Metabolomic profiling in perinatal asphyxia: a promising new field

Niamh M Denihan, Geraldine B Boylan, Deirdre M Murray, Niamh M Denihan, Geraldine B Boylan, Deirdre M Murray

Abstract

Metabolomics, the latest "omic" technology, is defined as the comprehensive study of all low molecular weight biochemicals, "metabolites" present in an organism. As a systems biology approach, metabolomics has huge potential to progress our understanding of perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy, by uniquely detecting rapid biochemical pathway alterations in response to the hypoxic environment. The study of metabolomic biomarkers in the immediate neonatal period is not a trivial task and requires a number of specific considerations, unique to this disease and population. Recruiting a clearly defined cohort requires standardised multicentre recruitment with broad inclusion criteria and the participation of a range of multidisciplinary staff. Minimally invasive biospecimen collection is a priority for biomarker discovery. Umbilical cord blood presents an ideal medium as large volumes can be easily extracted and stored and the sample is not confounded by postnatal disease progression. Pristine biobanking and phenotyping are essential to ensure the validity of metabolomic findings. This paper provides an overview of the current state of the art in the field of metabolomics in perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy. We detail the considerations required to ensure high quality sampling and analysis, to support scientific progression in this important field.

Trial registration: ClinicalTrials.gov NCT02019147.

