Cross-frequency coupling of brain oscillations in studying motivation and emotion

Dennis J L G Schutter, Gennady G Knyazev, Dennis J L G Schutter, Gennady G Knyazev

Abstract

Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the electrophysiological processes associated with motivation and emotional states. Studies will be presented showing that amplitude-amplitude coupling between delta-alpha and delta-beta oscillations varies as a function of state anxiety and approach-avoidance-related motivation, and that changes in the association between delta-beta oscillations can be observed following successful psychotherapy. Together these studies suggest that cross-frequency coupling of brain oscillations may contribute to expanding our understanding of the neural processes underlying motivation and emotion.

References

    1. Alper KR, Gunther W, Prichep LS, John ER, Brodie J. Correlation of qEEG with PET in schizophrenia. Neuropsychobiology. 1998;38:50–56. doi: 10.1159/000026516.
    1. Alper KR, John ER, Brodie J, Günther W, Daruwala R, Prichep LS. Correlation of PET and qEEG in normal subjects. Psychiatry Research. 2006;146:271–282. doi: 10.1016/j.pscychresns.2005.06.008.
    1. Alper, K. R., Prichep, L. S., John, E. R., Kowalik, S., & Merkin, H. (1995). QEEG in cocaine withdrawal: Possible neurophysiological implications regarding the generation of slow EEG activity. 6th International Congress of the International Society for Brain Electromagnetic Topography (ISBET., Tokushima, Japan, Abstract No S-2-G.
    1. Basar E. Brain function and oscillations. II. Integrative brain function. Neurophysiology and cognitive processes. Berlin: Springer; 1999.
    1. Basar E. The theory of the whole-brain-work. International Journal of Psychophysiology. 2006;60:133–138. doi: 10.1016/j.ijpsycho.2005.12.007.
    1. Berger H. Über das elecktroenzephalogramm des menschen I. Archive Psychiatrie (Nervenkrankheiten) 1929;87:527–570. doi: 10.1007/BF01797193.
    1. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–1929. doi: 10.1126/science.1099745.
    1. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313:1626–1628. doi: 10.1126/science.1128115.
    1. Cantero JL, Atienza M. The role of neural synchronization in the emergence of cognition across the wake-sleep cycle. Reviews in the Neurosciences. 2005;16:69–83. doi: 10.1515/REVNEURO.2005.16.1.69.
    1. Chrobak JJ, Buzsaki G. Gamma oscillations in the entorhinal cortex of the freely behaving rat. Journal of Neuroscience. 1998;18:388–398.
    1. Darvas F, Miller KJ, Rao RPN, Ojemann JG. Nonlinear phase–phase cross-frequency coupling mediates communication between distant sites in human neocortex. Journal of Neuroscience. 2009;29:426–435. doi: 10.1523/JNEUROSCI.3688-08.2009.
    1. Demiralp T, Bayraktaroglu Z, Lenz D, Junge S, Busch NA, Maess B, et al. Gamma amplitudes are coupled to theta phase in human EEG during visual perception. International Journal of Psychophysiology. 2007;64:24–30. doi: 10.1016/j.ijpsycho.2006.07.005.
    1. Duffy E. Activation and behavior. New York: Wiley; 1962.
    1. Gray A. The neuropsychology of anxiety: An enquiry into the septo-hippocampal system. Oxford: University Press; 1982.
    1. Guyton AC. Organ physiology: Structure and function of the nervous system. London: W. B. Saunders; 1976.
    1. Handel B, Haarmeier T. Cross-frequency coupling of brain oscillations indicates the success in visual motion discrimination. Neuroimage. 2009;45:1040–1046. doi: 10.1016/j.neuroimage.2008.12.013.
    1. Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Sciences. 2007;11:267–269. doi: 10.1016/j.tics.2007.05.003.
    1. Jensen O, Goel P, Kopell N, Pohja M, Hari R, Ermentrout B. On the human sensorimotor-cortex beta rhythm: Sources and modeling. Neuroimage. 2005;26:347–355. doi: 10.1016/j.neuroimage.2005.02.008.
    1. Kalin, N. H., Larson, C., Shelton, S. E., & Davidson, R. J. (1998). Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behavioral Neuroscience, 112, 286–292.
    1. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews. 1999;29:169–195. doi: 10.1016/S0165-0173(98)00056-3.
    1. Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience and Biobehavioral Reviews. 2007;31:377–395. doi: 10.1016/j.neubiorev.2006.10.004.
    1. Knyazev, G. G. (2011). Cross-frequency coupling of brain oscillations: An impact of state anxiety. International Journal of Psychophysiology, 80, 236–245.
