunti, Arron Cook, Laszlo Baliko, Béla Melegh, Sylvia Boesch, Sandra Szymanski, José Berciano, Jon Infante, Katrin Buerk, Marcella Masciullo, Roberto Di Fabio, Chantal Depondt, Susanne Ratka, Giovanni Stevanin, Thomas Klockgether, Alexis Brice, Jean-Louis Golmard, Sophie Tezenas du Montcel, Alexandra Durr, Maria Rakowicz, Lorenzo Nanetti, Perrine Charles, Anna Sulek, Caterina Mariotti, Rafal Rola, Ludger Schols, Peter Bauer, Isabelle Dufaure-Garé, Heike Jacobi, Sylvie Forlani, Tanja Schmitz-Hübsch, Alessandro Filla, Dagmar Timmann, Bart P van de Warrenburg, Cecila Marelli, Jun-Suk Kang, Paola Giunti, Arron Cook, Laszlo Baliko, Béla Melegh, Sylvia Boesch, Sandra Szymanski, José Berciano, Jon Infante, Katrin Buerk, Marcella Masciullo, Roberto Di Fabio, Chantal Depondt, Susanne Ratka, Giovanni Stevanin, Thomas Klockgether, Alexis Brice, Jean-Louis Golmard

Abstract

Background: The most common spinocerebellar ataxias (SCA)--SCA1, SCA2, SCA3, and SCA6--are caused by (CAG)n repeat expansion. While the number of repeats of the coding (CAG)n expansions is correlated with the age at onset, there are no appropriate models that include both affected and preclinical carriers allowing for the prediction of age at onset.

Methods: We combined data from two major European cohorts of SCA1, SCA2, SCA3, and SCA6 mutation carriers: 1187 affected individuals from the EUROSCA registry and 123 preclinical individuals from the RISCA cohort. For each SCA genotype, a regression model was fitted using a log-normal distribution for age at onset with the repeat length of the alleles as covariates. From these models, we calculated expected age at onset from birth and conditionally that this age is greater than the current age.

Results: For SCA2 and SCA3 genotypes, the expanded allele was a significant predictor of age at onset (-0.105±0.005 and -0.056±0.003) while for SCA1 and SCA6 genotypes both the size of the expanded and normal alleles were significant (expanded: -0.049±0.002 and -0.090±0.009, respectively; normal: +0.013±0.005 and -0.029±0.010, respectively). According to the model, we indicated the median values (90% critical region) and the expectancy (SD) of the predicted age at onset for each SCA genotype according to the CAG repeat size and current age.

Conclusions: These estimations can be valuable in clinical and research. However, results need to be confirmed in other independent cohorts and in future longitudinal studies.

Clinicaltrialsgov, number: NCT01037777 and NCT00136630 for the French patients.

Keywords: Movement disorders (other than Parkinsons).

Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

Figures

Figure 1
Figure 1
Conditional probability density function of age at onset for different current ages (CA) (t). The figures are drawn for SCA2 data with a repeat number of the expanded allele of 37 for an individual at birth (solid), or at a current age of 30 (medium dash), 40 (short dash) or 45 (short dash dot). Based on a log linear parametric model, the estimation of the mean age at onset from birth was 43 years (γG: 3.7428,: 0.2516) (vertical dashed line). As the distribution is log-normal the mode is neither the mean nor the median. SCA, spinocerebellar ataxias.
Figure 2
Figure 2
Median age at onset according to the genotype and the current age of the presymptomatic individual. (A) SCA1 genotype, (B) SCA2 genotype, (C) SCA3 genotype, (D) SCA6 genotype. For all panels, the x axis is the number of repeats for the expanded alleles, and the y axis the estimated age at onset. For SCA1 and SCA6 genotypes, each sub-panel representing different repeats numbers of the shorter allele are depicted. Curves are plotted from birth and for an individual of 25/30/35/40/45 years old. SCA, spinocerebellar ataxias.