References

    1. Ramaswamy V., Horton J., Vandermeer B., Buscemi N., Miller S., Yager J. Systematic review of biomarkers of brain injury in term neonatal encephalopathy. Pediatric Neurology. 2009;40(3):215–226. doi: 10.1016/j.pediatrneurol.2008.09.026.
    1. Fanos V., van den Anker J., Noto A., Mussap M., Atzori L. Metabolomics in neonatology: fact or fiction? Seminars in Fetal and Neonatal Medicine. 2013;18(1):3–12. doi: 10.1016/j.siny.2012.10.014.
    1. McGuire W. Perinatal asphyxia. Clinical Evidence. 2007;11:p. 320.
    1. de Haan M., Wyatt J. S., Roth S., Vargha-Khadem F., Gadian D., Mishkin M. Brain and cognitive-behavioural development after asphyxia at term birth. Developmental Science. 2006;9(4):350–358. doi: 10.1111/j.1467-7687.2006.00499.x.
    1. Fatemi A., Wilson M. A., Johnston M. V. Hypoxic-ischemic encephalopathy in the term infant. Clinics in Perinatology. 2009;36(4):835–858. doi: 10.1016/j.clp.2009.07.011.
    1. Hagberg B., Hagberg G., Beckung E., Uvebrant P. Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth year period 1991–94. Acta Paediatrica. 2001;90(3):271–277.
    1. Mañeru C., Junqué C., Botet F., Tallada M., Guardia J. Neuropsychological long-term sequelae of perinatal asphyxia. Brain Injury. 2001;15(12):1029–1039. doi: 10.1080/02699050110074178.
    1. Robertson C. M. T., Finer N. N. Long-term follow-up of term neonates with perinatal asphyxia. Clinics in Perinatology. 1993;20(2):483–499.
    1. Azzopardi D. V., Strohm B., Edwards A. D., et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. The New England Journal of Medicine. 2009;361(14):1349–1358. doi: 10.1056/nejmoa0900854.
    1. Wassink G., Gunn E. R., Drury P. P., Bennet L., Gunn A. J. The mechanisms and treatment of asphyxial encephalopathy. Frontiers in Neuroscience. 2014;8, article 40 doi: 10.3389/fnins.2014.00040.
    1. Murray D. M., Ryan C. A., Boylan G. B., Fitzgerald A. P., Connolly S. Prediction of seizures in asphyxiated neonates: correlation with continuous video-electroencephalographic monitoring. Pediatrics. 2006;118(1):41–46. doi: 10.1542/peds.2005-1524.
    1. Ferriero D. M., Bonifacio S. L. The search continues for the elusive biomarkers of neonatal brain injury. Journal of Pediatrics. 2014;164(3):438–440. doi: 10.1016/j.jpeds.2013.11.042.
    1. Volpe J. J. Perinatal brain injury: from pathogenesis to neuroprotection. Mental Retardation and Developmental Disabilities Research Reviews. 2001;7(1):56–64. doi: 10.1002/1098-2779(200102)7:1x003C;56::aid-mrdd1008x0003e;;2-a.
    1. Mishra O. P., Delivoria-Papadopoulos M. Cellular mechanisms of hypoxic injury in the developing brain. Brain Research Bulletin. 1999;48(3):233–238. doi: 10.1016/S0361-9230(98)00170-1.
    1. Hagberg H., Thornberg E., Blennow M., et al. Excitatory amino acids in the cerebrospinal fluid of asphyxiated infants: relationship to hypoxic-ischemic encephalopathy. Acta Paediatrica. 1993;82(11):925–929. doi: 10.1111/j.1651-2227.1993.tb12601.x.
    1. Tan S., Zhou F., Nielsen V. G., Wang Z., Gladson C. L., Parks D. A. Sustained hypoxia-ischemia results in reactive nitrogen and oxygen species production and injury in the premature fetal rabbit brain. Journal of Neuropathology and Experimental Neurology. 1998;57(6):544–553. doi: 10.1097/00005072-199806000-00002.
    1. Amer-Wåhlin I., Nord A., Bottalico B., et al. Fetal cerebral energy metabolism and electrocardiogram during experimental umbilical cord occlusion and resuscitation. Journal of Maternal-Fetal and Neonatal Medicine. 2010;23(2):158–166. doi: 10.3109/14767050903067360.
    1. Engidawork E., Chen Y., Dell'anna E., et al. Effect of perinatal asphyxia on systemic and intracerebral pH and glycolysis metabolism in the rat. Experimental Neurology. 1997;145(2):390–396. doi: 10.1006/exnr.1997.6482.
    1. Dunn W. B., Broadhurst D. I., Atherton H. J., Goodacre R., Griffin J. L. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews. 2011;40(1):387–426. doi: 10.1039/b906712b.
    1. Alawieh A., Zaraket F. A., Li J.-L., et al. Systems biology, bioinformatics, and biomarkers in neuropsychiatry. Frontiers in Neuroscience. 2012;6, article 187 doi: 10.3389/fnins.2012.00187.
    1. Reinke S. N., Broadhurst D. I. Meeting on metabolomics moves the focus from endpoint to integrative systems science. Genome Medicine. 2012;4(11):p. 85. doi: 10.1186/gm386.
    1. Huang C.-C., Wang S.-T., Chang Y.-C., Lin K.-P., Wu P.-L. Measurement of the urinary lactate:creatinine ratio for the early identification of newborn infants at risk for hypoxic-ischemic encephalopathy. The England Journal of Medicine. 1999;341(5):328–335. doi: 10.1056/nejm199907293410504.