    1. Knyazev GG, Savostyanov AN, Levin EA. Uncertainty, anxiety and brain oscillations. Neuroscience Letters. 2005;387:121–125. doi: 10.1016/j.neulet.2005.06.016.
    1. Knyazev GG, Schutter DJLG, van Honk J. Anxious apprehension increases coupling of delta and beta oscillations. International Journal Psychophysiology. 2006;61:283–287. doi: 10.1016/j.ijpsycho.2005.12.003.
    1. Knyazev GG, Slobodskaya HR. Personality trait of behavioral inhibition is associated with oscillatory systems reciprocal relationships. International Journal Psychophysiology. 2003;48:247–261. doi: 10.1016/S0167-8760(03)00072-2.
    1. Knyazev GG, Slobodskaya HR, Safronova MV, Sorokin OV, Goodman R, Wilson GD. Personality, psychopathology and brain oscillations. Personality and Individual Differences. 2003;35:1331–1349. doi: 10.1016/S0191-8869(02)00353-7.
    1. Knyazev GG, Slobodskaya HR, Wilson GD. Personality and brain oscillations: Developmental aspects. In: Shohov SP, editor. Advances in psychology research. New York: Nova Science Publishers; 2004. pp. 3–34.
    1. Knyazev GG, Slobodskoj-Plusnin JY. Behavioural approach system as a moderator of emotional arousal elicited by reward and punishment cues. Personality and Individual Differences. 2007;42:49–59. doi: 10.1016/j.paid.2006.06.020.
    1. Leung LS, Yim CY. Rhythmic delta-frequency activities in the nucleus accumbens of anesthetized and freely moving rats. Canadian Journal of Physiology and Pharmacology. 1993;71:311–320. doi: 10.1139/y93-049.
    1. MacLean PD. The triune brain and evolution. New York: Plenum Press; 1990.
    1. Michel CM, Henggeler B, Brandeis D, Lehmann D. Localization of sources of brain alpha/theta/delta activity and the influence of the mode of spontaneous mentation. Physiological Measures. 1993;14:21–26. doi: 10.1088/0967-3334/14/4A/004.
    1. Michel CM, Lehmann D, Henggeler B, Brandeis D. Localization of the sources EEG delta, theta, alpha and beta frequency bands using the FFT dipole approximation. Electroencephalography and Clinical Neurophysiology. 1992;82:38–44. doi: 10.1016/0013-4694(92)90180-P.
    1. Miskovic V, Ashbaugh AR, Santesso DL, McCabe RE, Antony MM, Schmidt LA. Frontal brain oscillations and social anxiety: A cross-frequency spectral analysis during baseline and speech anticipation. Biological Psychology. 2010;83:125–132. doi: 10.1016/j.biopsycho.2009.11.010.
    1. Miskovic, V., Campbell, M. J., Santesso, D. L., van Ameringen, M., Mancini, C., & Schmidt, L. A. (2010a). Frontal brain oscillatory coupling in children of parents with social phobia: A pilot study. Journal of Neuropsychiatry and Clinical Neurosciences, 23, 111–114.
    1. Miskovic, V., Moscovitch, D. A., McCabe, R. E., Antony, M. M., & Schmidt, L. A. (2011). Changes in EEG cross-frequency coupling during cognitive behavioral therapy for social anxiety disorder. Psychological Science, 22, 507–516.
    1. Miskovic, V., Moscovitch, D. A., Senn, J., McCabe, R. E., Antony, M. M., & Schmidt, L. A. (2009). Neural correlates of cognitive behavioral therapy in social anxiety disorder: Evidence from frontal brain oscillatory coupling [Abstract]. Society for Neuroscience Abstracts.
    1. Miskovic V, Schmidt LA. Frontal brain oscillatory coupling among men who vary in salivary testosterone levels. Neuroscience Letters. 2009;464:239–242. doi: 10.1016/j.neulet.2009.08.059.
    1. Niedermeyer E, Lopes da Silva F. Electroencephalography: Basic principles, clinical applications and related fields. fourth edition. Baltimore: Lippincott Williams & Wilkins; 1999.
    1. Nunez PL. Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behavioral and Brain Sciences. 2000;23:371–398. doi: 10.1017/S0140525X00003253.
    1. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JD. Rethinking feelings: An fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience. 2002;14:1215–1229. doi: 10.1162/089892902760807212.
    1. Palva JM, Palva S, Kaila K. Phase synchrony among neuronal oscillations in the human cortex. Journal of Neuroscience. 2005;25:3962–3972. doi: 10.1523/JNEUROSCI.4250-04.2005.
    1. Putman P. Resting state EEG delta-beta coherence in relation to anxiety, behavioral inhibition, and selective attentional processing of threatening stimuli. International Journal of Psychophysiology. 2011;80:63–68. doi: 10.1016/j.ijpsycho.2011.01.011.
    1. Robinson DL. Properties of the diffuse thalamocortical system and human personality: A direct test of Pavlovian/Eysenckian theory. Personality and Individual Differences. 1982;3:1–16. doi: 10.1016/0191-8869(82)90069-1.