References

    1. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 2010;9:885–94
    1. Ikeda Y, Daughters RS, Ranum LP. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum 2008;7:150–8
    1. Van de Warrenburg BP, Hendriks H, Durr A, van Zuijlen MC, Stevanin G, Camuzat A, Sinke RJ, Brice A, Kremer BP. Age at onset variance analysis in spinocerebellar ataxias: a study in a Dutch-French cohort. Ann Neurol 2005;57:505–12
    1. Globas C, du Montcel ST, Baliko L, Boesch S, Depondt C, DiDonato S, Durr A, Filla A, Klockgether T, Mariotti C, Melegh B, Rakowicz M, Ribai P, Rola R, Schmitz-Hubsch T, Szymanski S, Timmann D, Van de Warrenburg BP, Bauer P, Schols L. Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord 2008;23:2232–8
    1. Stevanin G, Durr A, Brice A. Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet 2000;8:4–18
    1. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR. A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clin Genet 2004;65:267–77
    1. Langbehn DR, Hayden MR, Paulsen JS. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet 2010;153B:397–408
    1. Paulsen JS, Langbehn DR, Stout JC, Aylward E, Ross CA, Nance M, Guttman M, Johnson S, MacDonald M, Beglinger LJ, Duff K, Kayson E, Biglan K, Shoulson I, Oakes D, Hayden M. Detection of Huntington's disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry 2008;79:874–80
    1. Almaguer-Mederos LE, Falcon NS, Almira YR, Zaldivar YG, Almarales DC, Gongora EM, Herrera MP, Batallan KE, Arminan RR, Manresa MV, Cruz GS, Laffita-Mesa J, Cyuz TM, Chang V, Auburger G, Gispert S, Perez LV. Estimation of the age at onset in spinocerebellar ataxia type 2 Cuban patients by survival analysis. Clin Genet 2010;78:169–74
    1. Jacobi H, Reetz K, du Montcel ST, Bauer P, Mariotti C, Nanetti L, Rakowicz M, Sulek A, Durr A, Charles P, Filla A, Antenora A, Schols L, Schicks J, Infante J, Kang JS, Timmann D, Fabio RD, Masciullo M, Baliko L, Melegh B, Boesch S, Burk K, Peltz A, Schulz JB, Dufaure-Gare I, Klockgether T. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol 2013;12:650–8
    1. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schols L, Szymanski S, van de Warrenburg BP, Durr A, Klockgether T, Fancellu R. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006;66:1717–20
    1. Stevanin G, Dürr A, Brice A. Spinocerebellar ataxias caused by polyglutamine expansions. Adv Exp Med Biol 2002;516:47–77
    1. Durr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, Chneiweiss H, Benomar A, Lyon-Caen O, Julien J, Serdaru M, Penet C, Agid Y, Brice A. Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol 1996;39:490–9
    1. Wexler NS, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E, Marder K, Penchaszadeh G, Roberts SA, Gayán J, Brocklebank D, Cherny SS, Cardon LR, Gray J, Dlouhy SR, Wiktorski S, Hodes ME, Conneally PM, Penney JB, Gusella J, Cha J-H, Irizarry M, Rosas D, Hersch S, Hollingsworth Z, MacDonald M, Young AB, Andresen JM, Housman DE, De Young MM, Bonilla E, Stillings T, Negrette A, Snodgrass SR, Martinez-Jaurrieta MD, Ramos-Arroyo MA, Bickham J, Ramos JS, Marshall F, Shoulson I, Rey GJ, Feigin A, Arnheim N, Acevedo-Cruz A, Acosta L, Alvir J, Fischbeck K, Thompson LM, Young A, Dure L, O'Brien CJ, Paulsen J, Brickman A, Krch D, Peery S, Hogarth P, Higgins DS, Jr, Landwehrmeyer B, U.S.-Venezuela Collaborative Research Project. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proc Natl Acad Sci USA 2004;101:3498–503
    1. Gargiulo M, Jutras M, Tezenas du Montcel S, Benaich S, Herson A, Feingold J, Durr A. Does Presymptomatic testing influences Age at Onset in a Negative manner (PAON): follow up of at risk persons for Huntington disease. Presented at the European Society Human genetics, Paris, France, 2013

Source: PubMed

3
Subskrybuj