    1. Chu C. Y., Xiao X., Zhou X. G., et al. Metabolomic and bioinformatic analyses in asphyxiated neonates. Clinical Biochemistry. 2006;39(3):203–209. doi: 10.1016/j.clinbiochem.2006.01.006.
    1. Solberg R., Enot D., Deigner H.-P., et al. Metabolomic analyses of plasma reveals new insights into asphyxia and resuscitation in pigs. PLoS ONE. 2010;5(3) doi: 10.1371/journal.pone.0009606.e9606
    1. Beckstrom A. C., Humston E. M., Snyder L. R., Synovec R. E., Juul S. E. Application of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method to identify potential biomarkers of perinatal asphyxia in a non-human primate model. Journal of Chromatography A. 2011;1218(14):1899–1906. doi: 10.1016/j.chroma.2011.01.086.
    1. Skappak C., Regush S., Cheung P.-Y., Adamko D. J. Identifying hypoxia in a newborn piglet model using urinary NMR metabolomic profiling. PLoS ONE. 2013;8(5) doi: 10.1371/journal.pone.0065035.e65035
    1. Liu J., Segal M. R., Kelly M. J. S., et al. 13C nmr metabolomic evaluation of immediate and delayed mild hypothermia in cerebrocortical slices after oxygen-glucose deprivation. Anesthesiology. 2013;119(5):1120–1136. doi: 10.1097/ALN.0b013e31829c2d90.
    1. Hanrahan J. D., Cox I. J., Edwards A. D., et al. Persistent increases in cerebral lactate concentration after birth asphyxia. Pediatric Research. 1998;44(3):304–311. doi: 10.1203/00006450-199809000-00007.
    1. Arduini A., Escobar J., Vento M., et al. Metabolic adaptation and neuroprotection differ in the retina and choroid in a piglet model of acute postnatal hypoxia. Pediatric Research. 2014;76(2):127–134.
    1. Atzori L., Xanthos T., Barberini L., et al. A metabolomic approach in an experimental model of hypoxia-reoxygenation in newborn piglets: urine predicts outcome. Journal of Maternal-Fetal and Neonatal Medicine. 2010;23(3):134–137. doi: 10.3109/14767058.2010.517033.
    1. Murgia F., Noto A., Lacovidou N., et al. Is the quickness of resuscitation after hypoxia influenced by the oxygen concentration? Metabolomics in piglets resuscitated with different oxygen concentrations. Journal of Pediatric and Neonatal Individualized Medicine. 2013;2(2)e020233
    1. van Cappellen van Walsum A.-M., Jongsma H. W., Wevers R. A., et al. Hypoxia in fetal lambs: a study with 1H-NMR spectroscopy of cerebrospinal fluid. Pediatric Research. 2001;49(5):698–704. doi: 10.1203/00006450-200105000-00015.
    1. Lemons J. A., Adcock E. W., III, Jones M. D., Jr., Naughton M. A., Meschia G., Battaglia F. C. Umbilical uptake of amino acids in the unstressed fetal lamb. The Journal of Clinical Investigation. 1976;58(6):1428–1434. doi: 10.1172/jci108598.
    1. Liu J., Sheldon R. A., Segal M. R., et al. 1H nuclear magnetic resonance brain metabolomics in neonatal mice after hypoxia-ischemia distinguished normothermic recovery from mild hypothermia recoveries. Pediatric Research. 2013;74(2):170–179. doi: 10.1038/pr.2013.88.
    1. Solberg R., Escobar J., Arduini A., et al. Metabolomic analysis of the effect of postnatal hypoxia on the retina in a newly born piglet model. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0066540.e66540
    1. Whitelaw A., Thoresen M. Animal research has been essential to saving babies' lives. The British Medical Journal. 2014;348 doi: 10.1136/bmj.g4174.g4174
    1. Dunn W. B., Wilson I. D., Nicholls A. W., Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4(18):2249–2264. doi: 10.4155/bio.12.204.
    1. Yager J. Y., Ashwal S. Animal models of perinatal hypoxic-ischemic brain damage. Pediatric Neurology. 2009;40(3):156–167. doi: 10.1016/j.pediatrneurol.2008.10.025.
    1. Vannucci R. C., Vannucci S. J. Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Developmental Neuroscience. 2005;27(2–4):81–86. doi: 10.1159/000085978.
    1. Rice J. E., III, Vannucci R. C., Brierley J. B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Annals of Neurology. 1981;9(2):131–141. doi: 10.1002/ana.410090206.
    1. Patel S. D., Pierce L., Ciardiello A. J., Vannucci S. J. Neonatal encephalopathy: pre-clinical studies in neuroprotection. Biochemical Society Transactions. 2014;42(2):564–568. doi: 10.1042/bst20130247.
    1. Björkman S. T., Miller S. M., Rose S. E., Burke C., Colditz P. B. Seizures are associated with brain injury severity in a neonatal model of hypoxia-ischemia. Neuroscience. 2010;166(1):157–167. doi: 10.1016/j.neuroscience.2009.11.067.
    1. Cuaycong M., Engel M., Weinstein S. L., et al. A novel approach to the study of hypoxia-ischemia-induced clinical and subclinical seizures in the neonatal rat. Developmental Neuroscience. 2011;33(3-4):241–250. doi: 10.1159/000331646.
    1. Bozek K., Wei Y., Yan Z., et al. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness. PLoS Biology. 2014;12(5) doi: 10.1371/journal.pbio.1001871.e1001871