    1. Robinson DL. The technical, neurological and psychological significance of ‘alpha’, ‘delta’ and ‘theta’ waves confounded in EEG evoked potentials: A study of peak latencies. Clinical Neurophysiology. 1999;110:1427–1434. doi: 10.1016/S1388-2457(99)00078-4.
    1. Robinson DL. The technical, neurological and psychological significance of ‘alpha’, ‘delta’ and ‘theta’ waves confounded in EEG evoked potentials: A study of peak amplitudes. Personality and Individual Differences. 2000;28:673–693. doi: 10.1016/S0191-8869(99)00130-0.
    1. Robinson DL. How brain arousal systems determine different temperament types and the major dimensions of personality. Personality and Individual Differences. 2001;31:1233–1259. doi: 10.1016/S0191-8869(00)00211-7.
    1. Salinas E, Sejnowski TJ. Correlated neuronal activity and the flow of neural information. Nature Review Neuroscience. 2001;2:539–550. doi: 10.1038/35086012.
    1. Schack B, Vath N, Petsche H, Geissler HG, Moller E. Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. International Journal of Psychophysiology. 2002;44:143–163. doi: 10.1016/S0167-8760(01)00199-4.
    1. Schack B, Weiss S. Quantification of phase synchronization phenomena and their importance for verbal memory processes. Biological Cybernetics. 2005;92:275–287. doi: 10.1007/s00422-005-0555-1.
    1. Schutter, D. J. L. G. (2011). Reduced within subject delta-beta cross-frequency coupling is associated with higher physical aggression. Unpublished data.
    1. Schutter DJLG, Leitner C, Kenenmans JL, van Honk J. Electrophysiological correlates of cortico–subcortical interaction: A cross-frequency spectral EEG analysis. Clinical Neurophysiology. 2006;117:381–387. doi: 10.1016/j.clinph.2005.09.021.
    1. Schutter DJLG, van Honk J. Decoupling of midfrontal delta-beta oscillations after testosterone administration. International Journal of Psychophysiology. 2004;53:71–73. doi: 10.1016/j.ijpsycho.2003.12.012.
    1. Schutter DJLG, van Honk J. Salivary cortisol levels and the coupling of midfrontal delta-beta oscillations. International Journal of Psychophysiology. 2005;55:127–129. doi: 10.1016/j.ijpsycho.2004.07.003.
    1. Singer W. Neuronal synchrony: A versatile code for the definition of relations? Neuron. 1999;24:49–65. doi: 10.1016/S0896-6273(00)80821-1.
    1. Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund HJ. Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Physics Review Letters. 1998;81:3291–3294. doi: 10.1103/PhysRevLett.81.3291.
    1. Thayer RE. The biopsychology of mood and arousal. New York: Oxford University Press; 1989.
    1. van Honk J, Schutter DJLG, Hermans EJ, Putman P, Tuiten A, Koppeschaar H. Testosterone shifts the balance between sensitivity for punishment and reward in healthy young women. Psychoneuroendocrinology. 2004;29:937–943. doi: 10.1016/j.psyneuen.2003.08.007.
    1. van Peer JM, Roelofs K, Spinhoven P. Cortisol administration enhances the coupling of midfrontal delta and beta oscillations. International Journal of Psychophysiology. 2008;67:144–150. doi: 10.1016/j.ijpsycho.2007.11.001.
    1. van Wingen G, Mattern C, Verkes RJ, Buitelaar J, Fernández G. Testosterone reduces amygdala-orbitofrontal cortex coupling. Psychoneuroendocrinology. 2010;35:105–113. doi: 10.1016/j.psyneuen.2009.09.007.
    1. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience. 2001;2:229–239. doi: 10.1038/35067550.
    1. Velikova S, Locatelli M, Chiara Insacco C, Smeraldi E, Comi G, Leocani L. Dysfunctional brain circuitry in obsessive–compulsive disorder: Source and coherence analysis of EEG rhythms. Neuroimage. 2010;49:977–983. doi: 10.1016/j.neuroimage.2009.08.015.
    1. Viau V. Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. Journal of Neuroendocrinology. 2002;14:506–513. doi: 10.1046/j.1365-2826.2002.00798.x.
    1. Volkow ND, Gomez-Mont F, Inamdar S. Multivariate analyses of the EEG in normal adolescents. Biological Psychiatry. 1987;22:199–204. doi: 10.1016/0006-3223(87)90231-9.
    1. Wacker J, Dillon DG, Pizzagalli DA. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques. Neuroimage. 2009;46:327–337. doi: 10.1016/j.neuroimage.2009.01.058.
    1. Wood, R. I. (1996). Functions of the steroid-responsive neural network in the control of male hamster sexual behavior. Trends in Endocrinology and Metabolism, 7, 338–344.

Source: PubMed

3
Subskrybuj