    1. Hagberg H., Ichord R., Palmer C., Yager J. Y., Vannucci S. J. Animal models of developmental brain injury: relevance to human disease—a summary of the panel discussion from the third Hershey Conference on developmental cerebral blood flow and metabolism. Developmental Neuroscience. 2002;24(5):364–366. doi: 10.1159/000069040.
    1. Sumner L. W., Amberg A., Barrett D., et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3(3):211–221. doi: 10.1007/s11306-007-0082-2.
    1. Barouxis D., Chalkias A., Syggelou A., Iacovidou N., Xanthos T. Research in human resuscitation: what we learn from animals. The Journal of Maternal-Fetal & Neonatal Medicine. 2012;25(supplement 5):44–46. doi: 10.3109/14767058.2012.714633.
    1. Leviton A. Why the term neonatal encephalopathy should be preferred over neonatal hypoxic-ischemic encephalopathy. The American Journal of Obstetrics and Gynecology. 2013;208(3):176–180. doi: 10.1016/j.ajog.2012.07.020.
    1. Volpe J. J. Neonatal encephalopathy: an inadequate term for hypoxic-ischemic encephalopathy. Annals of Neurology. 2012;72(2):156–166. doi: 10.1002/ana.23647.
    1. Murray D. M., Boylan G. B., Ryan C. A., Connolly S. Early continuous video-EEG in acute near-total intrauterine asphyxia. Pediatric Neurology. 2006;35(1):52–56. doi: 10.1016/j.pediatrneurol.2006.01.002.
    1. Walsh B. H., Murray D. M., Boylan G. B. The use of conventional EEG for the assessment of hypoxic ischaemic encephalopathy in the newborn: a review. Clinical Neurophysiology. 2011;122(7):1284–1294. doi: 10.1016/j.clinph.2011.03.032.
    1. Atzori L., Antonucci R., Barberini L., et al. 1H NMR-based metabolomic analysis of urine from preterm and term neonates. Frontiers in Bioscience (Elite edition) 2011;3(3):1005–1012.
    1. Hashimoto F., Nishiumi S., Miyake O., et al. Metabolomics analysis of umbilical cord blood clarifies changes in saccharides associated with delivery method. Early Human Development. 2013;89(5):315–320. doi: 10.1016/j.earlhumdev.2012.10.010.
    1. Horgan R. P., Broadhurst D. I., Walsh S. K., et al. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy. Journal of Proteome Research. 2011;10(8):3660–3673. doi: 10.1021/pr2002897.
    1. Broadhurst D. I., Kell D. B. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics. 2006;2(4):171–196. doi: 10.1007/s11306-006-0037-z.
    1. Fanos V., Atzori L., Makarenko K., Melis G. B., Ferrazzi E. Metabolomics application in maternal-fetal medicine. BioMed Research International. 2013;2013:9. doi: 10.1155/2013/720514.720514
    1. Kamlage B., Maldonado S. G., Bethan B., et al. Quality markers addressing preanalytical variations of blood and plasma processing identified by broad and targeted metabolite profiling. Clinical Chemistry. 2014;60(2):399–412. doi: 10.1373/clinchem.2013.211979.
    1. Reinke S. N., Walsh B. H., Boylan G. B., et al. 1H NMR derived metabolomic profile of neonatal asphyxia in umbilical cord serum: implications for hypoxic ischemic encephalopathy. Journal of Proteome Research. 2013;12(9):4230–4239. doi: 10.1021/pr400617m.
    1. Walsh B. H., Broadhurst D. I., Mandal R., et al. The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy. PLoS ONE. 2012;7(12) doi: 10.1371/journal.pone.0050520.e50520
    1. van Handel M., Swaab H., de Vries L. S., Jongmans M. J. Long-term cognitive and behavioral consequences of neonatal encephalopathy following perinatal asphyxia: a review. European Journal of Pediatrics. 2007;166(7):645–654. doi: 10.1007/s00431-007-0437-8.
    1. Marlow N. Measuring neurodevelopmental outcome in neonatal trials: a continuing and increasing challenge. Archives of Disease in Childhood: Fetal and Neonatal Edition. 2013;98(6):F554–F558. doi: 10.1136/archdischild-2012-302970.
    1. Meyburg J., Schulze A., Kohlmueller D., Linderkamp O., Mayatepek E. Postnatal changes in neonatal acylcarnitine profile. Pediatric Research. 2001;49(1):125–129. doi: 10.1203/00006450-200101000-00024.
    1. Vannucci R. C., Vannucci S. J. Glucose metabolism in the developing brain. Seminars in Perinatology. 2000;24(2):107–115. doi: 10.1053/sp.2000.6361.
    1. White H., Venkatesh B. Clinical review: ketones and brain injury. Critical Care. 2011;15(2, article 219) doi: 10.1186/cc10020.
    1. Ducrée J., Haeberle S., Lutz S., Pausch S., von Stetten F., Zengerle R. The centrifugal microfluidic bio-disk platform. Journal of Micromechanics and Microengineering. 2007;17(7, article S103) doi: 10.1088/0960-1317/17/7/s07.
    1. Fanos V., Noto A., Xanthos T., et al. Metabolomics network characterization of resuscitation after normocapnic hypoxia in a newborn piglet model supports the hypothesis that room air is better. BioMed Research International. 2014;2014:7. doi: 10.1155/2014/731620.731620

Source: PubMed

3
Subskrybuj